1
|
Ylagan M, Xu Q, Kowalski J. TTSBBC: triplex target site biomarkers and barcodes in cancer. Nucleic Acids Res 2024; 52:W547-W555. [PMID: 38661214 PMCID: PMC11223863 DOI: 10.1093/nar/gkae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
The technology of triplex-forming oligonucleotides (TFOs) provides an approach to manipulate genes at the DNA level. TFOs bind to specific sites on genomic DNA, creating a unique intermolecular triple-helix DNA structure through Hoogsteen hydrogen bonding. This targeting by TFOs is site-specific and the locations TFOs bind are referred to as TFO target sites (TTS). Triplexes have been observed to selectively influence gene expression, homologous recombination, mutations, protein binding, and DNA damage. These sites typically feature a poly-purine sequence in duplex DNA, and the characteristics of these TTS sequences greatly influence the formation of the triplex. We introduce TTSBBC, a novel analysis and visualization platform designed to explore features of TTS sequences to enable users to design and validate TTSs. The web server can be freely accessed at https://kowalski-labapps.dellmed.utexas.edu/TTSBBC/.
Collapse
Affiliation(s)
- Maya Ylagan
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| | - Qi Xu
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| | - Jeanne Kowalski
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| |
Collapse
|
2
|
Mikame Y, Yamayoshi A. Recent Advancements in Development and Therapeutic Applications of Genome-Targeting Triplex-Forming Oligonucleotides and Peptide Nucleic Acids. Pharmaceutics 2023; 15:2515. [PMID: 37896275 PMCID: PMC10609763 DOI: 10.3390/pharmaceutics15102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Recent developments in artificial nucleic acid and drug delivery systems present possibilities for the symbiotic engineering of therapeutic oligonucleotides, such as antisense oligonucleotides (ASOs) and small interfering ribonucleic acids (siRNAs). Employing these technologies, triplex-forming oligonucleotides (TFOs) or peptide nucleic acids (PNAs) can be applied to the development of symbiotic genome-targeting tools as well as a new class of oligonucleotide drugs, which offer conceptual advantages over antisense as the antigene target generally comprises two gene copies per cell rather than multiple copies of mRNA that are being continually transcribed. Further, genome editing by TFOs or PNAs induces permanent changes in the pathological genes, thus facilitating the complete cure of diseases. Nuclease-based gene-editing tools, such as zinc fingers, CRISPR-Cas9, and TALENs, are being explored for therapeutic applications, although their potential off-target, cytotoxic, and/or immunogenic effects may hinder their in vivo applications. Therefore, this review is aimed at describing the ongoing progress in TFO and PNA technologies, which can be symbiotic genome-targeting tools that will cause a near-future paradigm shift in drug development.
Collapse
Affiliation(s)
- Yu Mikame
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - Asako Yamayoshi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| |
Collapse
|
3
|
Wang G, Vasquez KM. Dynamic alternative DNA structures in biology and disease. Nat Rev Genet 2023; 24:211-234. [PMID: 36316397 DOI: 10.1038/s41576-022-00539-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
4
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
5
|
Sun L, Cao B, Liu Y, Shi P, Zheng Y, Wang B, Zhang Q. TripDesign: A DNA Triplex Design Approach Based on Interaction Forces. J Phys Chem B 2022; 126:8708-8719. [PMID: 36260921 DOI: 10.1021/acs.jpcb.2c05611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A DNA triplex has the advantages of improved nanostructure stability and pH environment responsiveness compared with single-stranded and double-stranded nucleic acids. However, sequence stability and low design efficiency hinder the application of DNA triplexes. Therefore, a DNA triplex design approach (TripDesign) based on interaction forces is proposed. First, we present the stacking force constraint, torsional stress constraint, and G-quadruplex motif constraint and then use an improved memetic algorithm to design triplex sequences under combinatorial constraints. Finally, to quantify the process of triplex formation, we also explore the minimum length of the triplex-forming oligos (TFOs) required to form the triplex and the factors that produce depletion in cyclic pH-jump experiments. The experimental results show that the sequences produced by TripDesign have high stability and reversibility, and the proposed approach achieves efficient and automatic sequence design. In addition, this study characterizes multiple basic parameters of DNA triplex formation and promotes the wider application of DNA triplexes in nanotechnology.
