1
|
Reis-Cunha JL, Pimenta-Carvalho SA, Almeida LV, Coqueiro-Dos-Santos A, Marques CA, Black JA, Damasceno J, McCulloch R, Bartholomeu DC, Jeffares DC. Ancestral aneuploidy and stable chromosomal duplication resulting in differential genome structure and gene expression control in trypanosomatid parasites. Genome Res 2024; 34:441-453. [PMID: 38604731 PMCID: PMC11067883 DOI: 10.1101/gr.278550.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Aneuploidy is widely observed in both unicellular and multicellular eukaryotes, usually associated with adaptation to stress conditions. Chromosomal duplication stability is a tradeoff between the fitness cost of having unbalanced gene copies and the potential fitness gained from increased dosage of specific advantageous genes. Trypanosomatids, a family of protozoans that include species that cause neglected tropical diseases, are a relevant group to study aneuploidies. Their life cycle has several stressors that could select for different patterns of chromosomal duplications and/or losses, and their nearly universal use of polycistronic transcription increases their reliance on gene expansion/contraction, as well as post-transcriptional control as mechanisms for gene expression regulation. By evaluating the data from 866 isolates covering seven trypanosomatid genera, we have revealed that aneuploidy tolerance is an ancestral characteristic of trypanosomatids but has a reduced occurrence in a specific monophyletic clade that has undergone large genomic reorganization and chromosomal fusions. We have also identified an ancient chromosomal duplication that was maintained across these parasite's speciation, named collectively as the trypanosomatid ancestral supernumerary chromosome (TASC). TASC has most genes in the same coding strand, is expressed as a disomic chromosome (even having four copies), and has increased potential for functional variation, but it purges highly deleterious mutations more efficiently than other chromosomes. The evidence of stringent control over gene expression in this chromosome suggests that these parasites have adapted to mitigate the fitness cost associated with this ancient chromosomal duplication.
Collapse
Affiliation(s)
- João L Reis-Cunha
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom;
| | - Samuel A Pimenta-Carvalho
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Laila V Almeida
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Anderson Coqueiro-Dos-Santos
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Jeziel Damasceno
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Daniella C Bartholomeu
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Daniel C Jeffares
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
2
|
de Azevedo SLC, Catanho M, Guimarães ACR, Galvão TC. Genomic surveillance: a potential shortcut for effective Chagas disease management. Mem Inst Oswaldo Cruz 2023; 117:e220164. [PMID: 36700581 PMCID: PMC9870261 DOI: 10.1590/0074-02760220164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Chagas disease is an enduring public health issue in many Latin American countries, receiving insufficient investment in research and development. Strategies for disease control and management currently lack efficient pharmaceuticals, commercial diagnostic kits with improved sensitivity, and vaccines. Genetic heterogeneity of Trypanosoma cruzi is a key aspect for novel drug design since pharmacological technologies rely on the degree of conservation of parasite target proteins. Therefore, there is a need to expand the knowledge regarding parasite genetics which, if fulfilled, could leverage Chagas disease research and development, and improve disease control strategies. The growing capacity of whole-genome sequencing technology and its adoption as disease surveillance routine may be key for solving this long-lasting problem.
Collapse
Affiliation(s)
- Sophia Lincoln Cardoso de Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Marcos Catanho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Ramos Guimarães
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Teca Calcagno Galvão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
3
|
Accessing the Variability of Multicopy Genes in Complex Genomes using Unassembled Next-Generation Sequencing Reads: The Case of Trypanosoma cruzi Multigene Families. mBio 2022; 13:e0231922. [PMID: 36264102 PMCID: PMC9765020 DOI: 10.1128/mbio.02319-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.
Collapse
|
4
|
Santi AMM, Ribeiro JM, Reis-Cunha JL, Burle-Caldas GDA, Santos IFM, Silva PA, Resende DDM, Bartholomeu DC, Teixeira SMR, Murta SMF. Disruption of multiple copies of the Prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi. PLoS Negl Trop Dis 2022; 16:e0010845. [PMID: 36260546 PMCID: PMC9581433 DOI: 10.1371/journal.pntd.0010845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Martins Ribeiro
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Paula Alves Silva
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Silvane Maria Fonseca Murta
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
5
|
Diaz-Hernandez A, Gonzalez-Vazquez MC, Arce-Fonseca M, Rodríguez-Morales O, Cedillo-Ramirez ML, Carabarin-Lima A. Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach. Life (Basel) 2022; 12:life12050746. [PMID: 35629412 PMCID: PMC9148029 DOI: 10.3390/life12050746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
There is currently no vaccine against American trypanosomiasis, caused by the parasite Trypanosoma cruzi. This is due to the genomic variation observed in the six DTUs of T. cruzi. This work aims to propose a consensus sequence of the enolase protein from different strains of T. cruzi and mainly evaluate its immunogenic properties at the bioinformatic level. From specialized databases, 15 sequences of the enolase gene were aligned to obtain a consensus sequence, where this sequence was modeled and then evaluated and validated through different bioinformatic programs to learn their immunogenic potential. Finally, chimeric peptides were designed with the most representative epitopes. The results showed high immunogenic potential with six epitopes for MHC-I, and seven epitopes for MHC-II, all of which were highly representative of the enolase present in strains from the American continent as well as five epitopes for B cells. Regarding the computational modeling, molecular docking with Toll-like receptors showed a high affinity and low constant of dissociation, which could lead to an innate-type immune response that helps to eliminate the parasite. In conclusion, the consensus sequence proposed for enolase is capable of providing an ideal immune response; however, the experimental evaluation of this enolase consensus and their chimeric peptides should be a high priority to develop a vaccine against Chagas disease.
Collapse
Affiliation(s)
- Alejandro Diaz-Hernandez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
| | - Maria Cristina Gonzalez-Vazquez
- Herbario y Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico;
| | - Minerva Arce-Fonseca
- Departamento de Biología Molecular, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, México City 14080, Mexico; (M.A.-F.); (O.R.-M.)
| | - Olivia Rodríguez-Morales
- Departamento de Biología Molecular, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, México City 14080, Mexico; (M.A.-F.); (O.R.-M.)
| | - Maria Lilia Cedillo-Ramirez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
- Correspondence: ; Tel.: +52-222-2295-500 (ext. 3965)
| |
Collapse
|
6
|
Leão AC, Viana LA, Fortes de Araujo F, de Lourdes Almeida R, Freitas LM, Coqueiro-Dos-Santos A, da Silveira-Lemos D, Cardoso MS, Reis-Cunha JL, Teixeira-Carvalho A, Bartholomeu DC. Antigenic diversity of MASP gene family of Trypanosoma cruzi. Microbes Infect 2022; 24:104982. [PMID: 35487471 DOI: 10.1016/j.micinf.2022.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease (CD), is a heterogeneous species with high genetic and phenotypic diversity. MASP is the second largest multigene family of T. cruzi. The high degree of polymorphism of the family associated with its location at the surface of infective forms of T. cruzi suggests that MASP participates in mechanisms of host-parasite interaction. In this work, MASP members were divided into 7 subgroups based on protein sequence similarity, and one representative member from each subgroup was chosen to be expressed recombinantly. Immunogenicity of recombinant MASP proteins (rMASP) was investigated using different sera panels from T. cruzi infected mice. To mimic a natural condition in which different MASP members are expressed at the same time in the parasite population, a multiplex bead-based flow cytometry assay was also standardized. Results showed that rMASPs are poorly recognized by sera from mice infected with Colombiana strain, whereas sera from mice infected with CL Brener and Y display high reactivity against the majority of rMASPs tested. Flow cytometry showed that MASP recognition profile changes 10 days after infection. Also, multiplex assay suggests that MASP M1 and M2 are more immunogenic than the other MASP members evaluated that may play an immunodominant role during infection.
Collapse
Affiliation(s)
- Ana Carolina Leão
- Departamento de Parasitologia - Instituto de Ciências Biológicas - ICB Universidade Federal de Minas Gerais - UFMG. Av. Antônio Carlos, 6627 - Pampulha Caixa Postal 486 31270-901, Belo Horizonte, MG
| | - Laila Almeida Viana
- Departamento de Parasitologia - Instituto de Ciências Biológicas - ICB Universidade Federal de Minas Gerais - UFMG. Av. Antônio Carlos, 6627 - Pampulha Caixa Postal 486 31270-901, Belo Horizonte, MG
| | - Fernanda Fortes de Araujo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Av. Augusto de Lima, 1715 CEP: 30.190-009, Belo Horizonte, MG
| | - Rodrigo de Lourdes Almeida
- Departamento de Parasitologia - Instituto de Ciências Biológicas - ICB Universidade Federal de Minas Gerais - UFMG. Av. Antônio Carlos, 6627 - Pampulha Caixa Postal 486 31270-901, Belo Horizonte, MG
| | - Leandro Martins Freitas
- Universidade Federal da Bahia Instituto Multidisciplinar em Saúde - Campus Anísio Teixeira, Rua Hormindo Barros, 58, Quadra 17, Lote 58 Bairro Candeias - CEP: 45.029-094 Vitória da Conquista, BA
| | - Anderson Coqueiro-Dos-Santos
- Departamento de Parasitologia - Instituto de Ciências Biológicas - ICB Universidade Federal de Minas Gerais - UFMG. Av. Antônio Carlos, 6627 - Pampulha Caixa Postal 486 31270-901, Belo Horizonte, MG
| | - Denise da Silveira-Lemos
- Departamento de Parasitologia - Instituto de Ciências Biológicas - ICB Universidade Federal de Minas Gerais - UFMG. Av. Antônio Carlos, 6627 - Pampulha Caixa Postal 486 31270-901, Belo Horizonte, MG; Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Av. Augusto de Lima, 1715 CEP: 30.190-009, Belo Horizonte, MG
| | - Mariana Santos Cardoso
- Departamento de Parasitologia - Instituto de Ciências Biológicas - ICB Universidade Federal de Minas Gerais - UFMG. Av. Antônio Carlos, 6627 - Pampulha Caixa Postal 486 31270-901, Belo Horizonte, MG
| | - João Luís Reis-Cunha
- Departamento de Parasitologia - Instituto de Ciências Biológicas - ICB Universidade Federal de Minas Gerais - UFMG. Av. Antônio Carlos, 6627 - Pampulha Caixa Postal 486 31270-901, Belo Horizonte, MG
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Av. Augusto de Lima, 1715 CEP: 30.190-009, Belo Horizonte, MG
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia - Instituto de Ciências Biológicas - ICB Universidade Federal de Minas Gerais - UFMG. Av. Antônio Carlos, 6627 - Pampulha Caixa Postal 486 31270-901, Belo Horizonte, MG.
