1
|
Bista B, González-Rodelas L, Álvarez-González L, Wu ZQ, Montiel EE, Lee LS, Badenhorst DB, Radhakrishnan S, Literman R, Navarro-Dominguez B, Iverson JB, Orozco-Arias S, González J, Ruiz-Herrera A, Valenzuela N. De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes. Genome Res 2024; 34:1553-1569. [PMID: 39414368 DOI: 10.1101/gr.279443.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere-telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere-telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.
Collapse
Affiliation(s)
- Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zhi-Qiang Wu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Eugenia E Montiel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ling Sze Lee
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Daleen B Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Beatriz Navarro-Dominguez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana 47374, USA
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, 080003 Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
2
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Cappelletti E, Piras FM, Sola L, Santagostino M, Petersen JL, Bellone RR, Finno CJ, Peng S, Kalbfleisch TS, Bailey E, Nergadze SG, Giulotto E. The localization of centromere protein A is conserved among tissues. Commun Biol 2023; 6:963. [PMID: 37735603 PMCID: PMC10514049 DOI: 10.1038/s42003-023-05335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Centromeres are epigenetically specified by the histone H3 variant CENP-A. Although mammalian centromeres are typically associated with satellite DNA, we previously demonstrated that the centromere of horse chromosome 11 (ECA11) is completely devoid of satellite DNA. We also showed that the localization of its CENP-A binding domain is not fixed but slides within an about 500 kb region in different individuals, giving rise to positional alleles. These epialleles are inherited as Mendelian traits but their position can move in one generation. It is still unknown whether centromere sliding occurs during meiosis or during development. Here, we first improve the sequence of the ECA11 centromeric region in the EquCab3.0 assembly. Then, to test whether centromere sliding may occur during development, we map the CENP-A binding domains of ECA11 using ChIP-seq in five tissues of different embryonic origin from the four horses of the equine FAANG (Functional Annotation of ANimal Genomes) consortium. Our results demonstrate that the centromere is localized in the same region in all tissues, suggesting that the position of the centromeric domain is maintained during development.
Collapse
Affiliation(s)
| | - Francesca M Piras
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Santagostino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Ted S Kalbfleisch
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Ernest Bailey
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Solomon G Nergadze
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Dawson T, Rentia U, Sanford J, Cruchaga C, Kauwe JSK, Crandall KA. Locus specific endogenous retroviral expression associated with Alzheimer's disease. Front Aging Neurosci 2023; 15:1186470. [PMID: 37484691 PMCID: PMC10359044 DOI: 10.3389/fnagi.2023.1186470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Human endogenous retroviruses (HERVs) are transcriptionally-active remnants of ancient retroviral infections that may play a role in Alzheimer's disease. Methods We combined two, publicly available RNA-Seq datasets with a third, novel dataset for a total cohort of 103 patients with Alzheimer's disease and 45 healthy controls. We use telescope to perform HERV quantification for these samples and simultaneously perform gene expression analysis. Results We identify differentially expressed genes and differentially expressed HERVs in Alzheimer's disease patients. Differentially expressed HERVs are scattered throughout the genome; many of them are members of the HERV-K superfamily. A number of HERVs are correlated with the expression of dysregulated genes in Alzheimer's and are physically proximal to genes which drive disease pathways. Discussion Dysregulated expression of ancient retroviral insertions in the human genome are present in Alzheimer's disease and show localization patterns that may explain how these elements drive pathogenic gene expression.
Collapse
Affiliation(s)
- Tyson Dawson
- Computational Biology Institute, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Uzma Rentia
- Computational Biology Institute, The George Washington University, Washington, DC, United States
| | - Jessie Sanford
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Keith A. Crandall
- Computational Biology Institute, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| |
Collapse
|
5
|
Álvarez-González L, Arias-Sardá C, Montes-Espuña L, Marín-Gual L, Vara C, Lister NC, Cuartero Y, Garcia F, Deakin J, Renfree MB, Robinson TJ, Martí-Renom MA, Waters PD, Farré M, Ruiz-Herrera A. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals. Cell Rep 2022; 41:111839. [PMID: 36543130 DOI: 10.1016/j.celrep.2022.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/01/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling.
Collapse
Affiliation(s)
- Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | - Laia Montes-Espuña
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yasmina Cuartero
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Francisca Garcia
- Servei de Cultius Cel.lulars-SCAC, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Janine Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - Marilyn B Renfree
- School of Biosciences, The University of Melbourne, Victoria, VIC 3010, Australia
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Marc A Martí-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Marta Farré
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
6
|
Torres-Arciga K, Flores-León M, Ruiz-Pérez S, Trujillo-Pineda M, González-Barrios R, Herrera LA. Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape. Front Genet 2022; 13:1057846. [PMID: 36468032 PMCID: PMC9709290 DOI: 10.3389/fgene.2022.1057846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.
Collapse
Affiliation(s)
- Karla Torres-Arciga
- Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Samuel Ruiz-Pérez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magalli Trujillo-Pineda
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
7
|
Glugoski L, Nogaroto V, Deon GA, Azambuja M, Moreira-Filho O, Vicari MR. Enriched tandemly repeats in chromosomal fusion points of Rineloricaria latirostris (Boulenger, 1900) (Siluriformes: Loricariidae). Genome 2022; 65:479-489. [PMID: 35939838 DOI: 10.1139/gen-2022-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytogenetic data showed the enrichment of repetitive DNAs in chromosomal rearrangement points between closely related species in armored catfishes. Still, few studies integrated cytogenetic and genomic data aiming to identify their prone-to-break DNA sites. Here, we aimed to obtain the repetitive fraction in Rineloricaria latirostris to recognize the microsatellite and homopolymers flanking the regions previously described as chromosomal fusion points. The results indicated that repetitive DNAs in R. latirostris are predominantly DNA transposons, and considering the microsatellite and homopolymers, A/T-rich expansions were the most abundant. The in situ localization demonstrated the A/T-rich repetitive sequences are scattered on the chromosomes, while A/G-rich microsatellites units were accumulated in some regions. The DNA transposon hAT, the 5S rDNA, and 45S rDNA (previously identified in Robertsonian fusion points in R. latirostris) are clusterized with some microsatellites, especially (CA)n, (GA)n, and poly-A, which also are enriched in regions of chromosomal fusions. Our findings demonstrated that repetitive sequences such as rDNAs, hAT transposon, and microsatellite units flank probable evolutionary breakpoint regions in R. latirostris. However, due to the sequence unit homologies in different chromosomal sites, these repeat DNAs only may have facilitated chromosome fusion events in R. latirostris rather than work as a double-strand breakpoint site.