Collapse
Affiliation(s)
- Lijun Sun
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian116622, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Bin Wang
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian116622, China
| | - Qiang Zhang
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian116622, China
| |
Collapse
|
6
|
Vannutelli A, Schell L, Perreault JP, Ouangraoua A. GAIA: G-quadruplexes in alive creature database. Nucleic Acids Res 2022; 51:D135-D140. [PMID: 35971612 PMCID: PMC9825426 DOI: 10.1093/nar/gkac657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023] Open
Abstract
G-quadruplexes (G4) are 3D structures that are found in both DNA and RNA. Interest in this structure has grown over the past few years due to both its implication in diverse biological mechanisms and its potential use as a therapeutic target, to name two examples. G4s in humans have been widely studied; however, the level of their study in other species remains relatively minimal. That said, progress in this field has resulted in the prediction of G4s structures in various species, ranging from bacteria to eukaryotes. These predictions were analysed in a previous study which revealed that G4s are present in all living kingdoms. To date, eleven different databases have grouped the various G4s depending on either their structures, on the proteins that might bind them, or on their location in the various genomes. However, none of these databases contains information on their location in the transcriptome of many of the implicated species. The GAIA database was designed so as to make this data available online in a user-friendly manner. Through its web interface, users can query GAIA to filter G4s, which, we hope, will help the research in this field. GAIA is available at: https://gaia.cobius.usherbrooke.ca.
Collapse
Affiliation(s)
- Anaïs Vannutelli
- Department of Biochemistry and Functional Genomics, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, QC J1E 4K8, Canada,Department of Computer Science, Faculté des sciences, Université de Sherbrooke, QC J1K 2R1, Canada
| | | | - Jean-Pierre Perreault
- Correspondence may also be addressed to Jean-Pierre Perreault. Tel: +1 819 821 8000 (Ext 75310);
| | - Aïda Ouangraoua
- To whom correspondence should be addressed. Tel: +1 819 821 8000 (Ext 62014);
| |
Collapse
|
7
|
Kaushik Tiwari M, Colon-Rios DA, Tumu HCR, Liu Y, Quijano E, Krysztofiak A, Chan C, Song E, Braddock DT, Suh HW, Saltzman WM, Rogers FA. Direct targeting of amplified gene loci for proapoptotic anticancer therapy. Nat Biotechnol 2022; 40:325-334. [PMID: 34711990 PMCID: PMC8930417 DOI: 10.1038/s41587-021-01057-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/05/2021] [Indexed: 12/16/2022]
Abstract
Gene amplification drives oncogenesis in a broad spectrum of cancers. A number of drugs have been developed to inhibit the protein products of amplified driver genes, but their clinical efficacy is often hampered by drug resistance. Here, we introduce a therapeutic strategy for targeting cancer-associated gene amplifications by activating the DNA damage response with triplex-forming oligonucleotides (TFOs), which drive the induction of apoptosis in tumors, whereas cells without amplifications process lower levels of DNA damage. Focusing on cancers driven by HER2 amplification, we find that TFOs targeting HER2 induce copy number-dependent DNA double-strand breaks (DSBs) and activate p53-independent apoptosis in HER2-positive cancer cells and human tumor xenografts via a mechanism that is independent of HER2 cellular function. This strategy has demonstrated in vivo efficacy comparable to that of current precision medicines and provided a feasible alternative to combat drug resistance in HER2-positive breast and ovarian cancer models. These findings offer a general strategy for targeting tumors with amplified genomic loci.
Collapse
Affiliation(s)
- Meetu Kaushik Tiwari
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel A Colon-Rios
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Hemanta C Rao Tumu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Elias Quijano
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Adam Krysztofiak
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Cynthia Chan
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | | | - Hee-Won Suh
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
9
|
Tateishi-Karimata H, Sugimoto N. Chemical biology of non-canonical structures of nucleic acids for therapeutic applications. Chem Commun (Camb) 2020; 56:2379-2390. [PMID: 32022004 DOI: 10.1039/c9cc09771f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA forms not only the canonical duplex structure but also non-canonical structures. Most potential sequences that induce the formation of non-canonical structures are present in disease-related genes. Interestingly, biological reactions are inhibited or dysregulated by non-canonical structure formation in disease-related genes. To control biological reactions, methods for inducing the formation of non-canonical structures have been developed using small molecules and oligonucleotides. In this feature article, we review biological reactions such as replication, transcription, and reverse transcription controlled by non-canonical DNA structures formed by disease-related genes. Furthermore, we discuss recent studies aimed at developing methods for regulating these biological reactions using drugs targeting the DNA structure.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | | |
Collapse
|
10
|
Takahashi S, Sugimoto N. Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chem Soc Rev 2020; 49:8439-8468. [DOI: 10.1039/d0cs00594k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides the biophysicochemical background and recent advances in stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
