1
|
Torres N, Tobón-Cornejo S, Velazquez-Villegas LA, Noriega LG, Alemán-Escondrillas G, Tovar AR. Amino Acid Catabolism: An Overlooked Area of Metabolism. Nutrients 2023; 15:3378. [PMID: 37571315 PMCID: PMC10421169 DOI: 10.3390/nu15153378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15. Col Belisario Domínguez-Sección XVI, Tlalpan, Mexico City 14080, Mexico; (N.T.); (S.T.-C.); (L.A.V.-V.); (L.G.N.); (G.A.-E.)
| |
Collapse
|
2
|
Parnell LD, McCaffrey KS, Brooks AW, Smith CE, Lai CQ, Christensen JJ, Wiley CD, Ordovas JM. Rate-Limiting Enzymes in Cardiometabolic Health and Aging in Humans. Lifestyle Genom 2023; 16:124-138. [PMID: 37473740 DOI: 10.1159/000531350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/24/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Rate-limiting enzymes (RLEs) are innate slow points in metabolic pathways, and many function in bio-processes related to nutrient sensing. Many RLEs carry causal mutations relevant to inherited metabolic disorders. Because the activity of RLEs in cardiovascular health is poorly characterized, our objective was to assess their involvement in cardiometabolic health and disease and where altered biophysical and biochemical functions can promote disease. METHODS A dataset of 380 human RLEs was compared to protein and gene datasets for factors likely to contribute to cardiometabolic disease, including proteins showing significant age-related altered expression in blood and genetic loci with variants that associate with common cardiometabolic phenotypes. The biochemical reactions catalyzed by RLEs were evaluated for metabolites enriched in RLE subsets associating with various cardiometabolic phenotypes. Most significance tests were based on Z-score enrichment converted to p values with a normal distribution function. RESULTS Of 380 RLEs analyzed, 112 function in mitochondria, and 53 are assigned to inherited metabolic disorders. There was a depletion of RLE proteins known as aging biomarkers. At the gene level, RLEs were assessed for common genetic variants that associated with important cardiometabolic traits of LDL-cholesterol or any of the five outcomes pertinent to metabolic syndrome. This revealed several RLEs with links to cardiometabolic traits, from a minimum of 26 for HDL-cholesterol to a maximum of 45 for plasma glucose. Analysis of these GWAS-linked RLEs for enrichment of the molecular constituents of the catalyzed reactions disclosed a number of significant phenotype-metabolite links. These included blood pressure with acetate (p = 2.2 × 10-4) and NADP+ (p = 0.0091), plasma HDL-cholesterol and triglyceride with diacylglycerol (p = 2.6 × 10-5, 6.4 × 10-5, respectively) and diolein (p = 2.2 × 10-6, 5.9 × 10-6), and waist circumference with d-glucosamine-6-phosphate (p = 1.8 × 10-4). CONCLUSION In the context of cardiometabolic health, aging, and disease, these results highlight key diet-derived metabolites that are central to specific rate-limited processes that are linked to cardiometabolic health. These metabolites include acetate and diacylglycerol, pertinent to blood pressure and triglycerides, respectively, as well as diacylglycerol and HDL-cholesterol.