Collapse
Affiliation(s)
- Larissa Glugoski
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Sao Carlos, São Paulo, Brazil;
| | - Viviane Nogaroto
- Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, Paraná, Brazil;
| | - Geize Aparecida Deon
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Sao Carlos, São Paulo, Brazil;
| | - Matheus Azambuja
- Universidade Federal do Paraná, Departamento de Genética, Curitiba, PR, Brazil;
| | - Orlando Moreira-Filho
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Sao Carlos, São Paulo, Brazil;
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, Paraná, Brazil.,Universidade Federal do Paraná, Departamento de Genética, Curitiba, PR, Brazil;
| |
Collapse
|
8
|
Cappelletti E, Piras FM, Sola L, Santagostino M, Abdelgadir WA, Raimondi E, Lescai F, Nergadze SG, Giulotto E. Robertsonian fusion and centromere repositioning contributed to the formation of satellite-free centromeres during the evolution of zebras. Mol Biol Evol 2022; 39:6650076. [PMID: 35881460 PMCID: PMC9356731 DOI: 10.1093/molbev/msac162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Centromeres are epigenetically specified by the histone H3 variant CENP-A and typically associated to highly repetitive satellite DNA. We previously discovered natural satellite-free neocentromeres in Equus caballus and E. asinus. Here, through ChIP-seq with an anti-CENP-A antibody, we found an extraordinarily high number of centromeres lacking satellite DNA in the zebras E. burchelli (15 of 22) and E. grevyi (13 of 23), demonstrating that the absence of satellite DNA at the majority of centromeres is compatible with genome stability and species survival and challenging the role of satellite DNA in centromere function. Nine satellite-free centromeres are shared between the two species in agreement with their recent separation. We assembled all centromeric regions and improved the reference genome of E. burchelli. Sequence analysis of the CENP-A binding domains revealed that they are LINE-1 and AT-rich with four of them showing DNA amplification. In the two zebras, satellite-free centromeres emerged from centromere repositioning or following Robertsonian fusion. In five chromosomes, the centromeric function arose near the fusion points, which are located within regions marked by traces of ancestral pericentromeric sequences. Therefore, besides centromere repositioning, Robertsonian fusions are an important source of satellite-free centromeres during evolution. Finally, in one case, a satellite-free centromere was seeded on an inversion breakpoint. At eleven chromosomes, whose primary constrictions seemed to be associated to satellite repeats by cytogenetic analysis, satellite-free neocentromeres were instead located near the ancestral inactivated satellite-based centromeres, therefore, the centromeric function has shifted away from a satellite repeat containing locus to a satellite-free new position.
Collapse
Affiliation(s)
- Eleonora Cappelletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesca M Piras
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marco Santagostino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Wasma A Abdelgadir
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lescai
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Solomon G Nergadze
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Deon GA, Glugoski L, Hatanaka T, Sassi FDMC, Nogaroto V, Bertollo LAC, Liehr T, Al-Rikabi A, Moreira O, Cioffi MDB, Vicari MR. Evolutionary breakpoint regions and chromosomal remodeling in Harttia (Siluriformes: Loricariidae) species diversification. Genet Mol Biol 2022; 45:e20210170. [PMID: 35604463 PMCID: PMC9126045 DOI: 10.1590/1678-4685-gmb-2021-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
The Neotropical armored catfish genus Harttia presents a wide variation of chromosomal rearrangements among its representatives. Studies indicate that translocation and Robertsonian rearrangements have triggered the karyotype evolution in the genus, including differentiation of sex chromosome systems. However, few studies used powerful tools, such as comparative whole chromosome painting, to clarify this highly diversified scenario. Here, we isolated probes from the X1 (a 5S rDNA carrier) and the X2 (a 45S rDNA carrier) chromosomes of Harttia punctata, which displays an X1X1X2X2/X1X2Y multiple sex chromosome system. Those probes were applied in other Harttia species to evidence homeologous chromosome blocks. The resulting data reinforce that translocation events played a role in the origin of the X1X2Y sex chromosome system in H. punctata. The repositioning of homologous chromosomal blocks carrying rDNA sites among ten Harttia species has also been demonstrated. Anchored to phylogenetic data it was possible to evidence some events of the karyotype diversification of the studied species and to prove an independent origin for the two types of multiple sex chromosomes, XX/XY1Y2 and X1X1X2X2/X1X2Y, that occur in Harttia species. The results point to evolutionary breakpoint regions in the genomes within or adjacent to rDNA sites that were widely reused in Harttia chromosome remodeling.
Collapse
Affiliation(s)
- Geize Aparecida Deon
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Larissa Glugoski
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Terumi Hatanaka
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
| | | | - Viviane Nogaroto
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | | | - Thomas Liehr
- University Hospital Jena, Institute of Human Genetics, Jena,
Germany
| | - Ahmed Al-Rikabi
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
- University Hospital Jena, Institute of Human Genetics, Jena,
Germany
| | - Orlando Moreira
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
| | - Marcelo de Bello Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| |
Collapse
|
10
|
3D chromatin remodelling in the germ line modulates genome evolutionary plasticity. Nat Commun 2022; 13:2608. [PMID: 35546158 PMCID: PMC9095871 DOI: 10.1038/s41467-022-30296-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Chromosome folding has profound impacts on gene regulation, whose evolutionary consequences are far from being understood. Here we explore the relationship between 3D chromatin remodelling in mouse germ cells and evolutionary changes in genome structure. Using a comprehensive integrative computational analysis, we (i) reconstruct seven ancestral rodent genomes analysing whole-genome sequences of 14 species representatives of the major phylogroups, (ii) detect lineage-specific chromosome rearrangements and (iii) identify the dynamics of the structural and epigenetic properties of evolutionary breakpoint regions (EBRs) throughout mouse spermatogenesis. Our results show that EBRs are devoid of programmed meiotic DNA double-strand breaks (DSBs) and meiotic cohesins in primary spermatocytes, but are associated in post-meiotic cells with sites of DNA damage and functional long-range interaction regions that recapitulate ancestral chromosomal configurations. Overall, we propose a model that integrates evolutionary genome reshuffling with DNA damage response mechanisms and the dynamic spatial genome organisation of germ cells. The role of genome folding in the heritability and evolvability of structural variations is not well understood. Here the authors investigate the impact of the three-dimensional genome topology of germ cells in the formation and transmission of gross structural genomic changes detected from comparing whole-genome sequences of 14 rodent species.
Collapse
|
11
|
Niu Y, Teng X, Zhou H, Shi Y, Li Y, Tang Y, Zhang P, Luo H, Kang Q, Xu T, He S. Characterizing mobile element insertions in 5675 genomes. Nucleic Acids Res 2022; 50:2493-2508. [PMID: 35212372 PMCID: PMC8934628 DOI: 10.1093/nar/gkac128] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
Mobile element insertions (MEIs) are a major class of structural variants (SVs) and have been linked to many human genetic disorders, including hemophilia, neurofibromatosis, and various cancers. However, human MEI resources from large-scale genome sequencing are still lacking compared to those for SNPs and SVs. Here, we report a comprehensive map of 36 699 non-reference MEIs constructed from 5675 genomes, comprising 2998 Chinese samples (∼26.2×, NyuWa) and 2677 samples from the 1000 Genomes Project (∼7.4×, 1KGP). We discovered that LINE-1 insertions were highly enriched in centromere regions, implying the role of chromosome context in retroelement insertion. After functional annotation, we estimated that MEIs are responsible for about 9.3% of all protein-truncating events per genome. Finally, we built a companion database named HMEID for public use. This resource represents the latest and largest genomewide study on MEIs and will have broad utility for exploration of human MEI findings.