11
|
Functional Prediction of Candidate MicroRNAs for CRC Management Using in Silico Approach. Int J Mol Sci 2019; 20:ijms20205190. [PMID: 31635135 PMCID: PMC6834124 DOI: 10.3390/ijms20205190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023] Open
Abstract
Approximately 30–50% of malignant growths can be prevented by avoiding risk factors and implementing evidence-based strategies. Colorectal cancer (CRC) accounted for the second most common cancer and the third most common cause of cancer death worldwide. This cancer subtype can be reduced by early detection and patients’ management. In this study, the functional roles of the identified microRNAs were determined using an in silico pipeline. Five microRNAs identified using an in silico approach alongside their seven target genes from our previous study were used as datasets in this study. Furthermore, the secondary structure and the thermodynamic energies of the microRNAs were revealed by Mfold algorithm. The triplex binding ability of the oligonucleotide with the target promoters were analyzed by Trident. Finally, evolutionary stage-specific somatic events and co-expression analysis of the target genes in CRC were analyzed by SEECancer and GeneMANIA plugin in Cytoscape. Four of the five microRNAs have the potential to form more than one secondary structure. The ranges of the observed/expected ratio of CpG dinucleotides of these genes range from 0.60 to 1.22. Three of the candidate microRNA were capable of forming multiple triplexes along with three of the target mRNAs. Four of the total targets were involved in either early or metastatic stage-specific events while three other genes were either a product of antecedent or subsequent events of the four genes implicated in CRC. The secondary structure of the candidate microRNAs can be used to explain the different degrees of genetic regulation in CRC due to their conformational role to modulate target interaction. Furthermore, due to the regulation of important genes in the CRC pathway and the enrichment of the microRNA with triplex binding sites, they may be a useful diagnostic biomarker for the disease subtype.
Collapse
|
12
|
Antonov IV, Mazurov E, Borodovsky M, Medvedeva YA. Prediction of lncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools. Brief Bioinform 2019; 20:551-564. [PMID: 29697742 DOI: 10.1093/bib/bby032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/26/2018] [Indexed: 01/22/2023] Open
Abstract
The genomes of mammalian species are pervasively transcribed producing as many noncoding as protein-coding RNAs. There is a growing body of evidence supporting their functional role. Long noncoding RNA (lncRNA) can bind both nucleic acids and proteins through several mechanisms. A reliable computational prediction of the most probable mechanism of lncRNA interaction can facilitate experimental validation of its function. In this study, we benchmarked computational tools capable to discriminate lncRNA from mRNA and predict lncRNA interactions with other nucleic acids. We assessed the performance of 9 tools for distinguishing protein-coding from noncoding RNAs, as well as 19 tools for prediction of RNA-RNA and RNA-DNA interactions. Our conclusions about the considered tools were based on their performances on the entire genome/transcriptome level, as it is the most common task nowadays. We found that FEELnc and CPAT distinguish between coding and noncoding mammalian transcripts in the most accurate manner. ASSA, RIBlast and LASTAL, as well as Triplexator, turned out to be the best predictors of RNA-RNA and RNA-DNA interactions, respectively. We showed that the normalization of the predicted interaction strength to the transcript length and GC content may improve the accuracy of inferring RNA interactions. Yet, all the current tools have difficulties to make accurate predictions of short-trans RNA-RNA interactions-stretches of sparse contacts. All over, there is still room for improvement in each category, especially for predictions of RNA interactions.
Collapse
Affiliation(s)
- Ivan V Antonov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, Moscow, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | | | - Mark Borodovsky
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, Moscow, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation.,Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russian Federation
| |
Collapse
|
13
|
Abstract
Background:
Although most nucleotides in the genome form canonical double-stranded
B-DNA, many repeated sequences transiently present as non-canonical conformations (non-B
DNA) such as triplexes, quadruplexes, Z-DNA, cruciforms, and slipped/hairpins. Those noncanonical
DNAs (ncDNAs) are not only associated with many genetic events such as replication,
transcription, and recombination, but are also related to the genetic instability that results in the
predisposition to disease. Due to the crucial roles of ncDNAs in cellular and genetic functions,
various computational methods have been implemented to predict sequence motifs that generate
ncDNA.
Objective:
Here, we review strategies for the identification of ncDNA motifs across the whole
genome, which is necessary for further understanding and investigation of the structure and
function of ncDNAs.
Conclusion:
There is a great demand for computational prediction of non-canonical DNAs that
play key functional roles in gene expression and genome biology. In this study, we review the
currently available computational methods for predicting the non-canonical DNAs in the genome.
Current studies not only provide an insight into the computational methods for predicting the
secondary structures of DNA but also increase our understanding of the roles of non-canonical
DNA in the genome.