| |
Collapse
|
7
|
Cortez DR, Lima FM, Reis-Cunha JL, Bartholomeu DC, Villacis RAR, Rogatto SR, Costa-Martins AG, Marchiano FS, do Carmo RA, da Silveira JF, Marini MM. Trypanosoma cruzi Genomic Variability: Array Comparative Genomic Hybridization Analysis of Clone and Parental Strain. Front Cell Infect Microbiol 2022; 12:760830. [PMID: 35402315 PMCID: PMC8992781 DOI: 10.3389/fcimb.2022.760830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits extensive inter- and intrastrain genetic diversity. As we have previously described, there are some genetic differences between the parental G strain and its clone D11, which was isolated by the limiting dilution method and infection of cultured mammalian cells. Electrophoretic karyotyping and Southern blot hybridization of chromosomal bands with specific markers revealed chromosome length polymorphisms of small size with additional chromosomal bands in clone D11 and the maintenance of large syntenic groups. Both G strain and clone D11 belong to the T. cruzi lineage TcI. Here, we designed intraspecific array-based comparative genomic hybridization (aCGH) to identify chromosomal regions harboring copy-number variations between clone D11 and the G strain. DNA losses were more extensive than DNA gains in clone D11. Most alterations were flanked by repeated sequences from multigene families that could be involved in the duplication and deletion events. Several rearrangements were detected by chromoblot hybridization and confirmed by aCGH. We have integrated the information of genomic sequence data obtained by aCGH to the electrophoretic karyotype, allowing the reconstruction of possible recombination events that could have generated the karyotype of clone D11. These rearrangements may be explained by unequal crossing over between sister or homologous chromatids mediated by flanking repeated sequences and unequal homologous recombination via break-induced replication. The genomic changes detected by aCGH suggest the presence of a dynamic genome that responds to environmental stress by varying the number of gene copies and generating segmental aneuploidy.
Collapse
Affiliation(s)
- Danielle Rodrigues Cortez
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabio Mitsuo Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Centro Universitário São Camilo, Biomedicina, São Paulo, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Silvia Regina Rogatto
- Department of Clinical Genetics, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - André Guilherme Costa-Martins
- Department of Clinical and Toxicological Analyses, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Sycko Marchiano
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rafaela Andrade do Carmo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jose Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Marjorie Mendes Marini, ; Jose Franco da Silveira,
| | - Marjorie Mendes Marini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Centro Universitário São Camilo, Biomedicina, São Paulo, Brazil
- *Correspondence: Marjorie Mendes Marini, ; Jose Franco da Silveira,
| |
Collapse
|
8
|
Ence D, Smith KE, Fan S, Gomide Neves L, Paul R, Wegrzyn J, Peter GF, Kirst M, Brawner J, Nelson CD, Davis JM. NLR diversity and candidate fusiform rust resistance genes in loblolly pine. G3 GENES|GENOMES|GENETICS 2022; 12:6460333. [PMID: 34897455 PMCID: PMC9210285 DOI: 10.1093/g3journal/jkab421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Resistance to fusiform rust disease in loblolly pine (Pinus taeda) is a classic gene-for-gene system. Early resistance gene mapping in the P. taeda family 10-5 identified RAPD markers for a major fusiform rust resistance gene, Fr1. More recently, single nucleotide polymorphism (SNP) markers associated with resistance were mapped to a full-length gene model in the loblolly pine genome encoding for a nucleotide-binding site leucine-rich repeat (NLR) protein. NLR genes are one of the most abundant gene families in plant genomes and are involved in effector-triggered immunity. Inter- and intraspecies studies of NLR gene diversity and expression have resulted in improved disease resistance. To characterize NLR gene diversity and discover potential resistance genes, we assembled de novo transcriptomes from 92 loblolly genotypes from across the natural range of the species. In these transcriptomes, we identified novel NLR transcripts that are not present in the loblolly pine reference genome and found significant geographic diversity of NLR genes providing evidence of gene family evolution. We designed capture probes for these NLRs to identify and map SNPs that stably cosegregate with resistance to the SC20-21 isolate of Cronartium quercuum f.sp. fusiforme (Cqf) in half-sib progeny of the 10-5 family. We identified 10 SNPs and 2 quantitative trait loci associated with resistance to SC20-21 Cqf. The geographic diversity of NLR genes provides evidence of NLR gene family evolution in loblolly pine. The SNPs associated with rust resistance provide a resource to enhance breeding and deployment of resistant pine seedlings.
Collapse
Affiliation(s)
- Daniel Ence
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Katherine E Smith
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
- USDA Forest Service, Southern Research, Southern Institute of Forest Genetics, Saucier, MS 39574, USA
| | - Shenghua Fan
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY 40546, USA
- Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA
| | | | - Robin Paul
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Gary F Peter
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matias Kirst
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy Brawner
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - C Dana Nelson
- USDA Forest Service, Southern Research, Southern Institute of Forest Genetics, Saucier, MS 39574, USA
- USDA Forest Service, Southern Research Station, Forest Health Research and Education Center, Lexington, KY 40546, USA
| | - John M Davis
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Rosón JN, Vitarelli MDO, Costa-Silva HM, Pereira KS, Pires DDS, Lopes LDS, Cordeiro B, Kraus AJ, Cruz KNT, Calderano SG, Fragoso SP, Siegel TN, Elias MC, da Cunha JPC. H2B.V demarcates divergent strand-switch regions, some tDNA loci, and genome compartments in Trypanosoma cruzi and affects parasite differentiation and host cell invasion. PLoS Pathog 2022; 18:e1009694. [PMID: 35180281 PMCID: PMC8893665 DOI: 10.1371/journal.ppat.1009694] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/03/2022] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
Histone variants play a crucial role in chromatin structure organization and gene expression. Trypanosomatids have an unusual H2B variant (H2B.V) that is known to dimerize with the variant H2A.Z generating unstable nucleosomes. Previously, we found that H2B.V protein is enriched in tissue-derived trypomastigote (TCT) life forms, a nonreplicative stage of Trypanosoma cruzi, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among parasite life forms. Here, we performed the first genome-wide profiling of histone localization in T. cruzi using epimastigotes and TCT life forms, and we found that H2B.V was preferentially located at the edges of divergent transcriptional strand switch regions, which encompass putative transcriptional start regions; at some tDNA loci; and between the conserved and disrupted genome compartments, mainly at trans-sialidase, mucin and MASP genes. Remarkably, the chromatin of TCT forms was depleted of H2B.V-enriched peaks in comparison to epimastigote forms. Interactome assays indicated that H2B.V associated specifically with H2A.Z, bromodomain factor 2, nucleolar proteins and a histone chaperone, among others. Parasites expressing reduced H2B.V levels were associated with higher rates of parasite differentiation and mammalian cell infectivity. Taken together, H2B.V demarcates critical genomic regions and associates with regulatory chromatin proteins, suggesting a scenario wherein local chromatin structures associated with parasite differentiation and invasion are regulated during the parasite life cycle.
Collapse
Affiliation(s)
- Juliana Nunes Rosón
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina–UNIFESP, São Paulo, Brazil
| | - Marcela de Oliveira Vitarelli
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Héllida Marina Costa-Silva
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Kamille Schmitt Pereira
- Department of Bioprocesses and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - David da Silva Pires
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Leticia de Sousa Lopes
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Barbara Cordeiro
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Amelie J. Kraus
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universitäat in Munch, Munich, Germany
| | - Karin Navarro Tozzi Cruz
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Simone Guedes Calderano
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Stenio Perdigão Fragoso
- Department of Bioprocesses and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - T. Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universitäat in Munch, Munich, Germany
| | - Maria Carolina Elias
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Chiurillo MA, Lander N. The long and winding road of reverse genetics in Trypanosoma cruzi. MICROBIAL CELL 2021; 8:203-207. [PMID: 34527719 PMCID: PMC8404153 DOI: 10.15698/mic2021.09.758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 12/12/2022]
Abstract
Trypanosomes are early divergent protists with distinctive features among eukaryotic cells. Together with Trypanosoma brucei and Leishmania spp., Trypanosoma cruzi has been one of the most studied members of the group. This protozoan parasite is the causative agent of Chagas disease, a leading cause of heart disease in the Americas, for which there is no vaccine or satisfactory treatment available. Understanding T. cruzi biology is crucial to identify alternative targets for antiparasitic interventions. Genetic manipulation of T. cruzi has been historically challenging. However, the emergence of CRISPR/Cas9 technology has significantly improved the ability to generate genetically modified T. cruzi cell lines. Still, the system alone is not sufficient to answer all biologically relevant questions. In general, current genetic methods have limitations that should be overcome to advance in the study of this peculiar parasite. In this brief historic overview, we highlight the strengths and weaknesses of the molecular strategies that have been developed to genetically modify T. cruzi, emphasizing the future directions of the field.