Collapse
Affiliation(s)
- Yiwei Niu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyi Teng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Tang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxia Luo
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Kang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Abstract
The centromere performs a universally conserved function, to accurately partition genetic information upon cell division. Yet, centromeres are among the most rapidly evolving regions of the genome and are bound by a varying assortment of centromere-binding factors that are themselves highly divergent at the protein-sequence level. A common thread in most species is the dependence on the centromere-specific histone variant CENP-A for the specification of the centromere site. However, CENP-A is not universally required in all species or cell types, making the identification of a general mechanism for centromere specification challenging. In this review, we examine our current understanding of the mechanisms of centromere specification in CENP-A-dependent and independent systems, focusing primarily on recent work.
Collapse
Affiliation(s)
- Barbara G Mellone
- Department of Molecular and Cell Biology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005 Paris, France.
| |
Collapse
|
13
|
MacDonald C, McClelland SE. Chromosome Instability through the Ages: Parallels between Speciation and Somatic (Cancer) Evolution. Trends Genet 2021; 37:691-694. [PMID: 34083067 DOI: 10.1016/j.tig.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
Cancer research has recently benefitted from the integration of evolutionary theory to study somatic genome evolution during tumor development. Here, we explore how investigating mechanistic principles of chromosomal instability during both species and somatic evolution can reciprocally inform each field.
Collapse
Affiliation(s)
- Catriona MacDonald
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, 4 Royal College St, London, NW1 0TU, UK
| | - Sarah E McClelland
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK.
| |
Collapse
|
14
|
Hartley GA, Okhovat M, O'Neill RJ, Carbone L. Comparative analyses of gibbon centromeres reveal dynamic genus specific shifts in repeat composition. Mol Biol Evol 2021; 38:3972-3992. [PMID: 33983366 PMCID: PMC8382927 DOI: 10.1093/molbev/msab148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centromeres are functionally conserved chromosomal loci essential for proper chromosome segregation during cell division, yet they show high sequence diversity across species. Despite their variation, a near universal feature of centromeres is the presence of repetitive sequences, such as DNA satellites and transposable elements (TEs). Because of their rapidly evolving karyotypes, gibbons represent a compelling model to investigate divergence of functional centromere sequences across short evolutionary timescales. In this study, we use ChIP-seq, RNA-seq, and fluorescence in situ hybridization to comprehensively investigate the centromeric repeat content of the four extant gibbon genera (Hoolock, Hylobates, Nomascus, and Siamang). In all gibbon genera, we find that CENP-A nucleosomes and the DNA-proteins that interface with the inner kinetochore preferentially bind retroelements of broad classes rather than satellite DNA. A previously identified gibbon-specific composite retrotransposon, LAVA, known to be expanded within the centromere regions of one gibbon genus (Hoolock), displays centromere- and species-specific sequence differences, potentially as a result of its co-option to a centromeric function. When dissecting centromere satellite composition, we discovered the presence of the retroelement-derived macrosatellite SST1 in multiple centromeres of Hoolock, whereas alpha-satellites represent the predominate satellite in the other genera, further suggesting an independent evolutionary trajectory for Hoolock centromeres. Finally, using de novo assembly of centromere sequences, we determined that transcripts originating from gibbon centromeres recapitulate the species-specific TE composition. Combined, our data reveal dynamic shifts in the repeat content that define gibbon centromeres and coincide with the extensive karyotypic diversity within this lineage.
Collapse
Affiliation(s)
- Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269.,Department of Genomics and Genome Sciences, UConn Health, Farmington, CT, 06030
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, 97006.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, 97239
| |
Collapse
|
15
|
Highly Rearranged Karyotypes and Multiple Sex Chromosome Systems in Armored Catfishes from the Genus Harttia (Teleostei, Siluriformes). Genes (Basel) 2020; 11:genes11111366. [PMID: 33218104 PMCID: PMC7698909 DOI: 10.3390/genes11111366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Harttia comprises an armored catfish genus endemic to the Neotropical region, including 27 valid species with low dispersion rates that are restricted to small distribution areas. Cytogenetics data point to a wide chromosomal diversity in this genus due to changes that occurred in isolated populations, with chromosomal fusions and fissions explaining the 2n number variation. In addition, different multiple sex chromosome systems and rDNA loci location are also found in some species. However, several Harttia species and populations remain to be investigated. In this study, Harttia intermontana and two still undescribed species, morphologically identified as Harttia sp. 1 and Harttia sp. 2, were cytogenetically analyzed. Harttia intermontana has 2n = 52 and 2n = 53 chromosomes, while Harttia sp. 1 has 2n = 56 and 2n = 57 chromosomes in females and males, respectively, thus highlighting the occurrence of an XX/XY1Y2 multiple sex chromosome system in both species. Harttia sp. 2 presents 2n = 62 chromosomes for both females and males, with fission events explaining its karyotype diversification. Chromosomal locations of the rDNA sites were also quite different among species, reinforcing that extensive rearrangements had occurred in their karyotype evolution. Comparative genomic hybridization (CGH) experiments among some Harttia species evidenced a shared content of the XY1Y2 sex chromosomes in three of them, thus pointing towards their common origin. Therefore, the comparative analysis among all Harttia species cytogenetically studied thus far allowed us to provide an evolutionary scenario related to the speciation process of this fish group.
Collapse
|
16
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
17
|
Louzada S, Lopes M, Ferreira D, Adega F, Escudeiro A, Gama-Carvalho M, Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair. Genes (Basel) 2020; 11:E72. [PMID: 31936645 PMCID: PMC7017282 DOI: 10.3390/genes11010072] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Repetitive DNA is a major organizational component of eukaryotic genomes, being intrinsically related with their architecture and evolution. Tandemly repeated satellite DNAs (satDNAs) can be found clustered in specific heterochromatin-rich chromosomal regions, building vital structures like functional centromeres and also dispersed within euchromatin. Interestingly, despite their association to critical chromosomal structures, satDNAs are widely variable among species due to their high turnover rates. This dynamic behavior has been associated with genome plasticity and chromosome rearrangements, leading to the reshaping of genomes. Here we present the current knowledge regarding satDNAs in the light of new genomic technologies, and the challenges in the study of these sequences. Furthermore, we discuss how these sequences, together with other repeats, influence genome architecture, impacting its evolution and association with disease.