Collapse
Affiliation(s)
- Nazia Parveen
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Amen Shamim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Seunghee Cho
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| |
Collapse
|
14
|
Xu X, Cao L, Zhang Y, Yin Y, Hu X, Cui Y. Network analysis of DEGs and verification experiments reveal the notable roles of PTTG1 and MMP9 in lung cancer. Oncol Lett 2018; 15:257-263. [PMID: 29387220 PMCID: PMC5768071 DOI: 10.3892/ol.2017.7329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2017] [Indexed: 01/05/2023] Open
Abstract
Lung cancer, a malignant tumor, is the most frequently fatal cancer, with poor survival rates in the advanced stages. In order to improve the understanding of this disease, and to improve the outcomes of patients, additional studies are required. In the present study, differentially expressed genes (DEGs) in patients with lung cancer compared with controls were identified. To understand how these DEGs act together to account for the initiation of lung cancer, a protein interaction network and a transcriptional regulatory network were constructed to explore the clusters and pathways in lung cancer, and the results indicated that PTTG1 and MMP9 served major roles in the development of lung cancer in the regulatory system. Consistent with this, mRNA and protein expression levels of PTTG1 and MMP9 were significantly upregulated in lung cancer tissues compared with normal lung tissues. The overexpression of PTTG1 or MMP9 was induced in the human bronchial epithelial BEAS-2B cell line, indicating that increased PTTG1 or MMP9 alone may not only facilitate cell migration, proliferation and induce colony formation, but also suppress cell apoptosis. In summary, PTTG1 and MMP9 were identified as potential targets for therapeutic intervention through gene therapy in lung cancer.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Ye Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yan Yin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xue Hu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
15
|
Brázda V, Kolomazník J, Lýsek J, Hároníková L, Coufal J, Št'astný J. Palindrome analyser - A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem Biophys Res Commun 2016; 478:1739-45. [PMID: 27603574 DOI: 10.1016/j.bbrc.2016.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
DNA cruciform structures play an important role in the regulation of natural processes including gene replication and expression, as well as nucleosome structure and recombination. They have also been implicated in the evolution and development of diseases such as cancer and neurodegenerative disorders. Cruciform structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling and protein binding. They have received broad attention because of their important roles in biology. Computational approaches to study inverted repeats have allowed detailed analysis of genomes. However, currently there are no easily accessible and user-friendly tools that can analyse inverted repeats, especially among long nucleotide sequences. We have developed a web-based server, Palindrome analyser, which is a user-friendly application for analysing inverted repeats in various DNA (or RNA) sequences including genome sequences and oligonucleotides. It allows users to search and retrieve desired gene/nucleotide sequence entries from the NCBI databases, and provides data on length, sequence, locations and energy required for cruciform formation. Palindrome analyser also features an interactive graphical data representation of the distribution of the inverted repeats, with options for sorting according to the length of inverted repeat, length of loop, and number of mismatches. Palindrome analyser can be accessed at http://bioinformatics.ibp.cz.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Jan Kolomazník
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Lýsek
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Lucia Hároníková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jiří Št'astný
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| |
Collapse
|
16
|
Qiao Q, Yan Y, Guo J, Du S, Zhang J, Jia R, Ren H, Qiao Y, Li Q. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes. J Biomol Struct Dyn 2016; 35:1629-1653. [PMID: 27485859 DOI: 10.1080/07391102.2016.1194231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Programmed '-1' ribosomal frameshifting is necessary for expressing the pol gene overlapped from a gag of human immunodeficiency virus. A viral RNA structure that requires base pairing across the overlapping sequence region suggests a mechanism of regulating ribosome and helicase traffic during expression. To get precise roles of an element around the frameshift site, a review on architecture of the frameshifting RNA is performed in combination of reported information with augments of a representative set of 19 viral samples. In spite of a different length for the viral RNAs, a canonical comparison on the element sequence allocation is performed for viewing variability associations between virus genotypes. Additionally, recent and historical insights recognized in frameshifting regulation are looked back as for indel and single nucleotide polymorphism of RNA. As specially noted, structural changes at a frameshift site, the spacer sequence, and a three-helix junction element, as well as two Watson-Crick base pairs near a bulge and a C-G pair close a loop, are the most vital strategies for the virus frameshifting regulations. All of structural changes, which are dependent upon specific sequence variations, facilitate an elucidation about the RNA element conformation-dependent mechanism for frameshifting. These facts on disrupting base pair interactions also allow solving the problem of competition between ribosome and helicase on a same RNA template, common to single-stranded RNA viruses. In a broad perspective, each new insight of frameshifting regulation in the competition systems introduced by the RNA element construct changes will offer a compelling target for antiviral therapy.