Collapse
Affiliation(s)
- Laurence D Parnell
- US Department of Agriculture, Nutrition and Genomics Laboratory, Agricultural Research Service, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | | | | | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Chao-Qiang Lai
- US Department of Agriculture, Nutrition and Genomics Laboratory, Agricultural Research Service, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Oslo, Norway
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Christopher D Wiley
- Vitamin K Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Liu X, Zhang P, Zhao Q, Huang AC. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:417-443. [PMID: 35852486 DOI: 10.1111/jipb.13330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant natural products have been extensively exploited in food, medicine, flavor, cosmetic, renewable fuel, and other industrial sectors. Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products. Compared with engineering microbes for the production of plant natural products, the potential of plants as chassis for producing these compounds is underestimated, largely due to challenges encountered in engineering plants. Knowledge in plant engineering is instrumental for enabling the effective and efficient production of valuable phytochemicals in plants, and also paves the way for a more sustainable future agriculture. In this manuscript, we briefly recap the biosynthesis of plant natural products, focusing primarily on industrially important terpenoids, alkaloids, and phenylpropanoids. We further summarize the plant hosts and strategies that have been used to engineer the production of natural products. The challenges and opportunities of using plant synthetic biology to achieve rapid and scalable production of high-value plant natural products are also discussed.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peijun Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiao Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), the Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Lyu Y, Promislow DEL, Pletcher SD. Serotonin signaling modulates aging-associated metabolic network integrity in response to nutrient choice in Drosophila melanogaster. Commun Biol 2021; 4:740. [PMID: 34131274 PMCID: PMC8206115 DOI: 10.1038/s42003-021-02260-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
Aging arises from complex interactions among multiple biochemical products. Systems-level analyses of biological networks may provide insights into the causes and consequences of aging that evade single-gene studies. We have previously found that dietary choice is sufficient to modulate aging in the vinegar fly, Drosophila melanogaster. Here we show that nutrient choice influenced several measures of metabolic network integrity, including connectivity, community structure, and robustness. Importantly, these effects are mediated by serotonin signaling, as a mutation in serotonin receptor 2A (5-HT2A) eliminated the effects of nutrient choice. Changes in network structure were associated with organism resilience and increased susceptibility to genetic perturbation. Our data suggest that the behavioral or perceptual consequences of exposure to individual macronutrients, involving serotonin signaling through 5-HT2A, qualitatively change the state of metabolic networks throughout the organism from one that is highly connected and robust to one that is fragmented, fragile, and vulnerable to perturbations.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel E L Promislow
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Zhang J, Liu X, Wu J, Zhou W, Tian J, Guo S, Jia SS, Meng Z, Ni M. A bioinformatics investigation into the pharmacological mechanisms of the effect of the Yinchenhao decoction on hepatitis C based on network pharmacology. BMC Complement Med Ther 2020; 20:50. [PMID: 32050950 PMCID: PMC7076901 DOI: 10.1186/s12906-020-2823-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Background Globally, more than 170 million people are infected with hepatitis C virus, a major cause of cirrhosis and hepatocellular carcinoma. The Yinchenhao Decoction (YCHD) is a classic formula comprising three herbal medicines. This decoction have long been used in China for clinically treating acute and chronic infectious hepatitis and other liver and gallbladder damp heat-accumulation disorders. Methods In this study, we identified 32 active ingredients and 200 hepatitis C proteins and established a compound-predicted target network and a hepatitis C protein–protein interaction network by using Cytoscape 3.6.1. Then, we systematically analyzed the potential targets of the YCHD for the treatment of hepatitis C. Finally, molecular docking was applied to verify the key targets. In addition, we analyzed the mechanism of action of the predicted targets by the Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses. Results This study adopted a network pharmacology approach, mainly comprising target prediction, network construction, module detection, functional enrichment analysis, and molecular docking to systematically investigate the mechanisms of action of the YCHD in hepatitis C. The targets of the YCHD in the treatment of hepatitis C mainly involved PIK3CG, CASP3, BCL2, CASP8, and MMP1. The module and pathway enrichment analyses showed that the YCHD had the potential to influence varieties of biological pathways, including the TNF signaling pathway, Ras signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, and pathways in cancer, that play an important role in the pathogenesis of hepatitis C. Conclusion The results of this study preliminarily verified the basic pharmacological effects and related mechanisms of the YCHD in the treatment of hepatitis C.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China.