Collapse
Affiliation(s)
- Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| |
Collapse
|
18
|
Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, Pangilinan J, Grigoriev IV, Heitman J, Sanyal K, Garre V. Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Curr Biol 2019; 29:3791-3802.e6. [PMID: 31679929 PMCID: PMC6925572 DOI: 10.1016/j.cub.2019.09.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Centromeres are rapidly evolving across eukaryotes, despite performing a conserved function to ensure high-fidelity chromosome segregation. CENP-A chromatin is a hallmark of a functional centromere in most organisms. Due to its critical role in kinetochore architecture, the loss of CENP-A is tolerated in only a few organisms, many of which possess holocentric chromosomes. Here, we characterize the consequence of the loss of CENP-A in the fungal kingdom. Mucor circinelloides, an opportunistic human pathogen, lacks CENP-A along with the evolutionarily conserved CENP-C but assembles a monocentric chromosome with a localized kinetochore complex throughout the cell cycle. Mis12 and Dsn1, two conserved kinetochore proteins, were found to co-localize to a short region, one in each of nine large scaffolds, composed of an ∼200-bp AT-rich sequence followed by a centromere-specific conserved motif that echoes the structure of budding yeast point centromeres. Resembling fungal regional centromeres, these core centromere regions are embedded in large genomic expanses devoid of genes yet marked by Grem-LINE1s, a novel retrotransposable element silenced by the Dicer-dependent RNAi pathway. Our results suggest that these hybrid features of point and regional centromeres arose from the absence of CENP-A, thus defining novel mosaic centromeres in this early-diverging fungus.
Collapse
Affiliation(s)
| | - Carlos Pérez-Arques
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Shweta Panchal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Francisco E Nicolás
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO 80521, USA
| | - Promit Ganguly
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94598, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
19
|
Chang CH, Chavan A, Palladino J, Wei X, Martins NMC, Santinello B, Chen CC, Erceg J, Beliveau BJ, Wu CT, Larracuente AM, Mellone BG. Islands of retroelements are major components of Drosophila centromeres. PLoS Biol 2019; 17:e3000241. [PMID: 31086362 PMCID: PMC6516634 DOI: 10.1371/journal.pbio.3000241] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Centromeres are essential chromosomal regions that mediate kinetochore assembly and spindle attachments during cell division. Despite their functional conservation, centromeres are among the most rapidly evolving genomic regions and can shape karyotype evolution and speciation across taxa. Although significant progress has been made in identifying centromere-associated proteins, the highly repetitive centromeres of metazoans have been refractory to DNA sequencing and assembly, leaving large gaps in our understanding of their functional organization and evolution. Here, we identify the sequence composition and organization of the centromeres of Drosophila melanogaster by combining long-read sequencing, chromatin immunoprecipitation for the centromeric histone CENP-A, and high-resolution chromatin fiber imaging. Contrary to previous models that heralded satellite repeats as the major functional components, we demonstrate that functional centromeres form on islands of complex DNA sequences enriched in retroelements that are flanked by large arrays of satellite repeats. Each centromere displays distinct size and arrangement of its DNA elements but is similar in composition overall. We discover that a specific retroelement, G2/Jockey-3, is the most highly enriched sequence in CENP-A chromatin and is the only element shared among all centromeres. G2/Jockey-3 is also associated with CENP-A in the sister species D. simulans, revealing an unexpected conservation despite the reported turnover of centromeric satellite DNA. Our work reveals the DNA sequence identity of the active centromeres of a premier model organism and implicates retroelements as conserved features of centromeric DNA.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of Rochester; Rochester, New York, United States of America
| | - Ankita Chavan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nuno M. C. Martins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryce Santinello
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian J. Beliveau
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genome Sciences, University of Washington Seattle, Seattle, Washington, United States of America
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda M. Larracuente
- Department of Biology, University of Rochester; Rochester, New York, United States of America
| | - Barbara G. Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut Storrs, Connecticut, United States of America
| |
Collapse
|
20
|
Oliveira da Silva W, Rodrigues da Costa MJ, Pieczarka JC, Rissino J, Pereira JC, Ferguson-Smith MA, Nagamachi CY. Identification of two independent X-autosome translocations in closely related mammalian (Proechimys) species. Sci Rep 2019; 9:4047. [PMID: 30858413 PMCID: PMC6411977 DOI: 10.1038/s41598-019-40593-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Multiple sex chromosome systems have been described for several mammalian orders, with different species from the same genus sharing the same system (e.g., X1X2Y or XY1Y2). This is important because the translocated autosome may be influenced by the evolution of the recipient sex chromosome, and this may be related to speciation. It is often thought that the translocation of an autosome to a sex chromosome may share a common origin among phylogenetically related species. However, the neo-X chromosomes of Proechimys goeldii (2n = 24♀, 25♂/NFa = 42) and Proechimys gr. goeldii (2n = 16♀, 17♂/NFa = 14) have distinct sizes and morphologies that have made it difficult to determine whether they have the same or different origins. This study investigates the origins of the XY1Y2 sex chromosome determination system in P. goeldii (PGO) and P. gr. goeldii (PGG) and elucidates the chromosomal rearrangements in this low-diploid-number group of Proechimys species. Toward this end, we produced whole-chromosome probes for P. roberti (PRO; 2n = 30♂/NFa = 54) and P. goeldii (2n = 25♂/NFa = 42) and used them in comparative chromosomal mapping. Our analysis reveals that multiple translocations and inversions are responsible for the karyotype diversity of these species, with only three whole-chromosomes conserved between PRO and PGO and eight between PGO and PGG. Our data indicate that multiple sex chromosome systems have originated twice in Proechimys. As small populations are prone to the fixation of chromosomal rearrangements, we speculate that biological features of Rodentia contribute to this fixation. We also highlight the potential of these rodents as a model for studying sex chromosome evolution.
Collapse
Affiliation(s)
- Willam Oliveira da Silva
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, ICB, Universidade Federal do Pará, Belém, Pará, Brazil.,Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, ICB, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Jorge Rissino
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, ICB, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Jorge C Pereira
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, ICB, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
21
|
Wang D, Wang L. GRSR: a tool for deriving genome rearrangement scenarios from multiple unichromosomal genome sequences. BMC Bioinformatics 2018; 19:291. [PMID: 30367596 PMCID: PMC6101096 DOI: 10.1186/s12859-018-2268-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Genome rearrangements describe changes in the genetic linkage relationship of large chromosomal regions, involving reversals, transpositions, block interchanges, deletions, insertions, fissions, fusions and translocations etc. Many algorithms for calculating rearrangement scenarios between two genomes have been proposed. Very often, the calculated rearrangement scenario is not unique for the same pair of permutations. Hence, how to decide which calculated rearrangement scenario is more biologically meaningful becomes an essential task. Up to now, several mechanisms for genome rearrangements have been studied. One important theory is that genome rearrangement may be mediated by repeats, especially for reversal events. Many reversal regions are found to be flanked by a pair of inverted repeats. As a result, whether there are repeats at the breakpoints of the calculated rearrangement events can shed a light on deciding whether the calculated rearrangement events is biologically meaningful. To our knowledge, there is no tool which can automatically identify rearrangement events and check whether there exist repeats at the breakpoints of each calculated rearrangement event. Results In this paper, we describe a new tool named GRSR which allows us to compare multiple unichromosomal genomes to identify “independent” (obvious) rearrangement events such as reversals, (inverted) block interchanges and (inverted) transpositions and automatically searches for repeats at the breakpoints of each rearrangement event. We apply our tool on the complete genomes of 28 Mycobacterium tuberculosis strains and 24 Shewanella strains respectively. In both Mycobacterium tuberculosis and Shewanella strains, our tool finds many reversal regions flanked by a pair of inverted repeats. In particular, the GRSR tool also finds an inverted transposition and an inverted block interchange in Shewanella, where the repeats at the ends of rearrangement regions remain unchanged after the rearrangement event. To our knowledge, this is the first time such a phenomenon for inverted transposition and inverted block interchange is reported in Shewanella. Conclusions From the calculated results, there are many examples supporting the theory that the existence of repeats at the breakpoints of a rearrangement event can make the sequences at the breakpoints remain unchanged before and after the rearrangement events, suggesting that the conservation of ends could possibly be a popular phenomenon in many types of genome rearrangement events.