Collapse
Affiliation(s)
- Miguel A Chiurillo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
11
|
Berná L, Greif G, Pita S, Faral-Tello P, Díaz-Viraqué F, Souza RDCMD, Vallejo GA, Alvarez-Valin F, Robello C. Maxicircle architecture and evolutionary insights into Trypanosoma cruzi complex. PLoS Negl Trop Dis 2021; 15:e0009719. [PMID: 34437557 PMCID: PMC8425572 DOI: 10.1371/journal.pntd.0009719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
We sequenced maxicircles from T. cruzi strains representative of the species evolutionary diversity by using long-read sequencing, which allowed us to uncollapse their repetitive regions, finding that their real lengths range from 35 to 50 kb. T. cruzi maxicircles have a common architecture composed of four regions: coding region (CR), AT-rich region, short (SR) and long repeats (LR). Distribution of genes, both in order and in strand orientation are conserved, being the main differences the presence of deletions affecting genes coding for NADH dehydrogenase subunits, reinforcing biochemical findings that indicate that complex I is not functional in T. cruzi. Moreover, the presence of complete minicircles into maxicircles of some strains lead us to think about the origin of minicircles. Finally, a careful phylogenetic analysis was conducted using coding regions of maxicircles from up to 29 strains, and 1108 single copy nuclear genes from all of the DTUs, clearly establishing that taxonomically T. cruzi is a complex of species composed by group 1 that contains clades A (TcI), B (TcIII) and D (TcIV), and group 2 (1 and 2 do not coincide with groups I and II described decades ago) containing clade C (TcII), being all hybrid strains of the BC type. Three variants of maxicircles exist in T. cruzi: a, b and c, in correspondence with clades A, B, and C from mitochondrial phylogenies. While A and C carry maxicircles a and c respectively, both clades B and D carry b maxicircle variant; hybrid strains also carry the b- variant. We then propose a new nomenclature that is self-descriptive and makes use of both the phylogenetic relationships and the maxicircle variants present in T. cruzi.
Collapse
Affiliation(s)
- Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Biomatemática—Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sebastián Pita
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Genética, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Paula Faral-Tello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Tolima, Colombia
| | - Fernando Alvarez-Valin
- Sección Biomatemática—Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
12
|
Coelho FS, Oliveira MM, Vieira DP, Torres PHM, Moreira ICF, Martins-Duarte ES, Gonçalves IC, Cabanelas A, Pascutti PG, Fragoso SP, Lopes AH. A novel receptor for platelet-activating factor and lysophosphatidylcholine in Trypanosoma cruzi. Mol Microbiol 2021; 116:890-908. [PMID: 34184334 DOI: 10.1111/mmi.14778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 01/12/2023]
Abstract
The lipid mediators, platelet-activating factor (PAF) and lysophosphatidylcholine (LPC), play relevant pathophysiological roles in Trypanosoma cruzi infection. Several species of LPC, including C18:1 LPC, which mimics the effects of PAF, are synthesized by T. cruzi. The present study identified a receptor in T. cruzi, which was predicted to bind to PAF, and found it to be homologous to members of the progestin and adiponectin family of receptors (PAQRs). We constructed a three-dimensional model of the T. cruzi PAQR (TcPAQR) and performed molecular docking to predict the interactions of the TcPAQR model with C16:0 PAF and C18:1 LPC. We knocked out T. cruzi PAQR (TcPAQR) gene and confirmed the identity of the expressed protein through immunoblotting and immunofluorescence assays using an anti-human PAQR antibody. Wild-type and knockout (KO) parasites were also used to investigate the in vitro cell differentiation and interactions with peritoneal mouse macrophages; TcPAQR KO parasites were unable to react to C16:0 PAF or C18:1 LPC. Our data are highly suggestive that PAF and LPC act through TcPAQR in T. cruzi, triggering its cellular differentiation and ability to infect macrophages.
Collapse
Affiliation(s)
- Felipe S Coelho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio M Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro H M Torres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel C F Moreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erica S Martins-Duarte
- Departmento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Inês C Gonçalves
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Cabanelas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro G Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stenio P Fragoso
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Curitiba, Brazil
| | - Angela H Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Bartholomeu DC, Teixeira SMR, Cruz AK. Genomics and functional genomics in Leishmania and Trypanosoma cruzi: statuses, challenges and perspectives. Mem Inst Oswaldo Cruz 2021; 116:e200634. [PMID: 33787768 PMCID: PMC8011669 DOI: 10.1590/0074-02760200634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
The availability of Trypanosomatid genomic data in public databases has opened myriad experimental possibilities that have contributed to a more comprehensive understanding of the biology of these parasites and their interactions with hosts. In this review, after brief remarks on the history of the Trypanosoma cruzi and Leishmania genome initiatives, we present an overview of the relevant contributions of genomics, transcriptomics and functional genomics, discussing the primary obstacles, challenges, relevant achievements and future perspectives of these technologies.
Collapse
Affiliation(s)
- Daniella C Bartholomeu
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | | | - Angela Kaysel Cruz
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| |
Collapse
|
14
|
Talavera-López C, Messenger LA, Lewis MD, Yeo M, Reis-Cunha JL, Matos GM, Bartholomeu DC, Calzada JE, Saldaña A, Ramírez JD, Guhl F, Ocaña-Mayorga S, Costales JA, Gorchakov R, Jones K, Nolan MS, Teixeira SMR, Carrasco HJ, Bottazzi ME, Hotez PJ, Murray KO, Grijalva MJ, Burleigh B, Grisard EC, Miles MA, Andersson B. Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:614665. [PMID: 33747978 PMCID: PMC7966520 DOI: 10.3389/fcimb.2021.614665] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure.
Collapse
Affiliation(s)
- Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- European Bioinformatics Institute, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Machado Matos
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | | | - José E. Calzada
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Azael Saldaña
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Grupo de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Tropical Parasitology Research Center, Universidad de Los Andes, Bogotá, Colombia
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Rodion Gorchakov
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Melissa S. Nolan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hernán José Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kristy O. Murray
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Barbara Burleigh
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Edmundo C. Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Lima ARJ, de Araujo CB, Bispo S, Patané J, Silber AM, Elias MC, da Cunha JPC. Nucleosome landscape reflects phenotypic differences in Trypanosoma cruzi life forms. PLoS Pathog 2021; 17:e1009272. [PMID: 33497423 PMCID: PMC7864430 DOI: 10.1371/journal.ppat.1009272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Trypanosoma cruzi alternates between replicative and nonreplicative life forms, accompanied by a shift in global transcription levels and by changes in the nuclear architecture, the chromatin proteome and histone posttranslational modifications. To gain further insights into the epigenetic regulation that accompanies life form changes, we performed genome-wide high-resolution nucleosome mapping using two T. cruzi life forms (epimastigotes and cellular trypomastigotes). By combining a powerful pipeline that allowed us to faithfully compare nucleosome positioning and occupancy, more than 125 thousand nucleosomes were mapped, and approximately 20% of them differed between replicative and nonreplicative forms. The nonreplicative forms have less dynamic nucleosomes, possibly reflecting their lower global transcription levels and DNA replication arrest. However, dynamic nucleosomes are enriched at nonreplicative regulatory transcription initiation regions and at multigenic family members, which are associated with infective-stage and virulence factors. Strikingly, dynamic nucleosome regions are associated with GO terms related to nuclear division, translation, gene regulation and metabolism and, notably, associated with transcripts with different expression levels among life forms. Finally, the nucleosome landscape reflects the steady-state transcription expression: more abundant genes have a more deeply nucleosome-depleted region at putative 5' splice sites, likely associated with trans-splicing efficiency. Taken together, our results indicate that chromatin architecture, defined primarily by nucleosome positioning and occupancy, reflects the phenotypic differences found among T. cruzi life forms despite the lack of a canonical transcriptional control context.
Collapse
Affiliation(s)
- Alex R. J. Lima
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Christiane B. de Araujo
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Saloe Bispo
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - José Patané
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - M. Carolina Elias
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
- * E-mail: (MCE); (JPCC)
| | - Julia P. C. da Cunha
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
- * E-mail: (MCE); (JPCC)
| |
Collapse
|
16
|
Wang W, Peng D, Baptista RP, Li Y, Kissinger JC, Tarleton RL. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog 2021; 17:e1009254. [PMID: 33508020 PMCID: PMC7872254 DOI: 10.1371/journal.ppat.1009254] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses. However, the highly repetitive nature of the genome-largely a result of these same extensive families of genes-have prevented a full understanding of the extent of gene diversity and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains representing the apparent ancestral lineages of the species. These assemblies reveal not only the full repertoire of the members of large gene families in the two strains, demonstrating extreme diversity within and between isolates, but also provide evidence of the processes that generate and maintain that diversity, including extensive gene amplification, dispersion of copies throughout the genome and diversification via recombination and in situ mutations. Gene amplification events also yield significant copy number variations in a substantial number of genes presumably not required for or involved in immune evasion, thus forming a second level of strain-dependent variation in this species. The extreme genome flexibility evident in T. cruzi also appears to create unique challenges with respect to preserving core genome functions and gene expression that sets this species apart from related kinetoplastids.
