1
|
Huang Y, Wang Q, Zhou W, Jiang Y, He K, Huang W, Feng Y, Wu H, Liu L, Pan Y, Huang Y, Chen Z, Li W, Huang Y, Lin G, Zhang Y, Ren Y, Xu K, Yu Y, Peng Y, Pan X, Pan S, Hu H, Hu Y. Prenatal p25-activated Cdk5 induces pituitary tumorigenesis through MCM2 phosphorylation-mediated cell proliferation. Neoplasia 2024; 57:101054. [PMID: 39366214 PMCID: PMC11489071 DOI: 10.1016/j.neo.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Aberrant expression of cyclin-dependent kinase 5 (Cdk5) has been reported in pituitary adenomas. However, the role of Cdk5 in the tumorigenesis remains unclear. We show that prenatal p25-activated Cdk5 phosphorylates minichromosome maintenance protein 2 (Mcm2), enhancing minichromosome maintenance (MCM) family proteins and driving intermediate lobe-located melanotrope-originated pituitary tumorigenesis. In a mouse model with CaMKII promoter-driven transgenic induction of p25, we observed intermediate lobe-originated pituitary adenoma producing non-functional proopiomelanocortin (POMC)-derived peptides under persistent p25 overexpression. Single-cell RNA sequencing revealed Mcm2 may play an important role during tumor progression. Subsequently, Mcm2 was identified as a potential phosphorylated substrate of Cdk5, mediating the tumorous proliferation of melanotrope cells. Silencing Cdk5 or Mcm2 suppressed cell proliferation and colony formation in the 293T cell lines. Therefore, our findings provide a new mouse model of intermediate lobe-originated pituitary adenoma induced by p25/Cdk5 and unveil a previously unappreciated role of Cdk5 and Mcm2 in pituitary adenoma tumorigenesis.
Collapse
Affiliation(s)
- Yingwei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Neurology, Jiangmen Central Hospital, Jiangmen, China
| | - Qiqi Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weiwei Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yawei Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wei Huang
- Department of Neurology, the First People's Hospital of Shunde, Southern Medical University, Guangzhou, China
| | - Yating Feng
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hong Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zirui Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaowei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanchuan Lin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yulong Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yongyan Ren
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Kaibiao Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yuping Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China; Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China; China Ministry Education Key Laboratory of Infectious Diseases Research in South China, Southern Medical University, Guangzhou, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Tremblay R, Mehrjoo Y, Ahmed O, Simoneau A, McQuaid ME, Affar EB, Nislow C, Giaever G, Wurtele H. Persistent Acetylation of Histone H3 Lysine 56 Compromises the Activity of DNA Replication Origins. Mol Cell Biol 2023; 43:566-595. [PMID: 37811746 PMCID: PMC10791153 DOI: 10.1080/10985549.2023.2259739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 08/09/2023] [Indexed: 10/10/2023] Open
Abstract
In Saccharomyces cerevisiae, newly synthesized histones H3 are acetylated on lysine 56 (H3 K56ac) by the Rtt109 acetyltransferase prior to their deposition on nascent DNA behind replication forks. Two deacetylases of the sirtuin family, Hst3 and Hst4, remove H3 K56ac from chromatin after S phase. hst3Δ hst4Δ cells present constitutive H3 K56ac, which sensitizes cells to replicative stress via unclear mechanisms. A chemogenomic screen revealed that DBF4 heterozygosity sensitizes cells to NAM-induced inhibition of sirtuins. DBF4 and CDC7 encode subunits of the Dbf4-dependent kinase (DDK), which activates origins of DNA replication during S phase. We show that (i) cells harboring the dbf4-1 or cdc7-4 hypomorphic alleles are sensitized to NAM, and that (ii) the sirtuins Sir2, Hst1, Hst3, and Hst4 promote DNA replication in cdc7-4 cells. We further demonstrate that Rif1, an inhibitor of DDK-dependent activation of origins, causes DNA damage and replication defects in NAM-treated cells and hst3Δ hst4Δ mutants. cdc7-4 hst3Δ hst4Δ cells are shown to display delayed initiation of DNA replication, which is not due to intra-S checkpoint activation but requires Rtt109-dependent H3 K56ac. Our results suggest that constitutive H3 K56ac sensitizes cells to replicative stress in part by negatively influencing the activation of origins of DNA replication.