Collapse
Affiliation(s)
- Dan Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, People's Republic of China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, People's Republic of China. .,University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, People's Republic of China.
| |
Collapse
|
22
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
23
|
Podgornaya OI, Ostromyshenskii DI, Enukashvily NI. Who Needs This Junk, or Genomic Dark Matter. BIOCHEMISTRY (MOSCOW) 2018; 83:450-466. [PMID: 29626931 DOI: 10.1134/s0006297918040156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Centromeres (CEN), pericentromeric regions (periCEN), and subtelomeric regions (subTel) comprise the areas of constitutive heterochromatin (HChr). Tandem repeats (TRs or satellite DNA) are the main components of HChr forming no less than 10% of the mouse and human genome. HChr is assembled within distinct structures in the interphase nuclei of many species - chromocenters. In this review, the main classes of HChr repeat sequences are considered in the order of their number increase in the sequencing reads of the mouse chromocenters (ChrmC). TRs comprise ~70% of ChrmC occupying the first place. Non-LTR (-long terminal repeat) retroposons (mainly LINE, long interspersed nuclear element) are the next (~11%), and endogenous retroviruses (ERV; LTR-containing) are in the third position (~9%). HChr is not enriched with ERV in comparison with the whole genome, but there are differences in distribution of certain elements: while MaLR-like elements (ERV3) are dominant in the whole genome, intracisternal A-particles and corresponding LTR (ERV2) are prevalent in HChr. Most of LINE in ChrmC is represented by the 2-kb fragment at the end of the 2nd open reading frame and its flanking regions. Almost all tandem repeats classified as CEN or periCEN are contained in ChrmC. Our previous classification revealed 60 new mouse TR families with 29 of them being absent in ChrmC, which indicates their location on chromosome arms. TR transcription is necessary for maintenance of heterochromatic status of the HChr genome part. A burst of TR transcription is especially important in embryogenesis and other cases of radical changes in the cell program, including carcinogenesis. The recently discovered mechanism of epigenetic regulation with noncoding sequences transcripts, long noncoding RNA, and its role in embryogenesis and pluripotency maintenance is discussed.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | | | | |
Collapse
|
24
|
Cavalcante MG, Bastos CEMC, Nagamachi CY, Pieczarka JC, Vicari MR, Noronha RCR. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae). PLoS One 2018; 13:e0197536. [PMID: 29813087 PMCID: PMC5973585 DOI: 10.1371/journal.pone.0197536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023] Open
Abstract
Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26-68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26-28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae.
Collapse
Affiliation(s)
- Manoella Gemaque Cavalcante
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Carlos Eduardo Matos Carvalho Bastos
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil
| | - Renata Coelho Rodrigues Noronha
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| |
Collapse
|
25
|
Glugoski L, Giuliano-Caetano L, Moreira-Filho O, Vicari MR, Nogaroto V. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene 2018; 650:49-54. [DOI: 10.1016/j.gene.2018.01.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 01/12/2023]
|
26
|
Ostromyshenskii DI, Chernyaeva EN, Kuznetsova IS, Podgornaya OI. Mouse chromocenters DNA content: sequencing and in silico analysis. BMC Genomics 2018; 19:151. [PMID: 29458329 PMCID: PMC5819297 DOI: 10.1186/s12864-018-4534-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromocenters are defined as a punctate condensed blocks of chromatin in the interphase cell nuclei of certain cell types with unknown biological significance. In recent years a progress in revealing of chromocenters protein content has been made although the details of DNA content within constitutive heterochromatin still remain unclear. It is known that these regions are enriched in tandem repeats (TR) and transposable elements. Quick improvement of genome sequencing does not help to assemble the heterochromatic regions due to lack of appropriate bioinformatics techniques. RESULTS Chromocenters DNA have been isolated by a biochemical approach from mouse liver cells nuclei and sequenced on the Illumina MiSeq resulting in ChrmC dataset. Analysis of ChrmC dataset by the bioinformatics tools available revealed that the major component of chromocenter DNA are TRs: ~ 66% MaSat and ~ 4% MiSat. Other previously classified TR families constitute ~ 1% of ChrmC dataset. About 6% of chromocenters DNA are mostly unannotated sequences. In the contigs assembled with IDBA_UD there are many fragments of heterochromatic Y-chromosome, rDNA and other pseudo-genes and non-coding DNA. A protein coding sfi1 homolog gene fragment was also found in contigs. The Sfi1 homolog gene is located on the chromosome 11 in the reference genome very close to the Golden Pass Gap (a ~ 3 Mb empty region reserved to the pericentromeric region) and proves the purity of chromocenters isolation. The second major fraction are non-LTR retroposons (SINE and LINE) with overwhelming majority of LINE - ~ 11% of ChrmC. Most of the LINE fragments are from the ~ 2 kb region at the end of the 2nd ORF and its' flanking region. The precise LINEs' segment of ~ 2 kb is the necessary mouse constitutive heterohromatin component together with TR. The third most abundant fraction are ERVs. The ERV distribution in chromocenters differs from the whole genome: IAP (ERV2 class) is the most numerous in ChrmC while MaLR (ERV3 class) prevails in the reference genome. IAP and its LTR also prevail in TR containing contigs extracted from the WGS dataset. In silico prediction of IAP and LINE fragments in chromocenters was confirmed by direct fluorescent in situ hybridization (FISH). CONCLUSION Our data of chromocenters' DNA (ChrmC) sequencing demonstrate that IAP with LTR and a precise ~ 2 kb fragment of LINE represent a substantial fraction of mouse chromocenters (constitutive heteroсhromatin) along with TRs.
Collapse
Affiliation(s)
- Dmitrii I Ostromyshenskii
- Institute of Cytology RAS, St.-Petersburg, 194064, Russia.
- Far Eastern Federal University, Vladivostok, 690922, Russia.
| | | | - Inna S Kuznetsova
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Olga I Podgornaya
- Institute of Cytology RAS, St.-Petersburg, 194064, Russia
- Far Eastern Federal University, Vladivostok, 690922, Russia
- St Petersburg State University, St Petersburg, 199034, Russia
| |
Collapse
|
27
|
Capilla L, Sánchez-Guillén RA, Farré M, Paytuví-Gallart A, Malinverni R, Ventura J, Larkin DM, Ruiz-Herrera A. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia. Genome Biol Evol 2018; 8:3703-3717. [PMID: 28175287 PMCID: PMC5521730 DOI: 10.1093/gbe/evw276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints.
