1
|
Rout M, Malone-Perez MW, Park G, Lerner M, Kimble Frazer J, Apple B, Vaughn A, Payton M, Stavrakis S, Sidorov E, Fung KA, Sanghera DK. Contribution of circulating Mfge8 to human T2DM and cardiovascular disease. Gene 2024; 927:148712. [PMID: 38901535 PMCID: PMC11348863 DOI: 10.1016/j.gene.2024.148712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
MFGE8 is a major exosome (EV) protein known to mediate inflammation and atherosclerosis in type 2 diabetes mellitus (T2DM) in animal studies. The pathophysiological role of this protein in obesity, T2DM, and cardiovascular disease is less investigated in humans. Earlier we reported a rare Asian Indian population-specific missense variant (rs371227978; Arg148His) in the MFGE8 gene associated with increased circulating Mfge8 and T2DM. We have further investigated the role of Mfge8 with T2DM risk in additional Asian Indians (n = 4897) and Europeans and other multiethnic cohorts from UK Biobank (UKBB) (n = 455,808) and the US (n = 1150). We also evaluated the exposure of Mfge8-enriched human EVs in zebrafish (ZF) for their impact on cardiometabolic organ system. Most individual carriers of Arg148His variant not only had high circulating Mfge8 but also revealed a positive significant correlation with glucose (r = 0.42; p = 4.9 × 10-04), while the non-carriers showed a negative correlation of Mfge8 with glucose (r = -0.38; p = 0.001) in Asian Indians. The same variant was monomorphic in non-South Asian ethnicities. Even without the variant, serum Mfge8 correlated significantly with blood glucose in other non-South Asian ethnicities (r = 0.47; p = 2.2 × 10-13). Since Mfge8 is an EV marker, we tested the exposure of Mfge8-enriched human EVs to ZF larvae as an exploratory study. The ZF larvae showed rapid effects on insulin-sensitive organs, developing fatty liver disease, heart hypertrophy and exhibiting redundant growth with poor muscular architecture with and without the high-fat diet (HFD). In contrast, the control group fishes developed fatty liver disease and heart hypertrophy only after the HFD feeding. Backed with strong support from animal studies on the role of Mfge8 in obesity, insulin resistance, and atherosclerosis, the current research suggests that circulating Mfge8 may become a potential marker for predicting the risk of T2DM and cardiovascular disease in humans.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Megan W Malone-Perez
- Department of Pediatrics, Section of Hematology and Oncology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gilseung Park
- Department of Pediatrics, Section of Hematology and Oncology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Megan Lerner
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - J Kimble Frazer
- Department of Pediatrics, Section of Hematology and Oncology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Blair Apple
- Department of Neurology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - April Vaughn
- Department of Neurology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marvin Payton
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Evgeny Sidorov
- Department of Neurology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - KarMing A Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Chen X, Zhou W, Liang C, Shi S, Yu X, Chen Q, Sun T, Lu Y, Zhang Y, Guo Q, Li C, Zhang Y, Jiang C. Codelivery Nanosystem Targeting the Deep Microenvironment of Pancreatic Cancer. NANO LETTERS 2019; 19:3527-3534. [PMID: 31058513 DOI: 10.1021/acs.nanolett.9b00374] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered as one of the most aggressive malignancies due to its unique microenvironment of which the cardinal histopathological feature is the remarkable desmoplasia of the stroma, taking up about 80% of the tumor mass. The desmoplastic stroma negatively affects drug diffusion and the infiltration of T cells, leading to an immunosuppressive microenvironment. However, this unique microenvironment can limit the physical spread of pancreatic cancer via a neighbor suppression effect. Here, a tumor central stroma targeting and microenvironment responsive strategy was applied to generate a nanoparticle coloading paclitaxel and phosphorylated gemcitabine. The designed nanoparticle disrupted the central stroma while preserving the external stroma, thereby promoting the antitumor effectiveness of chemotherapeutics. Additionally, the resulting nanoparticle can modulate the tumor immunosuppressive microenvironment by augmenting the number of cytotoxic T cells and restraining the percentage of T regulatory cells. The relatively intact external stroma can effectively maintain the neighbor suppression effect and prevent tumor metastasis. Combining stroma targeting with the delivery of stimuli-responsive polymeric nanoparticles embodies an effective tumor-tailored drug delivery system.
Collapse
Affiliation(s)
- Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Chen Liang
- Department of Pancreatic and Hepatobiliary Surgery , Fudan University Shanghai Cancer Center , 270 Dongan Road , Shanghai 200032 , China
- Department of Oncology, Shanghai Medical College , Fudan University , Shanghai 200032 , China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery , Fudan University Shanghai Cancer Center , 270 Dongan Road , Shanghai 200032 , China
- Department of Oncology, Shanghai Medical College , Fudan University , Shanghai 200032 , China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery , Fudan University Shanghai Cancer Center , 270 Dongan Road , Shanghai 200032 , China
- Department of Oncology, Shanghai Medical College , Fudan University , Shanghai 200032 , China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Yu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Research Center on Aging and Medicine, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , China
| |
Collapse
|