Collapse
Affiliation(s)
- Roch Tremblay
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Yosra Mehrjoo
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Oumaima Ahmed
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Antoine Simoneau
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Mary E. McQuaid
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
3
|
Han Z, Andrš M, Madhavan BK, Kaymak S, Sulaj A, Kender Z, Kopf S, Kihm L, Pepperkok R, Janscak P, Nawroth P, Kumar V. The importance of nuclear RAGE-Mcm2 axis in diabetes or cancer-associated replication stress. Nucleic Acids Res 2023; 51:2298-2318. [PMID: 36807739 PMCID: PMC10018352 DOI: 10.1093/nar/gkad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.
Collapse
Affiliation(s)
- Zhe Han
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Martin Andrš
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14300 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Bindhu K Madhavan
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Serap Kaymak
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Alba Sulaj
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Zoltan Kender
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Lars Kihm
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Rainer Pepperkok
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14300 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, Heidelberg, Germany
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
4
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
5
|
Molecular Signature of Small Cell Lung Cancer after Treatment Failure: The MCM Complex as Therapeutic Target. Cancers (Basel) 2021; 13:cancers13061187. [PMID: 33801812 PMCID: PMC7998124 DOI: 10.3390/cancers13061187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer, and patients who become refractory to first-line treatment have a poor prognosis. The development of effective treatment regimens is urgently needed. In this study, we identified a gene expression signature of SCLC after treatment failure using SCLC clinical specimens (GEO accession number: GSE162102). A total of 1,136 genes were significantly upregulated in SCLC tissues. These upregulated genes were subjected to KEGG pathway analysis, and "cell cycle", "Fanconi anemia", "alcoholism", "systemic lupus erythematosus", "oocyte meiosis", "homologous recombination", "DNA replication", and "p53 signaling" were identified as the enriched pathways among the genes. We focused on the cell cycle pathway and investigated the clinical significance of four genes associated with this pathway: minichromosome maintenance (MCM) 2, MCM4, MCM6, and MCM7. The overexpression of these MCM genes was confirmed in SCLC clinical specimens. Knockdown assays using siRNAs targeting each of these four MCM genes showed significant attenuation of cancer cell proliferation. Moreover, siRNA-mediated knockdown of each MCM gene enhanced the cisplatin sensitivity of SCLC cells. Our SCLC molecular signature based on SCLC clinical specimens after treatment failure will provide useful information to identify novel molecular targets for this disease.
Collapse
|
6
|
Fei L, Xu H. Role of MCM2-7 protein phosphorylation in human cancer cells. Cell Biosci 2018; 8:43. [PMID: 30062004 PMCID: PMC6056998 DOI: 10.1186/s13578-018-0242-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023] Open
Abstract
A heterohexameric complex composed of minichromosome maintenance protein 2–7 (MCM2–7), which acts as a key replicative enzyme in eukaryotes, is crucial for initiating DNA synthesis only once per cell cycle. The MCM complex remains inactive through the G1 phase, until the S phase, when it is activated to initiate replication. During the transition from the G1 to S phase, the MCM undergoes multisite phosphorylation, an important change that promotes subsequent assembly of other replisome members. Phosphorylation is crucial for the regulation of MCM activity and function. MCMs can be phosphorylated by multiple kinases and these phosphorylation events are involved not only in DNA replication but also cell cycle progression and checkpoint response. Dysfunctional phosphorylation of MCMs appears to correlate with the occurrence and development of cancers. In this review, we summarize the currently available data regarding the regulatory mechanisms and functional consequences of MCM phosphorylation and seek the probability that protein kinase inhibitor can be used therapeutically to target MCM phosphorylation in cancer.