Collapse
Affiliation(s)
- Laia Capilla
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Rosa Ana Sánchez-Guillén
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Marta Farré
- Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Andreu Paytuví-Gallart
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.,Sequentia Biotech S.L. Calle Comte d'Urgell, Barcelona, Spain
| | - Roberto Malinverni
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Denis M Larkin
- Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Sequentia Biotech S.L. Calle Comte d'Urgell, Barcelona, Spain
| |
Collapse
|
28
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
29
|
Wang D, Li S, Guo F, Ning K, Wang L. Core-genome scaffold comparison reveals the prevalence that inversion events are associated with pairs of inverted repeats. BMC Genomics 2017; 18:268. [PMID: 28356070 PMCID: PMC5372343 DOI: 10.1186/s12864-017-3655-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Background Genome rearrangement describes gross changes of chromosomal regions, plays an important role in evolutionary biology and has profound impacts on phenotype in organisms ranging from microbes to humans. With more and more complete genomes accomplished, lots of genomic comparisons have been conducted in order to find genome rearrangements and the mechanisms which underlie the rearrangement events. In our opinion, genomic comparison of different individuals/strains within the same species (pan-genome) is more helpful to reveal the mechanisms for genome rearrangements since genomes of the same species are much closer to each other. Results We study the mechanism for inversion events via core-genome scaffold comparison of different strains within the same species. We focus on two kinds of bacteria, Pseudomonas aeruginosa and Escherichia coli, and investigate the inversion events among different strains of the same species. We find an interesting phenomenon that long (larger than 10,000 bp) inversion regions are flanked by a pair of Inverted Repeats (IRs). This mechanism can also explain why the breakpoint reuses for inversion events happen. We study the prevalence of the phenomenon and find that it is a major mechanism for inversions. The other observation is that for different rearrangement events such as transposition and inverted block interchange, the two ends of the swapped regions are also associated with repeats so that after the rearrangement operations the two ends of the swapped regions remain unchanged. To our knowledge, this is the first time such a phenomenon is reported for transposition event. Conclusions In both Pseudomonas aeruginosa and Escherichia coli strains, IRs were found at the two ends of long sequence inversions. The two ends of the inversion remained unchanged before and after the inversion event. The existence of IRs can explain the breakpoint reuse phenomenon. We also observed that other rearrangement operations such as transposition, inverted transposition, and inverted block interchange, had repeats (not necessarily inverted) at the ends of each segment, where the ends remained unchanged before and after the rearrangement operations. This suggests that the conservation of ends could possibly be a popular phenomenon in many types of chromosome rearrangement events. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3655-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People's Republic of China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People's Republic of China
| | - Fei Guo
- School of Computer Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Kang Ning
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People's Republic of China. .,University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, People's Republic of China.
| |
Collapse
|
30
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
31
|
Deakin JE, Kruger-Andrzejewska M. Marsupials as models for understanding the role of chromosome rearrangements in evolution and disease. Chromosoma 2016; 125:633-44. [PMID: 27255308 DOI: 10.1007/s00412-016-0603-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/28/2022]
Abstract
Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia.
| | | |
Collapse
|
32
|
Attwood MM, Krishnan A, Pivotti V, Yazdi S, Almén MS, Schiöth HB. Topology based identification and comprehensive classification of four-transmembrane helix containing proteins (4TMs) in the human genome. BMC Genomics 2016; 17:268. [PMID: 27030248 PMCID: PMC4815072 DOI: 10.1186/s12864-016-2592-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/16/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Membrane proteins are key components in a large spectrum of diverse functions and thus account for the major proportion of the drug-targeted portion of the genome. From a structural perspective, the α-helical transmembrane proteins can be categorized into major groups based on the number of transmembrane helices and these groups are often associated with specific functions. When compared to the well-characterized seven-transmembrane containing proteins (7TM), other TM groups are less explored and in particular the 4TM group. In this study, we identify the complete 4TM complement from the latest release of the human genome and assess the 4TM structure group as a whole. We functionally characterize this dataset and evaluate the resulting groups and ubiquitous functions, and furthermore describe disease and drug target involvement. RESULTS We classified 373 proteins, which represents ~7 % of the human membrane proteome, and includes 69 more proteins than our previous estimate. We have characterized the 4TM dataset based on functional, structural, and/or evolutionary similarities. Proteins that are involved in transport activity constitute 37 % of the dataset, 23 % are receptor-related, and 13 % have enzymatic functions. Intriguingly, proteins involved in transport are more than double the 15 % of transporters in the entire human membrane proteome, which might suggest that the 4TM topological architecture is more favored for transporting molecules over other functions. Moreover, we found an interesting exception to the ubiquitous intracellular N- and C-termini localization that is found throughout the entire membrane proteome and 4TM dataset in the neurotransmitter gated ion channel families. Overall, we estimate that 58 % of the dataset has a known association to disease conditions with 19 % of the genes possibly involved in different types of cancer. CONCLUSIONS We provide here the most robust and updated classification of the 4TM complement of the human genome as a platform to further understand the characteristics of 4TM functions and to explore pharmacological opportunities.
Collapse
Affiliation(s)
- Misty M. Attwood
- />Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Arunkumar Krishnan
- />Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Valentina Pivotti
- />Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Samira Yazdi
- />Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Markus Sällman Almén
- />Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- />Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
- />Institutionen för neurovetenskap, BMC, Box 593, 751 24 Uppsala, Sweden
| |
Collapse
|
33
|
Vieira-da-Silva A, Louzada S, Adega F, Chaves R. A High-Resolution Comparative Chromosome Map of Cricetus cricetus and Peromyscus eremicus Reveals the Involvement of Constitutive Heterochromatin in Breakpoint Regions. Cytogenet Genome Res 2015; 145:59-67. [PMID: 25999143 DOI: 10.1159/000381840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Compared to humans and other mammals, rodent genomes, specifically Muroidea species, underwent intense chromosome reshuffling in which many complex structural rearrangements occurred. This fact makes them preferential animal models for studying the process of karyotype evolution. Here, we present the first combined chromosome comparative maps between 2 Cricetidae species, Cricetus cricetus and Peromyscus eremicus, and the index species Mus musculus and Rattus norvegicus. Comparative chromosome painting was done using mouse and rat paint probes together with in silico analysis from the Ensembl genome browser database. Hereby, evolutionary events (inter- and intrachromosomal rearrangements) that occurred in C. cricetus and P. eremicus since the putative ancestral Muroidea genome could be inferred, and evolutionary breakpoint regions could be detected. A colocalization of constitutive heterochromatin and evolutionary breakpoint regions in each genome was observed. Our results suggest the involvement of constitutive heterochromatin in karyotype restructuring of these species, despite the different levels of conservation of the C. cricetus (derivative) and P. eremicus (conserved) genomes.