Collapse
Affiliation(s)
- Wei Wang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Duo Peng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
17
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes (Basel) 2020; 11:E1196. [PMID: 33066599 PMCID: PMC7602482 DOI: 10.3390/genes11101196] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chagas disease caused by the parasite Trypanosoma cruzi affects millions of people. Although its first genome dates from 2005, its complexity hindered a complete assembly and annotation. However, the new sequencing methods have improved genome annotation of some strains elucidating the broad genetic diversity and complexity of this parasite. Here, we reviewed the genomic structure and regulation, the genetic diversity, and the analysis of the principal multi-gene families of the recent genomes for several strains. The telomeric and sub-telomeric regions are sites with high recombination events, the genome displays two different compartments, the core and the disruptive, and the genome plasticity seems to play a key role in the survival and the infection process. Trypanosoma cruzi (T. cruzi) genome is composed mainly of multi-gene families as the trans-sialidases, mucins, and mucin-associated surface proteins. Trans-sialidases are the most abundant genes in the genome and show an important role in the effectiveness of the infection and the parasite survival. Mucins and MASPs are also important glycosylated proteins of the surface of the parasite that play a major biological role in both insect and mammal-dwelling stages. Altogether, these studies confirm the complexity of T. cruzi genome revealing relevant concepts to better understand Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
18
|
Genomic Organization and Generation of Genetic Variability in the RHS (Retrotransposon Hot Spot) Protein Multigene Family in Trypanosoma cruzi. Genes (Basel) 2020; 11:genes11091085. [PMID: 32957642 PMCID: PMC7563717 DOI: 10.3390/genes11091085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Retrotransposon Hot Spot (RHS) is the most abundant gene family in Trypanosoma cruzi, with unknown function in this parasite. The aim of this work was to shed light on the organization and expression of RHS in T. cruzi. The diversity of the RHS protein family in T. cruzi was demonstrated by phylogenetic and recombination analyses. Transcribed sequences carrying the RHS domain were classified into ten distinct groups of monophyletic origin. We identified numerous recombination events among the RHS and traced the origins of the donors and target sequences. The transcribed RHS genes have a mosaic structure that may contain fragments of different RHS inserted in the target sequence. About 30% of RHS sequences are located in the subtelomere, a region very susceptible to recombination. The evolution of the RHS family has been marked by many events, including gene duplication by unequal mitotic crossing-over, homologous, as well as ectopic recombination, and gene conversion. The expression of RHS was analyzed by immunofluorescence and immunoblotting using anti-RHS antibodies. RHS proteins are evenly distributed in the nuclear region of T. cruzi replicative forms (amastigote and epimastigote), suggesting that they could be involved in the control of the chromatin structure and gene expression, as has been proposed for T. brucei.
Collapse
|
19
|
Ramirez JL. Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? Trop Med Infect Dis 2020; 5:E129. [PMID: 32781761 PMCID: PMC7559697 DOI: 10.3390/tropicalmed5030129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
On 15 July 2020 was the 15th anniversary of the Science Magazine issue that reported three trypanosomatid genomes, namely Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. That publication was a milestone for the research community working with trypanosomatids, even more so, when considering that the first draft of the human genome was published only four years earlier after 15 years of research. Although nowadays, genome sequencing has become commonplace, the work done by researchers before that publication represented a huge challenge and a good example of international cooperation. Research in neglected diseases often faces obstacles, not only because of the unique characteristics of each biological model but also due to the lower funds the research projects receive. In the case of Trypanosoma cruzi the etiologic agent of Chagas disease, the first genome draft published in 2005 was not complete, and even after the implementation of more advanced sequencing strategies, to this date no final chromosomal map is available. However, the first genome draft enabled researchers to pick genes a la carte, produce proteins in vitro for immunological studies, and predict drug targets for the treatment of the disease or to be used in PCR diagnostic protocols. Besides, the analysis of the T. cruzi genome is revealing unique features about its organization and dynamics. In this work, I briefly summarize the actions of Latin American researchers that contributed to the first publication of the T. cruzi genome and discuss some features of the genome that may help to understand the parasite's robustness and adaptive capabilities.
Collapse
Affiliation(s)
- Jose Luis Ramirez
- Instituto de Estudios Avanzados, Caracas, Venezuela and Universidad Central de Venezuela, Caracas 1080, Venezuela
| |
Collapse
|
20
|
Magalhães RDM, Mattos EC, Rozanski A, Galante PAF, Palmisano G, Cruz AK, Colli W, Camargo AA, Alves MJM. Global changes in nitration levels and DNA binding profile of Trypanosoma cruzi histones induced by incubation with host extracellular matrix. PLoS Negl Trop Dis 2020; 14:e0008262. [PMID: 32469928 PMCID: PMC7286532 DOI: 10.1371/journal.pntd.0008262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/10/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Adhesion of T. cruzi trypomastigotes to components of the extracellular matrix (ECM) is an important step in mammalian host cell invasion. We have recently described a significant increase in the tyrosine nitration levels of histones H2A and H4 when trypomastigotes are incubated with components of the ECM. In this work, we used chromatin immunoprecipitation (ChIP) with an anti-nitrotyrosine antibody followed by mass spectrometry to identify nitrated DNA binding proteins in T. cruzi and to detect alterations in nitration levels induced upon parasite incubation with the ECM. Histone H1, H2B, H2A and H3 were detected among the 9 most abundant nitrated DNA binding proteins using this proteomic approach. One nitrated tyrosine residue (Y29) was identified in Histone H2B in the MS/MS spectrum. In addition, we observed a significant increase in the nitration levels of histones H1, H2B, H2A and H4 upon parasite incubation with ECM. Finally, we used ChIP-Seq to map global changes in the DNA binding profile of nitrated proteins. We observed a significant change in the binding pattern of nitrated proteins to DNA after parasite incubation with ECM. This work provides the first global profile of nitrated DNA binding proteins in T. cruzi and additional evidence for modification in the nitration profile of histones upon parasite incubation with ECM. Our data also indicate that the parasite interaction with the ECM induces alterations in chromatin structure, possibly affecting nuclear functions.
Collapse
Affiliation(s)
- Rubens Daniel Miserani Magalhães
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliciane Cevolani Mattos
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Angela Kaysel Cruz
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Walter Colli
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Anamaria Aranha Camargo
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
- * E-mail: (AAC), (MJMA)
| | - Maria Júlia Manso Alves
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (AAC), (MJMA)
| |
Collapse
|
21
|
Rusman F, Floridia-Yapur N, Ragone PG, Diosque P, Tomasini N. Evidence of hybridization, mitochondrial introgression and biparental inheritance of the kDNA minicircles in Trypanosoma cruzi I. PLoS Negl Trop Dis 2020; 14:e0007770. [PMID: 32004318 PMCID: PMC7015434 DOI: 10.1371/journal.pntd.0007770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/12/2020] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Background Genetic exchange in Trypanosoma cruzi is controversial not only in relation to its frequency, but also to its mechanism. Parasexual genetic exchange has been proposed based on laboratory hybrids, but population genomics strongly suggests meiosis in T. cruzi. In addition, mitochondrial introgression has been reported several times in natural isolates although its mechanism is not fully understood yet. Moreover, hybrid T. cruzi DTUs (TcV and TcVI) have inherited at least part of the kinetoplastic DNA (kDNA = mitochondrial DNA) from both parents. Methodology/Principal findings In order to address such topics, we sequenced and analyzed fourteen nuclear DNA fragments and three kDNA maxicircle genes in three TcI stocks which are natural clones potentially involved in events of genetic exchange. We also deep-sequenced (a total of 6,146,686 paired-end reads) the minicircle hypervariable region (mHVR) of the kDNA in such three strains. In addition, we analyzed the DNA content by flow cytometry to address cell ploidy. We observed that most polymorphic sites in nuclear loci showed a hybrid pattern in one cloned strain and the other two cloned strains were compatible as parental strains (or nearly related to the true parents). The three clones had almost the same ploidy and the DNA content was similar to the reference strain Sylvio (a nearly diploid strain). Despite maxicircle genes evolve faster than nuclear housekeeping ones, we detected no polymorphisms in the sequence of three maxicircle genes showing mito-nuclear discordance. Lastly, the hybrid stock shared 66% of its mHVR clusters with one putative parent and 47% with the other one; in contrast, the putative parental stocks shared less than 30% of the mHVR clusters between them. Conclusions/significance The results suggest a reductive division, a natural hybridization, biparental inheritance of the minicircles in the hybrid and maxicircle introgression. The models including such phenomena and explaining the relationships between these three clones are discussed. Chagas disease, an important public health problem in Latin America, is caused by the parasite Trypanosoma cruzi. Despite being a widely studied parasite, several questions on the biology of genetic exchange remain unanswered. Population genomic studies have inferred meiosis in T. cruzi, but this cellular division mechanism has not been observed in laboratory yet. In addition, previous results suggest that mitochondrial DNA (called kDNA) may be inherited from both parents in hybrids. Here, we analyzed a hybrid strain and its potential parents to address the mechanisms of genetic exchange at nuclear and mitochondrial levels. We observed that the hybrid strain had heterozygous patterns and DNA content compatible with a meiosis event. Also, we observed that the evolutionary histories of nuclear DNA and kDNA maxicircles were discordant and that the three strains shared identical DNA sequences. Mitochondrial introgression of maxicircle DNA from one genotype to another may explain this observation. In addition, we demonstrated that the hybrid strain shared kDNA minicircles with both parental strains. Our results suggest that hybridization implied meiosis and biparental inheritance of the kDNA. Further research is required to address such phenomena in detail.
Collapse
Affiliation(s)
- Fanny Rusman
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Noelia Floridia-Yapur
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Paula G. Ragone
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Patricio Diosque
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
- * E-mail:
| |
Collapse
|
22
|
Ramirez JL. An Evolutionary View of Trypanosoma Cruzi Telomeres. Front Cell Infect Microbiol 2020; 9:439. [PMID: 31998659 PMCID: PMC6967402 DOI: 10.3389/fcimb.2019.00439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Like in most eukaryotes, the linear chromosomes of Trypanosoma cruzi end in a nucleoprotein structure called the telomere, which is preceded by regions of variable length called subtelomeres. Together telomeres and subtelomeres are dynamic sites where DNA sequence rearrangements can occur without compromising essential interstitial genes or chromosomal synteny. Good examples of subtelomeres involvement are the expansion of human olfactory receptors genes, variant surface antigens in Trypanosoma brucei, and Saccharomyces cerevisiae mating types. T. cruzi telomeres are made of long stretches of the hexameric repeat 5′-TTAGGG-OH-3′, and its subtelomeres are enriched in genes and pseudogenes from the large gene families RHS, TS and DGF1, DEAD/H-RNA helicase and N-acetyltransferase, intermingled with sequences of retrotransposons elements. In particular, members of the Trans-sialidase type II family appear to have played a role in shaping the current T. cruzi telomere structure. Although the structure and function of T. cruzi telomeric and subtelomeric regions have been documented, recent experiments are providing new insights into T. cruzi's telomere-subtelomere dynamics. In this review, I discuss the co-evolution of telomere, subtelomeres and the TS gene family, and the role that these regions may have played in shaping T. cruzi's genome.