Collapse
Affiliation(s)
- Qi Qiao
- a School of Pharmaceutical Sciences, Xiamen University , Fujian 361102 , P.R. China
| | - Yanhua Yan
- b Department of Bioscience , Luliang University , Shanxi 033001 , P.R. China
| | - Jinmei Guo
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Shuqiang Du
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Jiangtao Zhang
- b Department of Bioscience , Luliang University , Shanxi 033001 , P.R. China
| | - Ruyue Jia
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Haimin Ren
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Yuanbiao Qiao
- d Graduate Institute of Pharmaceutical Chemistry, Luliang University , Shanxi 033001 , P.R. China
| | - Qingshan Li
- e School of Pharmaceutical Sciences , Shanxi Medical University , Shanxi 030001 , P.R. China
| |
Collapse
|
17
|
Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016; 11:e0152102. [PMID: 27010368 PMCID: PMC4807104 DOI: 10.1371/journal.pone.0152102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.
Collapse
Affiliation(s)
- Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
- Manipal University, Manipal, India
| | | | - Narayanarao Yathindra
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
| |
Collapse
|
18
|
Paugh SW, Coss DR, Bao J, Laudermilk LT, Grace CR, Ferreira AM, Waddell MB, Ridout G, Naeve D, Leuze M, LoCascio PF, Panetta JC, Wilkinson MR, Pui CH, Naeve CW, Uberbacher EC, Bonten EJ, Evans WE. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression. PLoS Comput Biol 2016; 12:e1004744. [PMID: 26844769 PMCID: PMC4742280 DOI: 10.1371/journal.pcbi.1004744] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 01/07/2016] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. We provide physical evidence, using NMR, FRET and SPR, that purine or pyrimidine-rich microRNAs can form triplexes with complementary purine-rich sequences of duplex DNA and provide an algorithm (Trident) to search genome-wide for potential microRNA double-stranded DNA triplex-forming sites. Using this algorithm we document enrichment of microRNA triplex binding sites in mammalian and non-mammalian genomes. We found in primary leukemia cells from patients a significant over-representation of positively correlated microRNA and mRNA expression for genes containing sequences favoring microRNA-duplex DNA triplex formation, suggesting this as a mechanism by which microRNA may enhance gene transcription.
Collapse
Affiliation(s)
- Steven W. Paugh
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - David R. Coss
- High Performance Computing Facility, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ju Bao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Lucas T. Laudermilk
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Antonio M. Ferreira
- High Performance Computing Facility, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - M. Brett Waddell
- Molecular Interaction Analysis Laboratory, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Granger Ridout
- Functional Genomics Laboratory, Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Deanna Naeve
- Functional Genomics Laboratory, Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michael Leuze
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | - John C. Panetta
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Mark R. Wilkinson
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Clayton W. Naeve
- Department of Information Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Edward C. Uberbacher
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Erik J. Bonten
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - William E. Evans
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
19
|
Lohani N, Rajeswari MR. Preferential binding of anticancer drugs to triplex DNA compared to duplex DNA: a spectroscopic and calorimetric study. RSC Adv 2016. [DOI: 10.1039/c6ra03514k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Binding study of adriamycin and actinomycin to triplex DNA formed on the promoter region of hmgb1 gene using spectroscopic and calorimetric technique.
Collapse
Affiliation(s)
- Neelam Lohani
- Department of Biochemistry
- All India Institute of Medical Sciences
- New Delhi
- India
| | | |
Collapse
|
20
|
Wang HB, Yang J. The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension. Saudi Med J 2015; 36:1151-5. [PMID: 26446323 PMCID: PMC4621718 DOI: 10.15537/smj.2015.10.12458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Micro-ribonucleic acids (miRNAs) are small (21-25 nucleotide) single-stranded, evolutionarily conserved non-protein-coding RNAs, which control diverse cellular functions by interacting with the 3' untranslated region of specific target messenger RNAs at the post-transcriptional level. Research shows that an aberrant expression profile of miRNAs has been linked to a series of diseases, including hypertension. In the past few decades, it has been demonstrated that excessive activation of the renin-angiotensin aldosterone system (RAAS) involves in the pathogenesis of hypertension. This article reviews the latest insights in the identification of RAAS-correlative miRNAs and the potential mechanisms for their roles in hypertension.