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou City, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Shan Shan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| |
Collapse
|
6
|
Ochsner SA, Abraham D, Martin K, Ding W, McOwiti A, Kankanamge W, Wang Z, Andreano K, Hamilton RA, Chen Y, Hamilton A, Gantner ML, Dehart M, Qu S, Hilsenbeck SG, Becnel LB, Bridges D, Ma'ayan A, Huss JM, Stossi F, Foulds CE, Kralli A, McDonnell DP, McKenna NJ. The Signaling Pathways Project, an integrated 'omics knowledgebase for mammalian cellular signaling pathways. Sci Data 2019; 6:252. [PMID: 31672983 PMCID: PMC6823428 DOI: 10.1038/s41597-019-0193-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Mining of integrated public transcriptomic and ChIP-Seq (cistromic) datasets can illuminate functions of mammalian cellular signaling pathways not yet explored in the research literature. Here, we designed a web knowledgebase, the Signaling Pathways Project (SPP), which incorporates community classifications of signaling pathway nodes (receptors, enzymes, transcription factors and co-nodes) and their cognate bioactive small molecules. We then mapped over 10,000 public transcriptomic or cistromic experiments to their pathway node or biosample of study. To enable prediction of pathway node-gene target transcriptional regulatory relationships through SPP, we generated consensus 'omics signatures, or consensomes, which ranked genes based on measures of their significant differential expression or promoter occupancy across transcriptomic or cistromic experiments mapped to a specific node family. Consensomes were validated using alignment with canonical literature knowledge, gene target-level integration of transcriptomic and cistromic data points, and in bench experiments confirming previously uncharacterized node-gene target regulatory relationships. To expose the SPP knowledgebase to researchers, a web browser interface was designed that accommodates numerous routine data mining strategies. SPP is freely accessible at https://www.signalingpathways.org .
Collapse
Affiliation(s)
- Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - David Abraham
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Kirt Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Wei Ding
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Apollo McOwiti
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Wasula Kankanamge
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Zichen Wang
- Icahn School of Medicine, Mount Sinai University, New York, NY, 10029, USA
| | - Kaitlyn Andreano
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Yue Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Angelica Hamilton
- Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Marin L Gantner
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Dehart
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shijing Qu
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Susan G Hilsenbeck
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Lauren B Becnel
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dave Bridges
- University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Avi Ma'ayan
- Icahn School of Medicine, Mount Sinai University, New York, NY, 10029, USA
| | - Janice M Huss
- Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Anastasia Kralli
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| |
Collapse
|
7
|
Chen Y, Liu Y, Du M, Zhang W, Xu L, Gao X, Zhang L, Gao H, Xu L, Li J, Zhao M. Constructing a comprehensive gene co-expression based interactome in Bos taurus. PeerJ 2017; 5:e4107. [PMID: 29226034 PMCID: PMC5719962 DOI: 10.7717/peerj.4107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Integrating genomic information into cattle breeding is an important approach to exploring genotype-phenotype relationships for complex traits related to diary and meat production. To assist with genomic-based selection, a reference map of interactome is needed to fully understand and identify the functional relevant genes. To this end, we constructed a co-expression analysis of 92 tissues and this represents the systematic exploration of gene-gene relationship in Bos taurus. By using robust WGCNA (Weighted Gene Correlation Network Analysis), we described the gene co-expression network of 5,000 protein-coding genes with majority variations in expression across 92 tissues. Further module identifications found 55 highly organized functional clusters representing diverse cellular activities. To demonstrate the re-use of our interaction for functional genomics analysis, we extracted a sub-network associated with DNA binding genes in Bos taurus. The subnetwork was enriched within regulation of transcription from RNA polymerase II promoter representing central cellular functions. In addition, we identified 28 novel linker genes associated with more than 100 DNA binding genes. Our WGCNA-based co-expression network reconstruction will be a valuable resource for exploring the molecular mechanisms of incompletely characterized proteins and for elucidating larger-scale patterns of functional modulization in the Bos taurus genome.