Collapse
Affiliation(s)
- Jose Luis Ramirez
- Fundación Instituto de Estudios Avanzados and United Nations University UNU-BIOLAC, Caracas, Venezuela
| |
Collapse
|
23
|
Meade JC. P-type transport ATPases in Leishmania and Trypanosoma. ACTA ACUST UNITED AC 2019; 26:69. [PMID: 31782726 PMCID: PMC6884021 DOI: 10.1051/parasite/2019069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
P-type ATPases are critical to the maintenance and regulation of cellular ion homeostasis and membrane lipid asymmetry due to their ability to move ions and phospholipids against a concentration gradient by utilizing the energy of ATP hydrolysis. P-type ATPases are particularly relevant in human pathogenic trypanosomatids which are exposed to abrupt and dramatic changes in their external environment during their life cycles. This review describes the complete inventory of ion-motive, P-type ATPase genes in the human pathogenic Trypanosomatidae; eight Leishmania species (L. aethiopica, L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. panamensis, L. tropica), Trypanosoma cruzi and three Trypanosoma brucei subspecies (Trypanosoma brucei brucei TREU927, Trypanosoma brucei Lister strain 427, Trypanosoma brucei gambiense DAL972). The P-type ATPase complement in these trypanosomatids includes the P1B (metal pumps), P2A (SERCA, sarcoplasmic-endoplasmic reticulum calcium ATPases), P2B (PMCA, plasma membrane calcium ATPases), P2D (Na+ pumps), P3A (H+ pumps), P4 (aminophospholipid translocators), and P5B (no assigned specificity) subfamilies. These subfamilies represent the P-type ATPase transport functions necessary for survival in the Trypanosomatidae as P-type ATPases for each of these seven subfamilies are found in all Leishmania and Trypanosoma species included in this analysis. These P-type ATPase subfamilies are correlated with current molecular and biochemical knowledge of their function in trypanosomatid growth, adaptation, infectivity, and survival.
Collapse
Affiliation(s)
- John C Meade
- Department of Microbiology and Immunology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
24
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
25
|
Reis-Cunha JL, Bartholomeu DC. Trypanosoma cruzi Genome Assemblies: Challenges and Milestones of Assembling a Highly Repetitive and Complex Genome. Methods Mol Biol 2019; 1955:1-22. [PMID: 30868515 DOI: 10.1007/978-1-4939-9148-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trypanosoma cruzi present one of the most complex parasite genomes sequenced to date. Among its features are 600-kb-long repetitive multigene families' clusters, hybrid strains, and aneuploidies, which hampered genome assembly completeness and contiguity. Several approaches, such as Sanger sequencing in 2005, next-generation sequencing in 2011 and third-generation sequencing in 2018, were used to improve draft assemblies of different strains of this parasite. Hence, the study of T. cruzi genome assemblies' history is an excellent way to describe the evolution of genome sequencing methodologies and compare their efficiency and limitations to assembly complex genomes. In this book chapter, we summarize the principal findings and methodologies of T. cruzi genome assembly projects to date, highlighting the improvements and limitations of each approach.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniella C Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
26
|
Reis-Cunha JL, Baptista RP, Rodrigues-Luiz GF, Coqueiro-Dos-Santos A, Valdivia HO, de Almeida LV, Cardoso MS, D'Ávila DA, Dias FHC, Fujiwara RT, Galvão LMC, Chiari E, Cerqueira GC, Bartholomeu DC. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics 2018; 19:816. [PMID: 30424726 PMCID: PMC6234542 DOI: 10.1186/s12864-018-5198-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions. RESULTS In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of seven TcII strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil, revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle divergences in the branches are probably consequence of mitochondrial introgression events between TcII strains. Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the Espinhaço Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven TcII strains have a different pattern of chromosomal duplication/loss. CONCLUSIONS Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability within Minas Gerais TcII strains, which could be exploited by the parasite to allow rapid selection of favorable phenotypes. Also, the aneuploidy patterns vary among T. cruzi strains and does not correlate with the nuclear phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo P Baptista
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,The University of Georgia, Athens, USA
| | - Gabriela F Rodrigues-Luiz
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Hugo O Valdivia
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,U.S. Naval Medical Research, Lima, Peru
| | - Laila Viana de Almeida
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Santos Cardoso
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Lúcia M C Galvão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniella C Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
27
|
Callejas-Hernández F, Rastrojo A, Poveda C, Gironès N, Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci Rep 2018; 8:14631. [PMID: 30279473 PMCID: PMC6168536 DOI: 10.1038/s41598-018-32877-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Chagas disease is a complex illness caused by the protozoan Trypanosoma cruzi displaying highly diverse clinical outcomes. In this sense, the genome sequence elucidation and comparison between strains may lead to disease understanding. Here, two new T. cruzi strains, have been sequenced, Y using Illumina and Bug2148 using PacBio, assembled, analyzed and compared with the T. cruzi annotated genomes available to date. The assembly stats from the new sequences show effective improvement of T. cruzi genome over the actual ones. Such as, the largest contig assembled (1.3 Mb in Bug2148) in de novo attempts and the highest mean assembly coverage (71X for Y). Our analysis reveals a new genomic expansion and greater complexity for those multi-copy gene families related to infection process and disease development, such as Trans-sialidases, Mucins and Mucin Associated Surface Proteins, among others. On one side, we demonstrate that multi-copy gene families are located near telomeric regions of the "chromosome-like" 1.3 Mb contig assembled of Bug2148, where they likely suffer high evolutive pressure. On the other hand, we identified several strain-specific single copy genes that might help to understand the differences in infectivity and physiology among strains. In summary, our results indicate that T. cruzi has a complex genomic architecture that may have promoted its evolution.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Cristina Poveda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| |
Collapse
|
28
|
Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Assay for Diagnosis of Cutaneous and Visceral Leishmaniasis. J Clin Microbiol 2018; 56:JCM.00386-18. [PMID: 29695527 PMCID: PMC6018344 DOI: 10.1128/jcm.00386-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
A novel pan-Leishmania loop-mediated isothermal amplification (LAMP) assay for the diagnosis of cutaneous and visceral leishmaniasis (CL and VL) that can be used in near-patient settings was developed. Primers were designed based on the 18S ribosomal DNA (rDNA) and the conserved region of minicircle kinetoplast DNA (kDNA), selected on the basis of high copy number. LAMP assays were evaluated for CL diagnosis in a prospective cohort trial of 105 patients in southwest Colombia. Lesion swab samples from CL suspects were collected and were tested using the LAMP assay, and the results were compared to those of a composite reference of microscopy and/or culture in order to calculate diagnostic accuracy. LAMP assays were tested on samples (including whole blood, peripheral blood mononuclear cells, and buffy coat) from 50 suspected VL patients from Ethiopia. Diagnostic accuracy was calculated against a reference standard of microscopy of splenic or bone marrow aspirates. To calculate analytical specificity, 100 clinical samples and isolates from fever-causing pathogens, including malaria parasites, arboviruses, and bacteria, were tested. We found that the LAMP assay had a sensitivity of 95% (95% confidence interval [CI], 87.2% to 98.5%) and a specificity of 86% (95% CI, 67.3% to 95.9%) for the diagnosis of CL. With VL suspects, the sensitivity of the LAMP assay was 92% (95% CI, 74.9% to 99.1%) and its specificity was 100% (95% CI, 85.8% to 100%) in whole blood. For CL, the LAMP assay is a sensitive tool for diagnosis and requires less equipment, time, and expertise than alternative CL diagnostics. For VL, the LAMP assay using a minimally invasive sample is more sensitive than the gold standard. Analytical specificity was 100%.
Collapse
|
29
|
Roman F, das Chagas Xavier S, Messenger LA, Pavan MG, Miles MA, Jansen AM, Yeo M. Dissecting the phyloepidemiology of Trypanosoma cruzi I (TcI) in Brazil by the use of high resolution genetic markers. PLoS Negl Trop Dis 2018; 12:e0006466. [PMID: 29782493 PMCID: PMC5983858 DOI: 10.1371/journal.pntd.0006466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 06/01/2018] [Accepted: 04/19/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. METHODOLOGY/PRINCIPAL FINDINGS In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. CONCLUSIONS/SIGNIFICANCE The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species.
Collapse
Affiliation(s)
- Fabiola Roman
- Laboratório de Bleiologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Samanta das Chagas Xavier
- Laboratório de Bleiologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ana María Jansen
- Laboratório de Bleiologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
30
|
Berná L, Rodriguez M, Chiribao ML, Parodi-Talice A, Pita S, Rijo G, Alvarez-Valin F, Robello C. Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microb Genom 2018; 4. [PMID: 29708484 PMCID: PMC5994713 DOI: 10.1099/mgen.0.000177] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi’s genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a ‘core compartment’ and a ‘disruptive compartment’ which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.
Collapse
Affiliation(s)
- Luisa Berná
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matias Rodriguez
- 2Sección Biomatemática - Unidad de Genómica Evolutiva, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - María Laura Chiribao
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,3Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay
| | - Adriana Parodi-Talice
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,4Sección Genética, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Sebastián Pita
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,4Sección Genética, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Gastón Rijo
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- 2Sección Biomatemática - Unidad de Genómica Evolutiva, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Carlos Robello
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,3Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay
| |
Collapse
|
31
|
Baptista RP, Reis-Cunha JL, DeBarry JD, Chiari E, Kissinger JC, Bartholomeu DC, Macedo AM. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231. Microb Genom 2018; 4. [PMID: 29442617 PMCID: PMC5989580 DOI: 10.1099/mgen.0.000156] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.