Collapse
Affiliation(s)
- Hui-Bo Wang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, Hubei, China. E-mail.
| | | |
Collapse
|
21
|
Akhter MZ, Luthra K, Rajeswari MR. Molecular aspects on adriamycin interaction with hmga1 regulatory region and its inhibitory effect on HMGA1 expression in human cervical cancer. J Biomol Struct Dyn 2015; 34:877-91. [PMID: 26084422 DOI: 10.1080/07391102.2015.1057617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High mobility group A1 (HMGA1), a non-histone chromosomal protein, is highly expressed in a wide range of human cancers including cervical, breast, and prostate cancers. Therefore, hmga1 gene is considered as an attractive potential target for anticancer drugs. We have chosen 27 bp DNA sequence from a regulatory region of hmga1 promoter and studied its interaction with adriamycin (ADM) and in vitro expression of HMGA1 in the presence of ADM in HeLa cell line. A variety of biophysical techniques were employed to understand the characteristics of [DNA-ADM] complex. Spectrophotometric titration data, DNA denaturation profiles, and quenching of fluorescence of ADM in the presence of DNA demonstrated a strong complexation between DNA and ADM with a high binding affinity (Ka) of 1.3 × 10(6) M(-1) and a stoichiometry of 1:3 (drug:nucleotide). The energetics of binding obtained from isothermal titration calorimetry and differential scanning calorimetry suggest the binding to be exothermic and enthalpy (∆H, -6.7 ± 2.4 kcal M(-1)) and entropy (TΔS, 18.5 ± 6.4 kcal M(-1)) driven (20°C), which is typical of intercalative mode of binding. Further, results on decreased expression (by ~70%) of HMGA1 both at mRNA and protein levels in association with the observed cell death (by ~75%) in HeLa cell line, clearly confirm that ADM does target hmga1; however, the effect of ADM on genes other than hmga1 either directly or via hmga1-mediated pathways cannot be ruled out in the observed cytotoxicity. Therefore, hmga1 in general and particularly the regulatory region is a promising target for therapeutic strategy in combating cancer.
Collapse
Affiliation(s)
- Md Zahid Akhter
- a Department of Biochemistry , All India Institute of Medical Sciences , New Delhi 110029 , India
| | - Kalpana Luthra
- a Department of Biochemistry , All India Institute of Medical Sciences , New Delhi 110029 , India
| | - Moganty R Rajeswari
- a Department of Biochemistry , All India Institute of Medical Sciences , New Delhi 110029 , India
| |
Collapse
|
22
|
Shen YJ, Le Bert N, Chitre AA, Koo CX, Nga XH, Ho SSW, Khatoo M, Tan NY, Ishii KJ, Gasser S. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep 2015; 11:460-73. [PMID: 25865892 DOI: 10.1016/j.celrep.2015.03.041] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) induces the expression of type I interferons (IFNs), but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.
Collapse
Affiliation(s)
- Yu J Shen
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Nina Le Bert
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Anuja A Chitre
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Christine Xing'Er Koo
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore; Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Xing H Nga
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Samantha S W Ho
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Muznah Khatoo
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Nikki Y Tan
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFREC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Stephan Gasser
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
23
|
Jenjaroenpun P, Chew CS, Yong TP, Choowongkomon K, Thammasorn W, Kuznetsov VA. The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome. Nucleic Acids Res 2014; 43:D110-6. [PMID: 25324314 PMCID: PMC4384029 DOI: 10.1093/nar/gku970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser.
Collapse
Affiliation(s)
- Piroon Jenjaroenpun
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, 138671, Singapore Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| | - Chee Siang Chew
- Open source Computing and Technology Innovation, Bioinformatics Institute, 138671, Singapore
| | - Tai Pang Yong
- Open source Computing and Technology Innovation, Bioinformatics Institute, 138671, Singapore
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Chatuchak, Bangkok 10900, Thailand
| | - Wimada Thammasorn
- Bioinformatics and Systems Biology Program, King Mongkut's University of Technology Thonburi (Bang Khun Thian Campus), 49 Soi Thian Thale 25, Bang Khun Thian Chai Thale Rd, Tha Kham, Bangkok 10150, Thailand
| | - Vladimir A Kuznetsov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, 138671, Singapore
| |
Collapse
|
24
|
Toscano-Garibay JD, Aquino-Jarquin G. Transcriptional regulation mechanism mediated by miRNA-DNA•DNA triplex structure stabilized by Argonaute. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1079-83. [PMID: 25086339 DOI: 10.1016/j.bbagrm.2014.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
Transcription regulation depends on interactions between repressor or activator proteins with promoter sequences, while post-transcriptional regulation typically relies on microRNA (miRNA) interaction with sequences in 5' and 3'-Untranslated regions (UTRs) of messenger RNA (mRNA). However, several pieces of evidence suggest that miRNA:Argonaute (AGO) complexes may also suppress transcription through RNA interference (RNAi) components and epigenetic mechanisms. However, recent observations suggest that miRNA-induced transcriptional silencing could be exerted by an unknown mechanism independent of chromatin modifiers. The RNA-DNA•DNA triplex structure has emerged as an important RNA tertiary motif in which successive non-canonical base pairs form between a DNA-DNA duplex and a third strand. Frequently, promoters have Purine (PU)-rich tracts, and some Triplex-forming oligonucleotides (TFOs) targeting these regulatory regions have been shown to inhibit transcription selectively. Here, we summarize observations suggesting that miRNAs exert regulation over promoter regions through miRNA-DNA•DNA triplex structure formation stabilized by AGO proteins which represents a plausible model of RNA-mediated Transcriptional gene silencing (TGS).