Collapse
Affiliation(s)
- Ana Vieira-da-Silva
- Center of Agricultural and Genomics Biotechnology (CGBA), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | | | | |
Collapse
|
34
|
Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 2015; 522:240-244. [PMID: 25938714 PMCID: PMC4509593 DOI: 10.1038/nature14345] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements comprise roughly 40% of mammalian genomes. They have an active role in genetic variation, adaptation and evolution through the duplication or deletion of genes or their regulatory elements, and transposable elements themselves can act as alternative promoters for nearby genes, resulting in non-canonical regulation of transcription. However, transposable element activity can lead to detrimental genome instability, and hosts have evolved mechanisms to silence transposable element mobility appropriately. Recent studies have demonstrated that a subset of transposable elements, endogenous retroviral elements (ERVs) containing long terminal repeats (LTRs), are silenced through trimethylation of histone H3 on lysine 9 (H3K9me3) by ESET (also known as SETDB1 or KMT1E) and a co-repressor complex containing KRAB-associated protein 1 (KAP1; also known as TRIM28) in mouse embryonic stem cells. Here we show that the replacement histone variant H3.3 is enriched at class I and class II ERVs, notably those of the early transposon (ETn)/MusD family and intracisternal A-type particles (IAPs). Deposition at a subset of these elements is dependent upon the H3.3 chaperone complex containing α-thalassaemia/mental retardation syndrome X-linked (ATRX) and death-domain-associated protein (DAXX). We demonstrate that recruitment of DAXX, H3.3 and KAP1 to ERVs is co-dependent and occurs upstream of ESET, linking H3.3 to ERV-associated H3K9me3. Importantly, H3K9me3 is reduced at ERVs upon H3.3 deletion, resulting in derepression and dysregulation of adjacent, endogenous genes, along with increased retrotransposition of IAPs. Our study identifies a unique heterochromatin state marked by the presence of both H3.3 and H3K9me3, and establishes an important role for H3.3 in control of ERV retrotransposition in embryonic stem cells.
Collapse
|
35
|
Farré M, Robinson TJ, Ruiz-Herrera A. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. Bioessays 2015; 37:479-88. [PMID: 25739389 DOI: 10.1002/bies.201400174] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/23/2022]
Abstract
Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders.
Collapse
Affiliation(s)
- Marta Farré
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Barcelona, Spain
| | | | | |
Collapse
|
36
|
LINE-1 retrotransposons: from 'parasite' sequences to functional elements. J Appl Genet 2014; 56:133-45. [PMID: 25106509 DOI: 10.1007/s13353-014-0241-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Long interspersed nuclear elements-1 (LINE-1) are the most abundant and active retrotransposons in the mammalian genomes. Traditionally, the occurrence of LINE-1 sequences in the genome of mammals has been explained by the selfish DNA hypothesis. Nevertheless, recently, it has also been argued that these sequences could play important roles in these genomes, as in the regulation of gene expression, genome modelling and X-chromosome inactivation. The non-random chromosomal distribution is a striking feature of these retroelements that somehow reflects its functionality. In the present study, we have isolated and analysed a fraction of the open reading frame 2 (ORF2) LINE-1 sequence from three rodent species, Cricetus cricetus, Peromyscus eremicus and Praomys tullbergi. Physical mapping of the isolated sequences revealed an interspersed longitudinal AT pattern of distribution along all the chromosomes of the complement in the three genomes. A detailed analysis shows that these sequences are preferentially located in the euchromatic regions, although some signals could be detected in the heterochromatin. In addition, a coincidence between the location of imprinted gene regions (as Xist and Tsix gene regions) and the LINE-1 retroelements was also observed. According to these results, we propose an involvement of LINE-1 sequences in different genomic events as gene imprinting, X-chromosome inactivation and evolution of repetitive sequences located at the heterochromatic regions (e.g. satellite DNA sequences) of the rodents' genomes analysed.
Collapse
|
37
|
Ullastres A, Farré M, Capilla L, Ruiz-Herrera A. Unraveling the effect of genomic structural changes in the rhesus macaque - implications for the adaptive role of inversions. BMC Genomics 2014; 15:530. [PMID: 24969235 PMCID: PMC4082625 DOI: 10.1186/1471-2164-15-530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/19/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND By reshuffling genomes, structural genomic reorganizations provide genetic variation on which natural selection can work. Understanding the mechanisms underlying this process has been a long-standing question in evolutionary biology. In this context, our purpose in this study is to characterize the genomic regions involved in structural rearrangements between human and macaque genomes and determine their influence on meiotic recombination as a way to explore the adaptive role of genome shuffling in mammalian evolution. RESULTS We first constructed a highly refined map of the structural rearrangements and evolutionary breakpoint regions in the human and rhesus macaque genomes based on orthologous genes and whole-genome sequence alignments. Using two different algorithms, we refined the genomic position of known rearrangements previously reported by cytogenetic approaches and described new putative micro-rearrangements (inversions and indels) in both genomes. A detailed analysis of the rhesus macaque genome showed that evolutionary breakpoints are in gene-rich regions, being enriched in GO terms related to immune system. We also identified defense-response genes within a chromosome inversion fixed in the macaque lineage, underlying the relevance of structural genomic changes in evolutionary and/or adaptation processes. Moreover, by combining in silico and experimental approaches, we studied the recombination pattern of specific chromosomes that have suffered rearrangements between human and macaque lineages. CONCLUSIONS Our data suggest that adaptive alleles - in this case, genes involved in the immune response - might have been favored by genome rearrangements in the macaque lineage.
Collapse
Affiliation(s)
| | | | | | - Aurora Ruiz-Herrera
- Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Campus UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
38
|
Farré M, Micheletti D, Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee--a new twist in the chromosomal speciation theory. Mol Biol Evol 2012. [PMID: 23204393 PMCID: PMC3603309 DOI: 10.1093/molbev/mss272] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human-chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human-chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals.
Collapse
Affiliation(s)
- Marta Farré
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | |
Collapse
|
39
|
Abstract
This review summarizes aspects of the extensive literature on the patterns and processes underpinning chromosomal evolution in vertebrates and especially placental mammals. It highlights the growing synergy between molecular cytogenetics and comparative genomics, particularly with respect to fully or partially sequenced genomes, and provides novel insights into changes in chromosome number and structure across deep division of the vertebrate tree of life. The examination of basal numbers in the deeper branches of the vertebrate tree suggest a haploid (n) chromosome number of 10-13 in an ancestral vertebrate, with modest increases in tetrapods and amniotes most probably by chromosomal fissioning. Information drawn largely from cross-species chromosome painting in the data-dense Placentalia permits the confident reconstruction of an ancestral karyotype comprising n=23 chromosomes that is similarly retained in Boreoeutheria. Using in silico genome-wide scans that include the newly released frog genome we show that of the nine ancient syntenies detected in conserved karyotypes of extant placentals (thought likely to reflect the structure of ancestral chromosomes), the human syntenic segmental associations 3p/21, 4pq/8p, 7a/16p, 14/15, 12qt/22q and 12pq/22qt predate the divergence of tetrapods. These findings underscore the enhanced quality of ancestral reconstructions based on the integrative molecular cytogenetic and comparative genomic approaches that collectively highlight a pattern of conserved syntenic associations that extends back ∼360 million years ago.