Collapse
Affiliation(s)
- Rodrigo P Baptista
- 1Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- 2Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Joao Luis Reis-Cunha
- 3Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jeremy D DeBarry
- 1Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Egler Chiari
- 3Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jessica C Kissinger
- 1Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- 2Institute of Bioinformatics, University of Georgia, Athens, USA
- 4Department of Genetics, University of Georgia, Athens, USA
| | - Daniella C Bartholomeu
- 3Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea M Macedo
- 5Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
32
|
Reis-Cunha JL, Valdivia HO, Bartholomeu DC. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr Genomics 2018; 19:87-97. [PMID: 29491737 PMCID: PMC5814966 DOI: 10.2174/1389202918666170911161311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy number variations and their relevance to the evolution of trypanosomatid parasites.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Hugo O. Valdivia
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| | - Daniella Castanheira Bartholomeu
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| |
Collapse
|
33
|
Belew AT, Junqueira C, Rodrigues-Luiz GF, Valente BM, Oliveira AER, Polidoro RB, Zuccherato LW, Bartholomeu DC, Schenkman S, Gazzinelli RT, Burleigh BA, El-Sayed NM, Teixeira SMR. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathog 2017; 13:e1006767. [PMID: 29240831 PMCID: PMC5746284 DOI: 10.1371/journal.ppat.1006767] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 12/28/2017] [Accepted: 11/22/2017] [Indexed: 01/23/2023] Open
Abstract
Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving several morphologically and biochemically distinct stages that establish intricate interactions with various insect and mammalian hosts. It has also a heterogeneous population structure comprising strains with distinct properties such as virulence, sensitivity to drugs, antigenic profile and tissue tropism. We present a comparative transcriptome analysis of two cloned T. cruzi strains that display contrasting virulence phenotypes in animal models of infection: CL Brener is a virulent clone and CL-14 is a clone that is neither infective nor pathogenic in in vivo models of infection. Gene expression analysis of trypomastigotes and intracellular amastigotes harvested at 60 and 96 hours post-infection (hpi) of human fibroblasts revealed large differences that reflect the parasite’s adaptation to distinct environments during the infection of mammalian cells, including changes in energy sources, oxidative stress responses, cell cycle control and cell surface components. While extensive transcriptome remodeling was observed when trypomastigotes of both strains were compared to 60 hpi amastigotes, differences in gene expression were much less pronounced when 96 hpi amastigotes and trypomastigotes of CL Brener were compared. In contrast, the differentiation of the avirulent CL-14 from 96 hpi amastigotes to extracellular trypomastigotes was associated with considerable changes in gene expression, particularly in gene families encoding surface proteins such as trans-sialidases, mucins and the mucin associated surface proteins (MASPs). Thus, our comparative transcriptome analysis indicates that the avirulent phenotype of CL-14 may be due, at least in part, to a reduced or delayed expression of genes encoding surface proteins that are associated with the transition of amastigotes to trypomastigotes, an essential step in the establishment of the infection in the mammalian host. Confirming the role of members of the trans-sialidase family of surface proteins for parasite differentiation, transfected CL-14 constitutively expressing a trans-sialidase gene displayed faster kinetics of trypomastigote release in the supernatant of infected cells compared to wild type CL-14. Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is an infection that occurs in several Latin American countries, resulting in a mild illness or in severe damage of the heart and intestinal tract. Such a broad spectrum of clinical manifestations observed in Chagas disease patients is likely due to differences in host susceptibility as well as to a large heterogeneity among T. cruzi isolates. The identification of virulence factors that are differentially expressed in the parasite population is a valuable strategy for understanding of the distinct interactions that occur between this pathogen and its host, which may or may not lead to pathogenesis. By comparing the gene expression profiles of two T. cruzi strains that display contrasting virulence phenotypes in animal models of infection, we identified a central role for genes encoding surface proteins that is associated with the differentiation from intracellular replicative amastigotes to infective trypomastigotes. We showed that the expression of these genes occurs differentially within the two strains and this difference may be a factor that impacts parasite survival and dissemination in the mammalian host.
Collapse
Affiliation(s)
- A. Trey Belew
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Caroline Junqueira
- Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela F. Rodrigues-Luiz
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna M. Valente
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antonio Edson R. Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael B. Polidoro
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Luciana W. Zuccherato
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella C. Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio Schenkman
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Ricardo T. Gazzinelli
- Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara A. Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (SMRT); (NES)
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (SMRT); (NES)
| |
Collapse
|
34
|
Smircich P, El-Sayed NM, Garat B. Intrinsic DNA curvature in trypanosomes. BMC Res Notes 2017; 10:585. [PMID: 29121981 PMCID: PMC5679330 DOI: 10.1186/s13104-017-2908-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background Trypanosoma cruzi and Trypanosoma brucei are protozoan parasites
causing Chagas disease and African sleeping sickness, displaying unique features of cellular and molecular biology. Remarkably, no canonical signals for RNA polymerase II promoters, which drive protein coding genes transcription, have been identified so far. The secondary structure of DNA has long been recognized as a signal in biological processes and more recently, its involvement in transcription initiation in Leishmania was proposed. In order to study whether this feature is conserved in trypanosomatids, we undertook a genome wide search for intrinsic DNA curvature in T. cruzi and T. brucei. Results Using a region integrated intrinsic curvature (RIIC) scoring that we previously developed, a non-random distribution of sequence-dependent curvature was observed. High RIIC scores were found to be significantly correlated with transcription start sites in T. cruzi, which have been mapped in divergent switch regions, whereas in T. brucei, the high RIIC scores correlated with sites that have been involved not only in RNA polymerase II initiation but also in termination. In addition, we observed regions with high RIIC score presenting in-phase tracts of Adenines, in the subtelomeric regions of the T. brucei chromosomes that harbor the variable surface glycoproteins genes. Conclusions In both T. cruzi and T. brucei genomes, a link between DNA conformational signals and gene expression was found. High sequence dependent curvature is associated with transcriptional regulation regions. High intrinsic curvature also occurs at the T. brucei chromosome subtelomeric regions where the recombination processes involved in the evasion of the immune host system take place. These findings underscore the relevance of indirect DNA readout in these ancient eukaryotes. Electronic supplementary material The online version of this article (10.1186/s13104-017-2908-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Smircich
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, 11400, Montevideo, Uruguay.,Departamento de Genética, Facultad de Medicina, Universidad de la Republica, 11800, Montevideo, Uruguay
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, 11400, Montevideo, Uruguay.
| |
Collapse
|
35
|
Tomasini N, Diosque P. Phylogenomics of Trypanosoma cruzi: Few evidence of TcI/TcII mosaicism in TcIII challenges the hypothesis of an ancient TcI/TcII hybridization. INFECTION GENETICS AND EVOLUTION 2017; 50:25-27. [PMID: 28192210 DOI: 10.1016/j.meegid.2017.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
Phylogenetic relationships among major lineages of Trypanosoma cruzi are still debatable. Particularly, it is controversial the origin of two main lineages: TcIII and TcIV. Some authors proposed that these lineages have been the result of an ancient hybridization between TcI and TcII, and this was one of the most accepted evolutionary models in the scientific community for several years. In the present paper we analyse several genomes of T. cruzi in order to examine if there is evidence supporting that TcIII is an ancient TcI/TcII hybrid. Our results show that TcIII is mainly related to TcI and not to TcII and there is few evidence of mosaicism for TcIII. Our results challenge the hypothesis of the ancient TcI/TcII hybridization.
Collapse
Affiliation(s)
- Nicolás Tomasini
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta - CONICET, Av. Bolivia 5150, 4400, Salta, Salta, Argentina.
| | - Patricio Diosque
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta - CONICET, Av. Bolivia 5150, 4400, Salta, Salta, Argentina
| |
Collapse
|
36
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
37
|
Weatherly DB, Peng D, Tarleton RL. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics 2016; 17:729. [PMID: 27619017 PMCID: PMC5020489 DOI: 10.1186/s12864-016-3037-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Background The protozoan parasite Trypanosoma cruzi, causative agent of Chagas disease, depends upon a cell surface-expressed trans-sialidase (ts) to avoid activation of complement-mediated lysis and to enhance intracellular invasion. However these functions alone fail to account for the size of this gene family in T. cruzi, especially considering that most of these genes encode proteins lacking ts enzyme activity. Previous whole genome sequencing of the CL Brener clone of T. cruzi identified ~1400 ts variants, but left many partially assembled sequences unannotated. Results In the current study we reevaluated the trans-sialidase-like sequences in this reference strain, identifying an additional 1779 full-length and partial ts genes with their important features annotated, and confirming the expression of previously annotated “pseudogenes” and newly annotated ts family members. Multiple EM for Motif Elicitation (MEME) analysis allowed us to generate a model T. cruzi ts (TcTS) based upon the most conserved motif patterns and demonstrated that a common motif order is highly conserved among ts family members. Using a newly developed pipeline for the analysis of recombination within large gene families, we further demonstrate that TcTS family members are undergoing frequent recombination, generating new variants from the thousands of functional and non-functional ts gene segments but retaining the overall structure of the core TcTS family members. Conclusions The number and variety as well as high recombination frequency of TcTS family members supports strong evolutionary pressure, probably exerted by immune selection, for continued variation in ts sequences in T. cruzi, and thus for a unique immune evasion mechanism for the large ts gene family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3037-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Brent Weatherly
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.,Center for Complex Carbohydrate Research, University of Georgia, Athens, GA, 30602, USA
| | - Duo Peng
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
38
|
Long-Term Immunity to Trypanosoma cruzi in the Absence of Immunodominant trans-Sialidase-Specific CD8+ T Cells. Infect Immun 2016; 84:2627-38. [PMID: 27354447 DOI: 10.1128/iai.00241-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi infection drives the expansion of remarkably focused CD8(+) T cell responses targeting epitopes encoded by variant trans-sialidase (TS) genes. Infection of C57BL/6 mice with T. cruzi results in up to 40% of all CD8(+) T cells committed to recognition of the dominant TSKB20 and subdominant TSKB18 TS epitopes. However, despite this enormous response, these mice fail to clear T. cruzi infection and subsequently develop chronic disease. One possible reason for the failure to cure T. cruzi infection is that immunodomination by these TS-specific T cells may interfere with alternative CD8(+) T cell responses more capable of complete parasite elimination. To address this possibility, we created transgenic mice that are centrally tolerant to these immunodominant epitopes. Mice expressing TSKB20, TSKB18, or both epitopes controlled T. cruzi infection and developed effector CD8(+) T cells that maintained an activated phenotype. Memory CD8(+) T cells from drug-cured TSKB-transgenic mice rapidly responded to secondary T. cruzi infection. In the absence of the response to TSKB20 and TSKB18, immunodominance did not shift to other known subdominant epitopes despite the capacity of these mice to expand epitope-specific T cells specific for the model antigen ovalbumin expressed by engineered parasites. Thus, CD8(+) T cell responses tightly and robustly focused on a few epitopes within variant TS antigens appear to neither contribute to, nor detract from, the ability to control T. cruzi infection. These data also indicate that the relative position of an epitope within a CD8(+) immunodominance hierarchy does not predict its importance in pathogen control.
