1
|
Loghry HJ, Kwon H, Smith RC, Sondjaja NA, Minkler SJ, Young S, Wheeler NJ, Zamanian M, Bartholomay LC, Kimber MJ. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host. Sci Rep 2023; 13:8778. [PMID: 37258694 PMCID: PMC10232515 DOI: 10.1038/s41598-023-35940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.
Collapse
Affiliation(s)
- Hannah J Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Hyeogsun Kwon
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Noelle A Sondjaja
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sarah J Minkler
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sophie Young
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Nicolas J Wheeler
- Department of Biology, College of Arts and Sciences, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Sanda NB, Hou Y. The Symbiotic Bacteria- Xenorhabdus nematophila All and Photorhabdus luminescens H06 Strongly Affected the Phenoloxidase Activation of Nipa Palm Hispid, Octodonta nipae (Coleoptera: Chrysomelidae) Larvae. Pathogens 2023; 12:pathogens12040506. [PMID: 37111392 PMCID: PMC10142170 DOI: 10.3390/pathogens12040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
Symbiotic bacteria form a mutualistic relationship with nematodes and are pathogenic to many insect pests. They kill insects using various strategies to evade or suppress their humoral and cellular immunity. Here we evaluate the toxic effects of these bacteria and their secondary metabolites on the survival and phenoloxidase (PO) activation of Octodonta nipae larvae using biochemical and molecular methods. The results show P. luminescens H06 and X. nematophila All treatments caused significant reductions in the number of O. nipae larvae in a dose-dependent manner. Secondly, the O. nipae immune system recognizes symbiotic bacteria at early and late stages of infection via the induction of C-type lectin. Live symbiotic bacteria significantly inhibit PO activity in O. nipae whereas heat-treated bacteria strongly increase PO activity. Additionally, expression levels of four O. nipae proPhenoloxidase genes following treatment with P. luminescens H06 and X. nematophila All were compared. We found that the expression levels of all proPhenoloxidase genes were significantly down-regulated at all-time points. Similarly, treatments of O. nipae larvae with metabolites benzylideneacetone and oxindole significantly down-regulated the expression of the PPO gene and inhibited PO activity. However, the addition of arachidonic acid to metabolite-treated larvae restored the expression level of the PPO gene and increased PO activity. Our results provide new insight into the roles of symbiotic bacteria in countering the insect phenoloxidase activation system.
Collapse
Affiliation(s)
- Nafiu Bala Sanda
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Crop Protection, Faculty of Agriculture, Bayero University Kano, Gwarzo Road, Kano 3011, Nigeria
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Ning J, Zhou J, Wang H, Liu Y, Ahmad F, Feng X, Fu Y, Gu X, Zhao L. Parallel Evolution of C-Type Lectin Domain Gene Family Sizes in Insect-Vectored Nematodes. FRONTIERS IN PLANT SCIENCE 2022; 13:856826. [PMID: 35557736 PMCID: PMC9085898 DOI: 10.3389/fpls.2022.856826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 05/12/2023]
Abstract
The dispersal stage of pathogens is crucial for the successful spread and infection of their hosts. Some plant-parasitic nematodes (PPNs) have evolved specialized dispersal stages to reach healthy hosts by being carried out by insect vectors. Because gene gain and loss is a major factor contributing to the evolution of novel characteristics, it is essential to clarify the gene family characteristics among nematodes with different dispersal modes to disentangle the evolution of insect-mediated dispersal. Here, the size of the C-type lectin (CTL) family genes of insect-vectored nematodes was found to be drastically reduced compared with those of self-dispersing nematodes, whereas the diversity of their functional domains was significantly higher. The gene family sizes of vector-dispersed nematodes were only a twentieth of the size of that of a self-dispersing (i.e., without a biotic vector) nematode model Caenorhabditis elegans, and these genes were inactive during the dispersal stage. Phylogenetic analysis showed that some CTL genes of vector-borne PPNs shared higher homology to the animal parasitic nematodes compared with other PPNs. Moreover, homology modeling predicted that the CTLs of insect-vectored nematodes bear remarkable structural similarity to the lectin genes of their vector's immune system. Because CTL genes are important sugar-binding proteins for the innate immune response of C. elegans, the loss of some CTL genes of vector-transmitted PPNs might be responsible for their parallel adaptations to a mutualistic relationship with their vector. These results expand our understanding of the evolutionary benefits of vector-mediated transmission for the nematode and vector-nematode co-evolution.