Collapse
Affiliation(s)
- Liangru Fei
- Department of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China
| | - Hongtao Xu
- Department of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China
| |
Collapse
|
7
|
Craveiro M, Cretenet G, Mongellaz C, Matias MI, Caron O, de Lima MCP, Zimmermann VS, Solary E, Dardalhon V, Dulić V, Taylor N. Resveratrol stimulates the metabolic reprogramming of human CD4 + T cells to enhance effector function. Sci Signal 2017; 10:10/501/eaal3024. [PMID: 29042482 DOI: 10.1126/scisignal.aal3024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polyphenol resveratrol activates the deacetylase Sirt1, resulting in various antioxidant, chemoprotectant, neuroprotective, cardioprotective, and anti-inflammatory properties. We found that at high concentrations of resveratrol, human CD4+ T cells showed defective antigen receptor signaling and arrest at the G1 stage of the cell cycle, whereas at low concentrations, cells were readily activated and exhibited enhanced Sirt1 deacetylase activity. Nevertheless, low-dose resveratrol rapidly stimulated genotoxic stress in the T cells, which resulted in engagement of a DNA damage response pathway that depended on the kinase ATR [ataxia telangiectasia-mutated (ATM) and Rad3-related], but not ATM, and subsequently in premitotic cell cycle arrest. The concomitant activation of p53 was coupled to the expression of gene products that regulate cell metabolism, leading to a metabolic reprogramming that was characterized by decreased glycolysis, increased glutamine consumption, and a shift to oxidative phosphorylation. These alterations in the bioenergetic homeostasis of CD4+ T cells resulted in enhanced effector function, with both naïve and memory CD4+ T cells secreting increased amounts of the inflammatory cytokine interferon-γ. Thus, our data highlight the wide range of metabolic adaptations that CD4+ T lymphocytes undergo in response to genomic stress.
Collapse
Affiliation(s)
- Marco Craveiro
- IGMM, CNRS, Université de Montpellier, Montpellier, France.,CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | - Maria I Matias
- IGMM, CNRS, Université de Montpellier, Montpellier, France
| | - Olivier Caron
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,Faculty of Medicine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | - Eric Solary
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,Faculty of Medicine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | - Naomi Taylor
- IGMM, CNRS, Université de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
9
|
GSK-3β Homolog Rim11 and the Histone Deacetylase Complex Ume6-Sin3-Rpd3 Are Involved in Replication Stress Response Caused by Defects in Dna2. Genetics 2017; 206:829-842. [PMID: 28468907 DOI: 10.1534/genetics.116.198671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023] Open
Abstract
Lagging strand synthesis is mechanistically far more complicated than leading strand synthesis because it involves multistep processes and requires considerably more enzymes and protein factors. Due to this complexity, multiple fail-safe factors are required to ensure successful replication of the lagging strand DNA. We attempted to identify novel factors that are required in the absence of the helicase activity of Dna2, an essential enzyme in Okazaki-fragment maturation. In this article, we identified Rim11, a GSK-3β-kinase homolog, as a multicopy suppressor of dna2 helicase-dead mutant (dna2-K1080E). Subsequent epistasis analysis revealed that Ume6 (a DNA binding protein, a downstream substrate of Rim11) also acted as a multicopy suppressor of the dna2 allele. We found that the interaction of Ume6 with the conserved histone deacetylase complex Sin3-Rpd3 and the catalytic activity of Rpd3 were indispensable for the observed suppression of the dna2 mutant. Moreover, multicopy suppression by Rim11/Ume6 requires the presence of sister-chromatid recombination mediated by Rad52/Rad59 proteins, but not vice versa. Interestingly, the overexpression of Rim11 or Ume6 also suppressed the MMS sensitivity of rad59Δ. We also showed that the lethality of dna2 helicase-dead mutant was attributed to checkpoint activation and that decreased levels of deoxynucleotide triphosphates (dNTPs) by overexpressing Sml1 (an inhibitor of ribonucleotide reductase) rescued the dna2 mutant. We also present evidence that indicates Rim11/Ume6 works independently but in parallel with that of checkpoint inhibition, dNTP regulation, and sister-chromatid recombination. In conclusion, our results establish Rim11, Ume6, the histone deacetylase complex Sin3-Rpd3 and Sml1 as new factors important in the events of faulty lagging strand synthesis.