Collapse
|
39
|
Roberts AJ, Fairlamb AH. The N-myristoylome of Trypanosoma cruzi. Sci Rep 2016; 6:31078. [PMID: 27492267 PMCID: PMC4974623 DOI: 10.1038/srep31078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023] Open
Abstract
Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas' disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43-0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5-1.7%).
Collapse
Affiliation(s)
- Adam J. Roberts
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alan H. Fairlamb
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
40
|
Molecular Characterization of a Novel Family of Trypanosoma cruzi Surface Membrane Proteins (TcSMP) Involved in Mammalian Host Cell Invasion. PLoS Negl Trop Dis 2015; 9:e0004216. [PMID: 26565791 PMCID: PMC4643927 DOI: 10.1371/journal.pntd.0004216] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/15/2015] [Indexed: 12/03/2022] Open
Abstract
Background The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions. Methodology/ Principal Findings Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion. Conclusion/Significance We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by TcSMP may be additive to that triggered by the major surface molecule gp82, further increasing the host cell responses required for infection. Trypanosoma cruzi is the etiologic agent of Chagas’ disease, which infects 6–7 million people worldwide, mostly in Latin America. Currently, there are no vaccines available, and the drugs used for treatment are toxic and are not fully effective. To infect mammalian hosts, T. cruzi relies on the ability to invade host cells, replicate intracellularly and spread the infection in different organs of the mammalian host. Knowledge of the structure and function of T. cruzi surface molecules is fundamental to understanding the mechanisms by which the parasite interacts with its host. T. cruzi infective forms engage a repertoire of surface and secreted molecules, some of which are involved in triggering signaling pathways both in the parasite and the host cell, leading to intracellular Ca2+ mobilization, a process essential for parasite internalization. Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), including their genomic distribution, expression and cellular localization. We studied the mechanism of action of TcSMP in host-cell invasion and proposed a triggering role for TcSMP in host-cell lysosome exocytosis during metacyclic internalization. TcSMP genes are conserved among different T. cruzi lineages and share orthologs in other Trypanosoma species. These results suggest that the diversification of TcSMP genes in mammalian trypanosomes occurred after continental drift. In T. cruzi this gene family expanded by gene duplication.
Collapse
|
41
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Kugeratski FG, Batista M, Inoue AH, Ramos BD, Krieger MA, Marchini FK. pTcGW plasmid vectors 1.1 version: a versatile tool for Trypanosoma cruzi gene characterisation. Mem Inst Oswaldo Cruz 2015. [PMID: 26200713 PMCID: PMC4569835 DOI: 10.1590/0074-02760150074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functional characterisation of thousands of Trypanosoma cruzi genes remains a challenge. Reverse genetics approaches compatible with high-throughput cloning strategies can provide the tool needed to tackle this challenge. We previously published the pTcGW platform, composed by plasmid vectors carrying different options of N-terminal fusion tags based on Gateway® technology. Here, we present an improved 1.1 version of pTcGW vectors, which is characterised by a fully flexible structure allowing an easy customisation of each element of the vectors in a single cloning step. Additionally, both N and C-terminal fusions are available with new tag options for protein complexes purification. Three of the newly created vectors were successfully used to determine the cellular localisation of four T. cruzi proteins. The 1.1 version of pTcGW platform can be used in a variety of assays, such as protein overexpression, identification of protein-protein interaction and protein localisation. This powerful and versatile tool allows adding valuable functional information to T. cruzigenes and is freely available for scientific community.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Laboratório de Genômica Funcional, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, BR
| | - Michel Batista
- Laboratório de Genômica Funcional, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, BR
| | - Alexandre Haruo Inoue
- Laboratório de Genômica Funcional, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, BR
| | - Bruno Dias Ramos
- Laboratório de Genômica Funcional, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, BR
| | - Marco Aurelio Krieger
- Laboratório de Genômica Funcional, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, BR
| | - Fabricio K Marchini
- Laboratório de Genômica Funcional, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, BR
| |
Collapse
|
43
|
Reis-Cunha JL, Rodrigues-Luiz GF, Valdivia HO, Baptista RP, Mendes TAO, de Morais GL, Guedes R, Macedo AM, Bern C, Gilman RH, Lopez CT, Andersson B, Vasconcelos AT, Bartholomeu DC. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics 2015; 16:499. [PMID: 26141959 PMCID: PMC4491234 DOI: 10.1186/s12864-015-1680-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/01/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. CL Brener, the reference strain of the T. cruzi genome project, is a hybrid with a genome assembled into 41 putative chromosomes. Gene copy number variation (CNV) is well documented as an important mechanism to enhance gene expression and variability in T. cruzi. Chromosomal CNV (CCNV) is another level of gene CNV in which whole blocks of genes are expanded simultaneously. Although the T. cruzi karyotype is not well defined, several studies have demonstrated a significant variation in the size and content of chromosomes between different T. cruzi strains. Despite these studies, the extent of diversity in CCNV among T. cruzi strains based on a read depth coverage analysis has not been determined. RESULTS We identify the CCNV in T. cruzi strains from the TcI, TcII and TcIII DTUs, by analyzing the depth coverage of short reads from these strains using the 41 CL Brener chromosomes as reference. This study led to the identification of a broader extent of CCNV in T. cruzi than was previously speculated. The TcI DTU strains have very few aneuploidies, while the strains from TcII and TcIII DTUs present a high degree of chromosomal expansions. Chromosome 31, which is the only chromosome that is supernumerary in all six T. cruzi samples evaluated in this study, is enriched with genes related to glycosylation pathways, highlighting the importance of glycosylation to parasite survival. CONCLUSIONS Increased gene copy number due to chromosome amplification may contribute to alterations in gene expression, which represents a strategy that may be crucial for parasites that mainly depend on post-transcriptional mechanisms to control gene expression.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento deParasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Gabriela F Rodrigues-Luiz
- Laboratório de Imunologia e Genômica de Parasitos, Departamento deParasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Hugo O Valdivia
- Laboratório de Imunologia e Genômica de Parasitos, Departamento deParasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Rodrigo P Baptista
- Laboratório de Imunologia e Genômica de Parasitos, Departamento deParasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Tiago A O Mendes
- Laboratório de Imunologia e Genômica de Parasitos, Departamento deParasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | - Rafael Guedes
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| | - Andrea M Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Caryn Bern
- University of California San Francisco, San Francisco, CA, USA.
| | - Robert H Gilman
- Universidad Cayetano Heredia, Lima, MD, Peru.
- Johns Hopkins University, Baltimore, MD, USA.
| | - Carlos Talavera Lopez
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | | | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento deParasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
44
|
Messenger LA, Garcia L, Vanhove M, Huaranca C, Bustamante M, Torrico M, Torrico F, Miles MA, Llewellyn MS. Ecological host fitting of Trypanosoma cruzi TcI in Bolivia: mosaic population structure, hybridization and a role for humans in Andean parasite dispersal. Mol Ecol 2015; 24:2406-22. [PMID: 25847086 PMCID: PMC4737126 DOI: 10.1111/mec.13186] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 01/04/2023]
Abstract
An improved understanding of how a parasite species exploits its genetic repertoire to colonize novel hosts and environmental niches is crucial to establish the epidemiological risk associated with emergent pathogenic genotypes. Trypanosoma cruzi, a genetically heterogeneous, multi-host zoonosis, provides an ideal system to examine the sylvatic diversification of parasitic protozoa. In Bolivia, T. cruzi I, the oldest and most widespread genetic lineage, is pervasive across a range of ecological clines. High-resolution nuclear (26 loci) and mitochondrial (10 loci) genotyping of 199 contemporaneous sylvatic TcI clones was undertaken to provide insights into the biogeographical basis of T. cruzi evolution. Three distinct sylvatic parasite transmission cycles were identified: one highland population among terrestrial rodent and triatomine species, composed of genetically homogenous strains (Ar = 2.95; PA/L = 0.61; DAS = 0.151), and two highly diverse, parasite assemblages circulating among predominantly arboreal mammals and vectors in the lowlands (Ar = 3.40 and 3.93; PA/L = 1.12 and 0.60; DAS = 0.425 and 0.311, respectively). Very limited gene flow between neighbouring terrestrial highland and arboreal lowland areas (distance ~220 km; FST = 0.42 and 0.35) but strong connectivity between ecologically similar but geographically disparate terrestrial highland ecotopes (distance >465 km; FST = 0.016-0.084) strongly supports ecological host fitting as the predominant mechanism of parasite diversification. Dissimilar heterozygosity estimates (excess in highlands, deficit in lowlands) and mitochondrial introgression among lowland strains may indicate fundamental differences in mating strategies between populations. Finally, accelerated parasite dissemination between densely populated, highland areas, compared to uninhabited lowland foci, likely reflects passive, long-range anthroponotic dispersal. The impact of humans on the risk of epizootic Chagas disease transmission in Bolivia is discussed.