Collapse
Affiliation(s)
- Yan Chen
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA, United States of America
| | - Wengang Zhang
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Xu
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
8
|
Zhao M, Wang T, Stewart MJ, Bose U, Suwansa-ard S, Storey KB, Cummins SF. eSnail: A transcriptome-based molecular resource of the central nervous system for terrestrial gastropods. Mol Ecol Resour 2017; 18:147-158. [DOI: 10.1111/1755-0998.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Min Zhao
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Tianfang Wang
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Michael J. Stewart
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Utpal Bose
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Saowaros Suwansa-ard
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Kenneth B. Storey
- Department of Biology; Institute of Biochemistry; Carleton University; Ottawa ON Canada
| | - Scott F. Cummins
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| |
Collapse
|
9
|
A gene browser of colorectal cancer with literature evidence and pre-computed regulatory information to identify key tumor suppressors and oncogenes. Sci Rep 2016; 6:30624. [PMID: 27477450 PMCID: PMC4967895 DOI: 10.1038/srep30624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a cancer of growing incidence that associates with a high mortality rate worldwide. There is a poor understanding of the heterogeneity of CRC with regard to causative genetic mutations and gene regulatory mechanisms. Previous studies have identified several susceptibility genes in small-scale experiments. However, the information has not been comprehensively and systematically compiled and interpreted. In this study, we constructed the gbCRC, the first literature-based gene resource for investigating CRC-related human genes. The features of our database include: (i) manual curation of experimentally-verified genes reported in the literature; (ii) comprehensive integration of five reliable data sources; and (iii) pre-computed regulatory patterns involving transcription factors, microRNAs and long non-coding RNAs. In total, 2067 genes associating with 2819 PubMed abstracts were compiled. Comprehensive functional annotations associated with all the genes, including gene expression profiles, homologous genes in other model species, protein-protein interactions, somatic mutations, and potential methylation sites. These comprehensive annotations and this pre-computed regulatory information highlighted the importance of the gbCRC with regard to the unexplored regulatory network of CRC. This information is available in a plain text format that is free to download.
Collapse
|
10
|
Zhao M, Wang T, Adamson KJ, Storey KB, Cummins SF. Multi-tissue transcriptomics for construction of a comprehensive gene resource for the terrestrial snail Theba pisana. Sci Rep 2016; 6:20685. [PMID: 26852673 PMCID: PMC4745086 DOI: 10.1038/srep20685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
The land snail Theba pisana is native to the Mediterranean region but has become one of the most abundant invasive species worldwide. Here, we present three transcriptomes of this agriculture pest derived from three tissues: the central nervous system, hepatopancreas (digestive gland), and foot muscle. Sequencing of the three tissues produced 339,479,092 high quality reads and a global de novo assembly generated a total of 250,848 unique transcripts (unigenes). BLAST analysis mapped 52,590 unigenes to NCBI non-redundant protein databases and further functional analysis annotated 21,849 unigenes with gene ontology. We report that T. pisana transcripts have representatives in all functional classes and a comparison of differentially expressed transcripts amongst all three tissues demonstrates enormous differences in their potential metabolic activities. The genes differentially expressed include those with sequence similarity to those genes associated with multiple bacterial diseases and neurological diseases. To provide a valuable resource that will assist functional genomics study, we have implemented a user-friendly web interface, ThebaDB (http://thebadb.bioinfo-minzhao.org/). This online database allows for complex text queries, sequence searches, and data browsing by enriched functional terms and KEGG mapping.