Collapse
|
40
|
Brown JD, Mitchell SE, O'Neill RJ. Making a long story short: noncoding RNAs and chromosome change. Heredity (Edinb) 2011; 108:42-9. [PMID: 22072070 DOI: 10.1038/hdy.2011.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As important as the events that influence selection for specific chromosome types in the derivation of novel karyotypes, are the events that initiate the changes in chromosome number and structure between species, and likewise polymorphisms, variants and disease states within species. Although once thought of as transcriptional 'noise', noncoding RNAs (ncRNAs) are now recognized as important mediators of epigenetic regulation and chromosome stability. Here we highlight recent work that illustrates the influence short and long ncRNAs have as participants in the function and stability of chromosome regions such as centromeres, telomeres, evolutionary breakpoints and fragile sites. We summarize recent evidence that ncRNAs can facilitate chromosome change and present mechanisms by which ncRNAs create DNA breaks. Finally, we present hypotheses on how they may create novel karyotypes and thus affect chromosome evolution.
Collapse
Affiliation(s)
- J D Brown
- Allied Health Sciences Department, University of Connecticut, Storrs, CT, USA
| | | | | |
Collapse
|
41
|
Farré M, Bosch M, López-Giráldez F, Ponsà M, Ruiz-Herrera A. Assessing the role of tandem repeats in shaping the genomic architecture of great apes. PLoS One 2011; 6:e27239. [PMID: 22076140 PMCID: PMC3208591 DOI: 10.1371/journal.pone.0027239] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
Background Ancestral reconstructions of mammalian genomes have revealed that evolutionary breakpoint regions are clustered in regions that are more prone to break and reorganize. What is still unclear to evolutionary biologists is whether these regions are physically unstable due solely to sequence composition and/or genome organization, or do they represent genomic areas where the selection against breakpoints is minimal. Methodology and Principal Findings Here we present a comprehensive study of the distribution of tandem repeats in great apes. We analyzed the distribution of tandem repeats in relation to the localization of evolutionary breakpoint regions in the human, chimpanzee, orangutan and macaque genomes. We observed an accumulation of tandem repeats in the genomic regions implicated in chromosomal reorganizations. In the case of the human genome our analyses revealed that evolutionary breakpoint regions contained more base pairs implicated in tandem repeats compared to synteny blocks, being the AAAT motif the most frequently involved in evolutionary regions. We found that those AAAT repeats located in evolutionary regions were preferentially associated with Alu elements. Significance Our observations provide evidence for the role of tandem repeats in shaping mammalian genome architecture. We hypothesize that an accumulation of specific tandem repeats in evolutionary regions can promote genome instability by altering the state of the chromatin conformation or by promoting the insertion of transposable elements.
Collapse
Affiliation(s)
- Marta Farré
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Francesc López-Giráldez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Montserrat Ponsà
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
42
|
Alekseyev MA, Pevzner PA. Comparative genomics reveals birth and death of fragile regions in mammalian evolution. Genome Biol 2010; 11:R117. [PMID: 21118492 PMCID: PMC3156956 DOI: 10.1186/gb-2010-11-11-r117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/05/2010] [Accepted: 11/30/2010] [Indexed: 12/15/2022] Open
Abstract
Background An important question in genome evolution is whether there exist fragile regions (rearrangement hotspots) where chromosomal rearrangements are happening over and over again. Although nearly all recent studies supported the existence of fragile regions in mammalian genomes, the most comprehensive phylogenomic study of mammals raised some doubts about their existence. Results Here we demonstrate that fragile regions are subject to a birth and death process, implying that fragility has a limited evolutionary lifespan. Conclusions This finding implies that fragile regions migrate to different locations in different mammals, explaining why there exist only a few chromosomal breakpoints shared between different lineages. The birth and death of fragile regions as a phenomenon reinforces the hypothesis that rearrangements are promoted by matching segmental duplications and suggests putative locations of the currently active fragile regions in the human genome.
Collapse
Affiliation(s)
- Max A Alekseyev
- Department of Computer Science & Engineering, University of South Carolina, 301 Main St, Columbia, SC 29208, USA.
| | | |
Collapse
|
43
|
Alkan C, Cardone MF, Catacchio CR, Antonacci F, O'Brien SJ, Ryder OA, Purgato S, Zoli M, Della Valle G, Eichler EE, Ventura M. Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Res 2010; 21:137-45. [PMID: 21081712 DOI: 10.1101/gr.111278.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.
Collapse
Affiliation(s)
- Can Alkan
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Brown JD, O'Neill RJ. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 2010; 11:291-316. [PMID: 20438362 DOI: 10.1146/annurev-genom-082509-141554] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.
Collapse
Affiliation(s)
- Judith D Brown
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
45
|
Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 2010; 10:271. [PMID: 20815941 PMCID: PMC2944182 DOI: 10.1186/1471-2148-10-271] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/06/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fish, Erythrinus erythrinus, shows an interpopulation diversity, with four karyomorphs differing by chromosomal number, chromosomal morphology and heteromorphic sex chromosomes. Karyomorph A has a diploid number of 2n = 54 and does not have differentiated sex chromosomes. Karyomorph D has 2n = 52 chromosomes in females and 2n = 51 in males, and it is most likely derived from karyomorph A by the differentiation of a multiple X1X2Y sex chromosome system. In this study, we analyzed karyomorphs A and D by means of cytogenetic approaches to evaluate their evolutionary relationship. RESULTS Conspicuous differences in the distribution of the 5S rDNA and Rex3 non-LTR retrotransposon were found between the two karyomorphs, while no changes in the heterochromatin and 18S rDNA patterns were found between them. Rex3 was interstitially dispersed in most chromosomes. It had a compartmentalized distribution in the centromeric regions of only two acrocentric chromosomes in karyomorph A. In comparison, in karyomorph D, Rex3 was found in 22 acrocentric chromosomes in females and 21 in males. All 5S rDNA sites co-localized with Rex3, suggesting that these are associated in the genome. In addition, the origin of the large metacentric Y chromosome in karyomorph D by centric fusion was highlighted by the presence of internal telomeric sites and 5S rDNA/Rex3 sites on this chromosome. CONCLUSION We demonstrated that some repetitive DNAs (5S rDNA, Rex3 retroelement and (TTAGGG)n telomeric repeats) were crucial for the evolutionary divergence inside E. erythrinus. These elements were strongly associated with the karyomorphic evolution of this species. Our results indicate that chromosomal rearrangements and genomic modifications were significant events during the course of evolution of this fish. We detected centric fusions that were associated with the differentiation of the multiple sex chromosomes in karyomorph D, as well as a surprising increase of associated 5S rDNA/Rex3 loci, in contrast to karyomorph A. In this sense, E. erythrinus emerges as an excellent model system for better understanding the evolutionary mechanisms underlying the huge genome diversity in fish. This organism can also contribute to understanding vertebrate genome evolution as a whole.
Collapse
Affiliation(s)
- Marcelo B Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brazil.
| | | | | |
Collapse
|
46
|
Abstract
The 'action' in genome-level evolution lies not in the large gene-containing segments that are conserved among related species, but in the breakpoint regions between these segments. Two recent papers in BMC Genomics detail the pattern of repetitive elements associated with breakpoints and the epigenetic conditions under which breakage occurs.
Collapse
Affiliation(s)
- David Sankoff
- Department of Mathematics, University of Ottawa, 585 King Edward Avenue, Ottawa K1N 6N5, Canada.
| |
Collapse
|