Collapse
Affiliation(s)
- Louisa A. Messenger
- Department of Pathogen Molecular BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Lineth Garcia
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Mathieu Vanhove
- Department of Infectious Disease EpidemiologyImperial College LondonLondonUK
| | - Carlos Huaranca
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Marinely Bustamante
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Marycruz Torrico
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Faustino Torrico
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Michael A. Miles
- Department of Pathogen Molecular BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Martin S. Llewellyn
- Department of Pathogen Molecular BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
45
|
Zingales B, Araujo RGA, Moreno M, Franco J, Aguiar PHN, Nunes SL, Silva MN, Ienne S, Machado CR, Brandão A. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Mem Inst Oswaldo Cruz 2015; 110:433-44. [PMID: 25946152 PMCID: PMC4489481 DOI: 10.1590/0074-02760140407] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/05/2015] [Indexed: 02/08/2023] Open
Abstract
Benznidazole (BZ) is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzi strains. ATP-binding cassette (ABC) transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison of TcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1 transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1 transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1 genes of BZ-susceptible and resistant strains were investigated by computational tools.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Margoth Moreno
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jaques Franco
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Pedro Henrique Nascimento Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Solange Lessa Nunes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcelo Nunes Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Susan Ienne
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Adeilton Brandão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
46
|
Messenger LA, Yeo M, Lewis MD, Llewellyn MS, Miles MA. Molecular genotyping of Trypanosoma cruzi for lineage assignment and population genetics. Methods Mol Biol 2015; 1201:297-337. [PMID: 25388123 DOI: 10.1007/978-1-4939-1438-8_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, remains a major public health problem in Latin America. Infection with T. cruzi is lifelong and can lead to a spectrum of pathological sequelae ranging from subclinical to lethal cardiac and/or gastrointestinal complications. Isolates of T. cruzi can be assigned to six genetic lineages or discrete typing units (DTUs), which are broadly associated with disparate ecologies, transmission cycles, and geographical distributions. This extensive genetic diversity is also believed to contribute to the clinical variation observed among chagasic patients. Unravelling the population structure of T. cruzi is fundamental to understanding Chagas disease epidemiology, developing control strategies, and resolving the relationship between parasite genotype and clinical prognosis. To date, no single, widely validated, genetic target allows unequivocal resolution to DTU-level. In this chapter we present standardized methods for strain DTU assignment using PCR-restriction fragment length polymorphism analysis (PCR-RFLP) and nuclear multilocus sequence typing (MLST). PCR-RFLPs have the advantages of simplicity and reproducibility, requiring limited expertise and few laboratory consumables. MLST data are more laborious to generate but more informative; DNA sequences are readily transferable between research groups and amenable to recombination detection and intra-lineage analyses. We also recommend a mitochondrial (maxicircle) MLST scheme and a panel of 28 microsatellite loci for higher resolution population genetics studies. Due to the scarcity of T. cruzi in blood and tissue, all of these genotyping techniques have limited sensitivity when applied directly to clinical or biological specimens, particularly when targets are single (MLST) or low copy number (PCR-RFLPs). We therefore describe essential protocols to isolate parasites, derive biological clones, and extract T. cruzi genomic DNA from field and clinical samples.
Collapse
Affiliation(s)
- Louisa A Messenger
- London School of Hygiene and Tropical Medicine, Room 331A, Keppel Street, London, WC1E 7HT, UK
| | | | | | | | | |
Collapse
|
47
|
Bartholomeu DC, de Paiva RMC, Mendes TAO, DaRocha WD, Teixeira SMR. Unveiling the intracellular survival gene kit of trypanosomatid parasites. PLoS Pathog 2014; 10:e1004399. [PMID: 25474314 PMCID: PMC4256449 DOI: 10.1371/journal.ppat.1004399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trypanosomatids are unicellular protozoans of medical and economical relevance since they are the etiologic agents of infectious diseases in humans as well as livestock. Whereas Trypanosoma cruzi and different species of Leishmania are obligate intracellular parasites, Trypanosoma brucei and other trypanosomatids develop extracellularly throughout their entire life cycle. After their genomes have been sequenced, various comparative genomic studies aimed at identifying sequences involved with host cell invasion and intracellular survival have been described. However, for only a handful of genes, most of them present exclusively in the T. cruzi or Leishmania genomes, has there been any experimental evidence associating them with intracellular parasitism. With the increasing number of published complete genome sequences of members of the trypanosomatid family, including not only different Trypanosoma and Leishmania strains and subspecies but also trypanosomatids that do not infect humans or other mammals, we may now be able to contemplate a slightly better picture regarding the specific set of parasite factors that defines each organism's mode of living and the associated disease phenotypes. Here, we review the studies concerning T. cruzi and Leishmania genes that have been implicated with cell invasion and intracellular parasitism and also summarize the wealth of new information regarding the mode of living of intracellular parasites that is resulting from comparative genome studies that are based on increasingly larger trypanosomatid genome datasets.
Collapse
Affiliation(s)
| | - Rita Marcia Cardoso de Paiva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago A. O. Mendes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wanderson D. DaRocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Parana, Brazil
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
48
|
Panunzi LG, Agüero F. A genome-wide analysis of genetic diversity in Trypanosoma cruzi intergenic regions. PLoS Negl Trop Dis 2014; 8:e2839. [PMID: 24784238 PMCID: PMC4006747 DOI: 10.1371/journal.pntd.0002839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/20/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is the causal agent of Chagas Disease. Recently, the genomes of representative strains from two major evolutionary lineages were sequenced, allowing the construction of a detailed genetic diversity map for this important parasite. However this map is focused on coding regions of the genome, leaving a vast space of regulatory regions uncharacterized in terms of their evolutionary conservation and/or divergence. METHODOLOGY Using data from the hybrid CL Brener and Sylvio X10 genomes (from the TcVI and TcI Discrete Typing Units, respectively), we identified intergenic regions that share a common evolutionary ancestry, and are present in both CL Brener haplotypes (TcII-like and TcIII-like) and in the TcI genome; as well as intergenic regions that were conserved in only two of the three genomes/haplotypes analyzed. The genetic diversity in these regions was characterized in terms of the accumulation of indels and nucleotide changes. PRINCIPAL FINDINGS Based on this analysis we have identified i) a core of highly conserved intergenic regions, which remained essentially unchanged in independently evolving lineages; ii) intergenic regions that show high diversity in spite of still retaining their corresponding upstream and downstream coding sequences; iii) a number of defined sequence motifs that are shared by a number of unrelated intergenic regions. A fraction of indels explains the diversification of some intergenic regions by the expansion/contraction of microsatellite-like repeats.
Collapse
Affiliation(s)
- Leonardo G. Panunzi
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús, Universidad de San Martín – CONICET, Sede San Marítn, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús, Universidad de San Martín – CONICET, Sede San Marítn, Buenos Aires, Argentina
- * E-mail: ;
| |
Collapse
|
49
|
Oliveira P, Lima FM, Cruz MC, Ferreira RC, Sanchez-Flores A, Cordero EM, Cortez DR, Ferreira ÉR, Briones MRDS, Mortara RA, da Silveira JF, Bahia D. Trypanosoma cruzi: Genome characterization of phosphatidylinositol kinase gene family (PIK and PIK-related) and identification of a novel PIK gene. INFECTION GENETICS AND EVOLUTION 2014; 25:157-65. [PMID: 24727645 DOI: 10.1016/j.meegid.2014.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 02/01/2023]
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi which affects 10 million people worldwide. Very few kinases have been characterized in this parasite, including the phosphatidylinositol kinases (PIKs) that are at the heart of one of the major pathways of intracellular signal transduction. Recently, we have classified the PIK family in T. cruzi using five different models based on the presence of PIK conserved domains. In this study, we have mapped PIK genes to the chromosomes of two different T. cruzi lineages (G and CL Brener) and determined the cellular localization of two PIK members. The kinases have crucial roles in metabolism and are assumed to be conserved throughout evolution. For this reason, they should display a conserved localization within the same eukaryotic species. In spite of this, there is an extensive polymorphism regarding PIK localization at both genomic and cellular levels, among different T. cruzi isolates and between T. cruzi and Trypanosomabrucei, respectively. We showed in this study that the cellular localization of two PIK-related proteins (TOR1 and 2) in the T. cruzi lineage is distinct from that previously observed in T. brucei. In addition, we identified a new PIK gene with peculiar feature, that is, it codes for a FYVE domain at N-terminal position. FYVE-PIK genes are phylogenetically distant from the groups containing exclusively the FYVE or PIK domain. The FYVE-PIK architecture is only present in trypanosomatids and in virus such as Acanthamoeba mimivirus, suggesting a horizontal acquisition. Our Bayesian phylogenetic inference supports this hypothesis. The exact functions of this FYVE-PIK gene are unknown, but the presence of FYVE domain suggests a role in membranous compartments, such as endosome. Taken together, the data presented here strengthen the possibility that trypanosomatids are characterized by extensive genomic plasticity that may be considered in designing drugs and vaccines for prevention of Chagas disease.
Collapse
Affiliation(s)
- Priscila Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fabio Mitsuo Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mario Costa Cruz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Renata Carmona Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Esteban Maurício Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Danielle Rodrigues Cortez
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Éden Ramalho Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Ribeiro da Silva Briones
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais CEP 31270-910, Brazil.
| |
Collapse
|
50
|
Menna-Barreto RFS, Perales J. The expected outcome of the Trypanosoma cruzi proteomic map: a review of its potential biological applications for drug target discovery. Subcell Biochem 2014; 74:305-322. [PMID: 24264251 DOI: 10.1007/978-94-007-7305-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chagas disease is a neglected tropical illness endemic to Latin America, and its treatment remains unsatisfactory. This disease is caused by the hemoflagellate protozoan Trypanosoma cruzi, which has a complex life cycle involving three evolutive forms in both vertebrate and invertebrate hosts. Targeting metabolic pathways in the parasite for rational drug design represents a promising research field. This research area requires high performance techniques and proteomics become a powerful tool in this context. Here, we review advances in the construction of proteomic maps of the different forms of T. cruzi, emphasizing their biological applications towards the identification of alternative candidates for drug intervention.
Collapse
Affiliation(s)
- Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | | |
Collapse
|