Collapse
Affiliation(s)
- M Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - T Wang
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - K J Adamson
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - K B Storey
- Institute of Biochemistry &Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - S F Cummins
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| |
Collapse
|
11
|
CSGene: a literature-based database for cell senescence genes and its application to identify critical cell aging pathways and associated diseases. Cell Death Dis 2016; 7:e2053. [PMID: 26775705 PMCID: PMC4816187 DOI: 10.1038/cddis.2015.414] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
Abstract
Cell senescence is a cellular process in which normal diploid cells cease to replicate and is a major driving force for human cancers and aging-associated diseases. Recent studies on cell senescence have identified many new genetic components and pathways that control cell aging. However, there is no comprehensive resource for cell senescence that integrates various genetic studies and relationships with cell senescence, and the risk associated with complex diseases such as cancer is still unexplored. We have developed the first literature-based gene resource for exploring cell senescence genes, CSGene. We complied 504 experimentally verified genes from public data resources and published literature. Pathway analyses highlighted the prominent roles of cell senescence genes in the control of rRNA gene transcription and unusual rDNA repeat that constitute a center for the stability of the whole genome. We also found a strong association of cell senescence with HIV-1 infection and viral carcinogenesis that are mainly related to promoter/enhancer binding and chromatin modification processes. Moreover, pan-cancer mutation and network analysis also identified common cell aging mechanisms in cancers and uncovered a highly modular network structure. These results highlight the utility of CSGene for elucidating the complex cellular events of cell senescence.
Collapse
|
12
|
Cellular metabolic network analysis: discovering important reactions in Treponema pallidum. BIOMED RESEARCH INTERNATIONAL 2015; 2015:328568. [PMID: 26495292 PMCID: PMC4606156 DOI: 10.1155/2015/328568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 11/26/2022]
Abstract
T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis.
Collapse
|
13
|
Zhao M, Chen Y, Qu D, Qu H. METSP: a maximum-entropy classifier based text mining tool for transporter-substrate identification with semistructured text. BIOMED RESEARCH INTERNATIONAL 2015; 2015:254838. [PMID: 26495291 PMCID: PMC4606149 DOI: 10.1155/2015/254838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/21/2015] [Indexed: 01/16/2023]
Abstract
The substrates of a transporter are not only useful for inferring function of the transporter, but also important to discover compound-compound interaction and to reconstruct metabolic pathway. Though plenty of data has been accumulated with the developing of new technologies such as in vitro transporter assays, the search for substrates of transporters is far from complete. In this article, we introduce METSP, a maximum-entropy classifier devoted to retrieve transporter-substrate pairs (TSPs) from semistructured text. Based on the high quality annotation from UniProt, METSP achieves high precision and recall in cross-validation experiments. When METSP is applied to 182,829 human transporter annotation sentences in UniProt, it identifies 3942 sentences with transporter and compound information. Finally, 1547 confidential human TSPs are identified for further manual curation, among which 58.37% pairs with novel substrates not annotated in public transporter databases. METSP is the first efficient tool to extract TSPs from semistructured annotation text in UniProt. This tool can help to determine the precise substrates and drugs of transporters, thus facilitating drug-target prediction, metabolic network reconstruction, and literature classification.
Collapse
Affiliation(s)
- Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Yanming Chen
- School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Dacheng Qu
- School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Lee TY, Lin HH, Chen CL, Hwang SM, Tseng CP. Inhibitory Effect of Excessive Glucose on Its Biochemical Pathway and the Growth of Chinese Hamster Ovary (CHO) Cells. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2014.977908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Zhao M, Austin ED, Hemnes AR, Loyd JE, Zhao Z. An evidence-based knowledgebase of pulmonary arterial hypertension to identify genes and pathways relevant to pathogenesis. MOLECULAR BIOSYSTEMS 2014; 10:732-40. [PMID: 24448676 PMCID: PMC3950334 DOI: 10.1039/c3mb70496c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/07/2014] [Indexed: 01/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a major progressive form of pulmonary hypertension (PH) with more than 4800 patients in the United States. In the last two decades, many studies have identified numerous genes associated with this disease. However, there is no comprehensive research resource for PAH or other PH types that integrates various genetic studies and their related biological information. Thus, the number of associated genes, and their strength of evidence, is unclear. In this study, we tested the hypothesis that a web-based knowledgebase could be used to develop a biological map of highly interrelated, functionally important genes in PAH. We developed the pulmonary arterial hypertension knowledgebase (PAHKB, ), a comprehensive database with a user-friendly web interface. PAHKB extracts genetic data from all available sources, including those from association studies, genetic mutation, gene expression, animal model, supporting literature, various genomic annotations, gene networks, cellular and regulatory pathways, as well as microRNAs. Moreover, PAHKB provides online tools for data browsing and searching, data integration, pathway graphical presentation, and gene ranking. In the current release, PAHKB contains 341 human PH-related genes (293 protein coding and 48 non-coding genes) curated from over 1000 PubMed abstracts. Based on the top 39 ranked PAH-related genes in PAHKB, we constructed a core biological map. This core map was enriched with the TGF-beta signaling pathway, focal adhesion, cytokine-cytokine receptor interaction, and MAPK signaling. In addition, the reconstructed map elucidates several novel cancer signaling pathways, which may provide clues to support the application of anti-cancer therapeutics to PAH. In summary, we have developed a system for the identification of core PH-related genes and identified critical signaling pathways that may be relevant to PAH pathogenesis. This system can be easily applied to other pulmonary diseases.