Collapse
Affiliation(s)
- Julia D Toscano-Garibay
- Laboratorio de Medicina Regenerativa, Dirección de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena de las Salinas Del., Gustavo A. Madero, Distrito Federal C.P. 07760, Mexico
| | - Guillermo Aquino-Jarquin
- Laboratorio de Genómica, Genética y Bioinformática, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Delegación: Cuauhtémoc, México D.F. C.P. 06720, Mexico.
| |
Collapse
|
25
|
Buske FA, Bauer DC, Mattick JS, Bailey TL. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 2012; 22:1372-81. [PMID: 22550012 PMCID: PMC3396377 DOI: 10.1101/gr.130237.111] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/20/2012] [Indexed: 11/28/2022]
Abstract
Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand in its major groove. This sequence-specific process offers a potent mechanism for targeting genomic loci of interest that is of great value for biotechnological and gene-therapeutic applications. It is likely that nature has leveraged this addressing system for gene regulation, because computational studies have uncovered an abundance of putative triplex target sites in various genomes, with enrichment particularly in gene promoters. However, to draw a more complete picture of the in vivo role of triplexes, not only the putative targets but also the sequences acting as the third strand and their capability to pair with the predicted target sites need to be studied. Here we present Triplexator, the first computational framework that integrates all aspects of triplex formation, and showcase its potential by discussing research examples for which the different aspects of triplex formation are important. We find that chromatin-associated RNAs have a significantly higher fraction of sequence features able to form triplexes than expected at random, suggesting their involvement in gene regulation. We furthermore identify hundreds of human genes that contain sequence features in their promoter predicted to be able to form a triplex with a target within the same promoter, suggesting the involvement of triplexes in feedback-based gene regulation. With focus on biotechnological applications, we screen mammalian genomes for high-affinity triplex target sites that can be used to target genomic loci specifically and find that triplex formation offers a resolution of ~1300 nt.
Collapse
Affiliation(s)
- Fabian A. Buske
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - Denis C. Bauer
- Division of Mathematics, Informatics, and Statistics, CSIRO, Sydney, 2113 NSW, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - John S. Mattick
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
- Garvan Institute of Medical Research, Sydney, 2010 NSW, Australia
| | - Timothy L. Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| |
Collapse
|
26
|
Cer RZ, Bruce KH, Donohue DE, Temiz NA, Mudunuri US, Yi M, Volfovsky N, Bacolla A, Luke BT, Collins, Stephens RM. Searching for non-B DNA-forming motifs using nBMST (non-B DNA motif search tool). CURRENT PROTOCOLS IN HUMAN GENETICS 2012; Chapter 18:Unit 18.7.1-22. [PMID: 22470144 PMCID: PMC3350812 DOI: 10.1002/0471142905.hg1807s73] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit describes basic protocols on using the non-B DNA Motif Search Tool (nBMST) to search for sequence motifs predicted to form alternative DNA conformations that differ from the canonical right-handed Watson-Crick double-helix, collectively known as non-B DNA, and on using the associated PolyBrowse, a GBrowse-based genomic browser. The nBMST is a Web-based resource that allows users to submit one or more DNA sequences to search for inverted repeats (cruciform DNA), mirror repeats (triplex DNA), direct/tandem repeats (slipped/hairpin structures), G4 motifs (tetraplex, G-quadruplex DNA), alternating purine-pyrimidine tracts (left-handed Z-DNA), and A-phased repeats (static bending). The nBMST is versatile, simple to use, does not require bioinformatics skills, and can be applied to any type of DNA sequences, including viral and bacterial genomes, up to an aggregate of 20 megabasepairs (Mbp).