Collapse
|
10
|
Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase. Proc Natl Acad Sci U S A 2015; 112:11223-8. [PMID: 26305950 DOI: 10.1073/pnas.1509608112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.
Collapse
|
11
|
Abstract
The intra-S phase checkpoint kinase of metazoa and yeast, ATR/MEC1, protects chromosomes from DNA damage and replication stress by phosphorylating subunits of the replicative helicase, MCM2-7. Here we describe an unprecedented ATR-dependent pathway in Tetrahymena thermophila in which the essential pre-replicative complex proteins, Orc1p, Orc2p and Mcm6p are degraded in hydroxyurea-treated S phase cells. Chromosomes undergo global changes during HU-arrest, including phosphorylation of histone H2A.X, deacetylation of histone H3, and an apparent diminution in DNA content that can be blocked by the deacetylase inhibitor sodium butyrate. Most remarkably, the cell cycle rapidly resumes upon hydroxyurea removal, and the entire genome is replicated prior to replenishment of ORC and MCMs. While stalled replication forks are elongated under these conditions, DNA fiber imaging revealed that most replicating molecules are produced by new initiation events. Furthermore, the sole origin in the ribosomal DNA minichromosome is inactive and replication appears to initiate near the rRNA promoter. The collective data raise the possibility that replication initiation occurs by an ORC-independent mechanism during the recovery from HU-induced replication stress. DNA damage and replication stress activate cell cycle checkpoint responses that protect the integrity of eukaryotic chromosomes. A well-conserved response involves the reversible phosphorylation of the replicative helicase, MCM2-7, which together with the origin recognition complex (ORC) dictates when and where replication initiates in chromosomes. The central role of ORC and MCMs in DNA replication is illustrated by the fact that small changes in abundance of these pre-replicative complex (pre-RC) components are poorly tolerated from yeast to humans. Here we describe an unprecedented replication stress checkpoint response in the early branching eukaryote, Tetrahymena thermophila, that is triggered by the depletion of dNTP pools with hydroxyurea (HU). Instead of transiently phosphorylating MCM subunits, ORC and MCM proteins are physically degraded in HU-treated Tetrahymena. Unexpectedly, upon HU removal the genome is completely and effortlessly replicated prior to replenishment of ORC and MCM components. Using DNA fiber imaging and 2D gel electrophoresis, we show that ORC-dependent mechanisms are bypassed during the recovery phase to produce bidirectional replication forks throughout the genome. Our findings suggest that Tetrahymena enlists an alternative mechanism for replication initiation, and that the underlying process can operate on a genome-wide scale.
Collapse
Affiliation(s)
- Pamela Y. Sandoval
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
13
|
Abstract
Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate.