Collapse
Affiliation(s)
- Min Zhao
- Department of Biomedical Informatics , Vanderbilt University School of Medicine , Nashville , TN , USA .
| | - Eric D. Austin
- Department of Pediatrics , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Anna R. Hemnes
- Division of Allergy , Pulmonary and Critical Care Medicine , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - James E. Loyd
- Department of Medicine , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Zhongming Zhao
- Department of Biomedical Informatics , Vanderbilt University School of Medicine , Nashville , TN , USA .
- Department of Cancer Biology , Vanderbilt University School of Medicine , Nashville , TN , USA
- Department of Psychiatry , Vanderbilt University School of Medicine , Nashville , TN , USA
- Center for Quantitative Sciences , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
16
|
Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes. PLoS One 2014; 9:e88883. [PMID: 24558441 PMCID: PMC3928311 DOI: 10.1371/journal.pone.0088883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/12/2014] [Indexed: 11/25/2022] Open
Abstract
Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD) (http://htd.cbi.pku.edu.cn). Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.
Collapse
|
17
|
EDdb: a web resource for eating disorder and its application to identify an extended adipocytokine signaling pathway related to eating disorder. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1086-96. [PMID: 24302289 DOI: 10.1007/s11427-013-4573-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/23/2013] [Indexed: 01/07/2023]
Abstract
Eating disorder is a group of physiological and psychological disorders affecting approximately 1% of the female population worldwide. Although the genetic epidemiology of eating disorder is becoming increasingly clear with accumulated studies, the underlying molecular mechanisms are still unclear. Recently, integration of various high-throughput data expanded the range of candidate genes and started to generate hypotheses for understanding potential pathogenesis in complex diseases. This article presents EDdb (Eating Disorder database), the first evidence-based gene resource for eating disorder. Fifty-nine experimentally validated genes from the literature in relation to eating disorder were collected as the core dataset. Another four datasets with 2824 candidate genes across 601 genome regions were expanded based on the core dataset using different criteria (e.g., protein-protein interactions, shared cytobands, and related complex diseases). Based on human protein-protein interaction data, we reconstructed a potential molecular sub-network related to eating disorder. Furthermore, with an integrative pathway enrichment analysis of genes in EDdb, we identified an extended adipocytokine signaling pathway in eating disorder. Three genes in EDdb (ADIPO (adiponectin), TNF (tumor necrosis factor) and NR3C1 (nuclear receptor subfamily 3, group C, member 1)) link the KEGG (Kyoto Encyclopedia of Genes and Genomes) "adipocytokine signaling pathway" with the BioCarta "visceral fat deposits and the metabolic syndrome" pathway to form a joint pathway. In total, the joint pathway contains 43 genes, among which 39 genes are related to eating disorder. As the first comprehensive gene resource for eating disorder, EDdb ( http://eddb.cbi.pku.edu.cn ) enables the exploration of gene-disease relationships and cross-talk mechanisms between related disorders. Through pathway statistical studies, we revealed that abnormal body weight caused by eating disorder and obesity may both be related to dysregulation of the novel joint pathway of adipocytokine signaling. In addition, this joint pathway may be the common pathway for body weight regulation in complex human diseases related to unhealthy lifestyle.