Collapse
Affiliation(s)
- RZ Cer
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - KH Bruce
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - DE Donohue
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - NA Temiz
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - US Mudunuri
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - M Yi
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - N Volfovsky
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - A Bacolla
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
- The Dell Pediatric Research Institute, Division of Toxicology and Pharmacology, The University of Texas at Austin, Austin TX 78723, USA
| | - BT Luke
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - Collins
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - RM Stephens
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| |
Collapse
|
27
|
Abstract
In contrast to B-DNA that has a right-handed double helical structure with Watson-Crick base pairing under the ordinary physiological conditions, repetitive DNA sequences under certain conditions have the potential to fold into non-B DNA structures such as hairpin, triplex, cruciform, left-handed Z-form, tetraplex, A-motif, etc. Since the non-B DNA-forming sequences induce the genetic instability and consequently can cause human diseases, the molecular mechanism for their genetic instability has been extensively investigated. On the contrary, non-B DNA can be widely used for application in biotechnology because many DNA breakage hotspots are mapped in or near the sequences that have the potential to adopt non-B DNA structures. In addition, they are regarded as a fascinating material for the nanotechnology using non-B DNAs because they do not produce any toxic byproducts and are robust enough for the repetitive working cycle. This being the case, an understanding on the mechanism and dynamics of their structural changes is important. In this critical review, we describe the latest studies on the conformational dynamics of non-B DNAs, with a focus on G-quadruplex, i-motif, Z-DNA, A-motif, hairpin and triplex (189 references).
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|
28
|
Lexa M, Martínek T, Burgetová I, Kopeček D, Brázdová M. A dynamic programming algorithm for identification of triplex-forming sequences. ACTA ACUST UNITED AC 2011; 27:2510-7. [PMID: 21791534 DOI: 10.1093/bioinformatics/btr439] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Current methods for identification of potential triplex-forming sequences in genomes and similar sequence sets rely primarily on detecting homopurine and homopyrimidine tracts. Procedures capable of detecting sequences supporting imperfect, but structurally feasible intramolecular triplex structures are needed for better sequence analysis. RESULTS We modified an algorithm for detection of approximate palindromes, so as to account for the special nature of triplex DNA structures. From available literature, we conclude that approximate triplexes tolerate two classes of errors. One, analogical to mismatches in duplex DNA, involves nucleotides in triplets that do not readily form Hoogsteen bonds. The other class involves geometrically incompatible neighboring triplets hindering proper alignment of strands for optimal hydrogen bonding and stacking. We tested the statistical properties of the algorithm, as well as its correctness when confronted with known triplex sequences. The proposed algorithm satisfactorily detects sequences with intramolecular triplex-forming potential. Its complexity is directly comparable to palindrome searching. AVAILABILITY Our implementation of the algorithm is available at http://www.fi.muni.cz/lexa/triplex as source code and a web-based search tool. The source code compiles into a library providing searching capability to other programs, as well as into a stand-alone command-line application based on this library. CONTACT lexa@fi.muni.cz SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matej Lexa
- Department of Information Technology, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
31
|
Cer RZ, Bruce KH, Mudunuri US, Yi M, Volfovsky N, Luke BT, Bacolla A, Collins JR, Stephens RM. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res 2010; 39:D383-91. [PMID: 21097885 PMCID: PMC3013731 DOI: 10.1093/nar/gkq1170] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.
Collapse
Affiliation(s)
- Regina Z Cer
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ranganathan S, Eisenhaber F, Tong JC, Tan TW. Extending Asia Pacific bioinformatics into new realms in the "-omics" era. BMC Genomics 2009; 10 Suppl 3:S1. [PMID: 19958472 PMCID: PMC2788361 DOI: 10.1186/1471-2164-10-s3-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The 2009 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation dating back to 1998, was organized as the 8th International Conference on Bioinformatics (InCoB), Sept. 7-11, 2009 at Biopolis, Singapore. Besides bringing together scientists from the field of bioinformatics in this region, InCoB has actively engaged clinicians and researchers from the area of systems biology, to facilitate greater synergy between these two groups. InCoB2009 followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India), Hong Kong and Taipei (Taiwan), with InCoB2010 scheduled to be held in Tokyo, Japan, Sept. 26-28, 2010. The Workshop on Education in Bioinformatics and Computational Biology (WEBCB) and symposia on Clinical Bioinformatics (CBAS), the Singapore Symposium on Computational Biology (SYMBIO) and training tutorials were scheduled prior to the scientific meeting, and provided ample opportunity for in-depth learning and special interest meetings for educators, clinicians and students. We provide a brief overview of the peer-reviewed bioinformatics manuscripts accepted for publication in this supplement, grouped into thematic areas. In order to facilitate scientific reproducibility and accountability, we have, for the first time, introduced minimum information criteria for our pubilcations, including compliance to a Minimum Information about a Bioinformatics Investigation (MIABi). As the regional research expertise in bioinformatics matures, we have delineated a minimum set of bioinformatics skills required for addressing the computational challenges of the "-omics" era.
Collapse
|