Collapse
|
14
|
Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem 2014; 290:1210-21. [PMID: 25471369 DOI: 10.1074/jbc.m114.608232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS (CMG). The Dbf4-Cdc7 kinase phosphorylates Mcm2 in vitro, but the in vivo role for Dbf4-Cdc7 phosphorylation of Mcm2 is unclear. We find that budding yeast Dbf4-Cdc7 phosphorylates Mcm2 in vivo under normal conditions during S phase. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 confers a dominant-negative phenotype with a severe growth defect. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 under wild-type expression conditions also results in impaired DNA replication, substantially decreased single-stranded formation at an origin, and markedly disrupted interaction between GINS and Mcm2-7 during S phase. In vitro, Dbf4-Cdc7 kinase (DDK) phosphorylation of Mcm2 substantially weakens the interaction between Mcm2 and Mcm5, and Dbf4-Cdc7 phosphorylation of Mcm2 promotes Mcm2-7 ring opening. The extrusion of ssDNA from the central channel of Mcm2-7 triggers GINS attachment to Mcm2-7. Thus, Dbf4-Cdc7 phosphorylation of Mcm2 may open the Mcm2-7 ring at the Mcm2-Mcm5 interface, allowing for single-stranded DNA extrusion and subsequent GINS assembly with Mcm2-7.
Collapse
Affiliation(s)
- Irina Bruck
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| |
Collapse
|
15
|
Zech J, Dalgaard JZ. Replisome components--post-translational modifications and their effects. Semin Cell Dev Biol 2014; 30:144-53. [PMID: 24685613 DOI: 10.1016/j.semcdb.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/10/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
Abstract
The process of DNA replication is highly regulated, but at the same time very dynamic. Once S-phase is initiated and replication elongation is occurring, the cells are committed to complete replication in order to ensure genome stability and survival. Many pathways exist to resolve situations where normal replisome progression is not possible. It is becoming more and more evident that post-translational modifications of replisome components play a key role in regulating these pathways which ensure fork progression. Here we review the known modifications of the progressing replisome and how these modifications are thought to affect DNA replication in unperturbed and perturbed S-phases.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK.
| |
Collapse
|
16
|
Matthews LA, Selvaratnam R, Jones DR, Akimoto M, McConkey BJ, Melacini G, Duncker BP, Guarné A. A novel non-canonical forkhead-associated (FHA) domain-binding interface mediates the interaction between Rad53 and Dbf4 proteins. J Biol Chem 2013; 289:2589-99. [PMID: 24285546 DOI: 10.1074/jbc.m113.517060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules.
Collapse
|
17
|
Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, Duncker BP. Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits. J Biol Chem 2013; 288:14926-35. [PMID: 23549044 DOI: 10.1074/jbc.m112.392910] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The essential cell cycle target of the Dbf4/Cdc7 kinase (DDK) is the Mcm2-7 helicase complex. Although Mcm4 has been identified as the critical DDK phosphorylation target for DNA replication, it is not well understood which of the six Mcm2-7 subunits actually mediate(s) docking of this kinase complex. We systematically examined the interaction between each Mcm2-7 subunit with Dbf4 and Cdc7 through two-hybrid and co-immunoprecipitation analyses. Strikingly different binding patterns were observed, as Dbf4 interacted most strongly with Mcm2, whereas Cdc7 displayed association with both Mcm4 and Mcm5. We identified an N-terminal Mcm2 region required for interaction with Dbf4. Cells expressing either an Mcm2 mutant lacking this docking domain (Mcm2ΔDDD) or an Mcm4 mutant lacking a previously identified DDK docking domain (Mcm4ΔDDD) displayed modest DNA replication and growth defects. In contrast, combining these two mutations resulted in synthetic lethality, suggesting that Mcm2 and Mcm4 play overlapping roles in the association of DDK with MCM rings at replication origins. Consistent with this model, growth inhibition could be induced in Mcm4ΔDDD cells through Mcm2 overexpression as a means of titrating the Dbf4-MCM ring interaction. This growth inhibition was exacerbated by exposing the cells to either hydroxyurea or methyl methanesulfonate, lending support for a DDK role in stabilizing or restarting replication forks under S phase checkpoint conditions. Finally, constitutive overexpression of each individual MCM subunit was examined, and genotoxic sensitivity was found to be specific to Mcm2 or Mcm4 overexpression, further pointing to the importance of the DDK-MCM ring interaction.
Collapse
Affiliation(s)
- Matthew D Ramer
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | | | | | | | | | | | | |
Collapse
|