Collapse
|
18
|
Zhao M, Qu H. High similarity of phylogenetic profiles of rate-limiting enzymes with inhibitory relation in Human, Mouse, Rat, budding Yeast and E. coli. BMC Genomics 2011; 12 Suppl 3:S10. [PMID: 22369203 PMCID: PMC3333169 DOI: 10.1186/1471-2164-12-s3-s10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The phylogenetic profile is widely used to characterize functional linkage and conservation between proteins without amino acid sequence similarity. To survey the conservative regulatory properties of rate-limiting enzymes (RLEs) in metabolic inhibitory network across different species, we define the enzyme inhibiting pair as: where the first enzyme in a pair is the inhibitor provider and the second is the target of the inhibitor. Phylogenetic profiles of enzymes in the inhibiting pairs are further generated to measure the functional linkage of these enzymes during evolutionary history. Results We find that the RLEs generate, on average, over half of all in vivo inhibitors in each surveyed model organism. And these inhibitors inhibit on average over 85% targets in metabolic inhibitory network and cover the majority of targets of cross-pathway inhibiting relations. Furthermore, we demonstrate that the phylogenetic profiles of the enzymes in inhibiting pairs in which at least one enzyme is rate-limiting often show higher similarities than those in common inhibiting enzyme pairs. In addition, RLEs, compared to common metabolic enzymes, often tend to produce ADP instead of AMP in conservative inhibitory networks. Conclusions Combined with the conservative roles of RLEs in their efficiency in sensing metabolic signals and transmitting regulatory signals to the rest of the metabolic system, the RLEs may be important molecules in balancing energy homeostasis via maintaining the ratio of ATP to ADP in living cells. Furthermore, our results indicate that similarities of phylogenetic profiles of enzymes in the inhibiting enzyme pairs are not only correlated with enzyme topological importance, but also related with roles of the enzymes in metabolic inhibitory network.
Collapse
Affiliation(s)
- Min Zhao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | | |
Collapse
|
19
|
Ranganathan S, Eisenhaber F, Tong JC, Tan TW. Extending Asia Pacific bioinformatics into new realms in the "-omics" era. BMC Genomics 2009; 10 Suppl 3:S1. [PMID: 19958472 PMCID: PMC2788361 DOI: 10.1186/1471-2164-10-s3-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The 2009 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation dating back to 1998, was organized as the 8th International Conference on Bioinformatics (InCoB), Sept. 7-11, 2009 at Biopolis, Singapore. Besides bringing together scientists from the field of bioinformatics in this region, InCoB has actively engaged clinicians and researchers from the area of systems biology, to facilitate greater synergy between these two groups. InCoB2009 followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India), Hong Kong and Taipei (Taiwan), with InCoB2010 scheduled to be held in Tokyo, Japan, Sept. 26-28, 2010. The Workshop on Education in Bioinformatics and Computational Biology (WEBCB) and symposia on Clinical Bioinformatics (CBAS), the Singapore Symposium on Computational Biology (SYMBIO) and training tutorials were scheduled prior to the scientific meeting, and provided ample opportunity for in-depth learning and special interest meetings for educators, clinicians and students. We provide a brief overview of the peer-reviewed bioinformatics manuscripts accepted for publication in this supplement, grouped into thematic areas. In order to facilitate scientific reproducibility and accountability, we have, for the first time, introduced minimum information criteria for our pubilcations, including compliance to a Minimum Information about a Bioinformatics Investigation (MIABi). As the regional research expertise in bioinformatics matures, we have delineated a minimum set of bioinformatics skills required for addressing the computational challenges of the "-omics" era.
Collapse
|