Collapse
Affiliation(s)
- Jing Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Haixiang Wang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Yaning Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Faheem Ahmad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Xiaohui Feng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoting Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lilin Zhao
| |
Collapse
|
4
|
Pratiwi R, Huda A, Ghiffari A, Anwar C. Biting Pattern and Seasonality of Filariasis Vector of Mansonia spp. in Endemic Area of Banyuasin Regency, South Sumatera, Indonesia. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The diversity and biting activity of Mansonia is important to be determined as to predict the incriminated vector and pattern the mosquito behaviour in establishing the vector control programme. The present study has been successfully conducted to investigate the prolonged biting behaviour of Mansonia spp. in two villages in Banyuasin Regency, South Sumatera Province-Indonesia, using Human Landing Collection method (HLC) in indoor and outdoor for 14 months. The result shows that there are 4956 Mansonia spp. mosquitoes collected during the study comprising 6 species: Mansonia uniformis (40.37%), Mansonia annulifera (32.04%), Mansonia indiana (19.97%), Mansonia bonneae (5.28), Mansonia dives (2.14%); and Mansonia annulata (0.18%). The further investigation confirms that Mansonia uniformis (41.254%) and Mansonia bonneae (45.490%) become the most dominant species caught in Sedang village and Muara Sugih village, respectively and find higher biting activities in outdoor than indoor with biting peaked time at approximately 18.00-19.00. However, the biting activities is also observed in daytime, indicating the behaviour change of Mansonia spp. as the nocturnal mosquitoes. Furthermore, the periods of the highest biting rates are found in April 2017 and May 2017 in Sedang village and May 2018 in Muara Sugih Village. The high period of biting activities and behaviours become the valuable information to arrange the further controlling action of filariasis transmission in Sedang and Muara Sugih Villages as the endemic area of filariasis in South Sumatera, Indonesia.
Collapse
|
5
|
Grote A, Li Y, Liu C, Voronin D, Geber A, Lustigman S, Unnasch TR, Welch L, Ghedin E. Prediction pipeline for discovery of regulatory motifs associated with Brugia malayi molting. PLoS Negl Trop Dis 2020; 14:e0008275. [PMID: 32574217 PMCID: PMC7337397 DOI: 10.1371/journal.pntd.0008275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/06/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Filarial nematodes can cause debilitating diseases in humans. They have complicated life cycles involving an insect vector and mammalian hosts, and they go through a number of developmental molts. While whole genome sequences of parasitic worms are now available, very little is known about transcription factor (TF) binding sites and their cognate transcription factors that play a role in regulating development. To address this gap, we developed a novel motif prediction pipeline, Emotif Alpha, that integrates ten different motif discovery algorithms, multiple statistical tests, and a comparative analysis of conserved elements between the filarial worms Brugia malayi and Onchocerca volvulus, and the free-living nematode Caenorhabditis elegans. We identified stage-specific TF binding motifs in B. malayi, with a particular focus on those potentially involved in the L3-L4 molt, a stage important for the establishment of infection in the mammalian host. Using an in vitro molting system, we tested and validated three of these motifs demonstrating the accuracy of the motif prediction pipeline. Diseases caused by parasitic worms such as the filariae are among the leading causes of morbidity in the developing world. Very little is known about how development is regulated in these vector-transmitted parasites. We have developed a computational method to identify motifs that correspond to transcription factor binding sites in the genome of the parasitic worm, Brugia malayi, one of the causative agents of lymphatic filariasis. Using this approach, we were able to predict stage-specific transcription factor binding sites involved in a stage of the molting process important for the establishment of the infection. We validated the role of these motifs using an in vitro molting system.
Collapse
Affiliation(s)
- Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Yichao Li
- School of Computer Science and Electrical Engineering, Ohio University, Athens, Ohio, United States of America
| | - Canhui Liu
- Center for Global Infectious Disease Research, University of South Florida, Tampa, FL, Florida, United States of America
| | - Denis Voronin
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Thomas R. Unnasch
- Center for Global Infectious Disease Research, University of South Florida, Tampa, FL, Florida, United States of America
| | - Lonnie Welch
- School of Computer Science and Electrical Engineering, Ohio University, Athens, Ohio, United States of America
- * E-mail: (LW); (EG)
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Epidemiology, School of Global Public Health, New York University, New York, New York, United States of America
- * E-mail: (LW); (EG)
| |
Collapse
|
6
|
Buerfent BC, Gölz L, Hofmann A, Rühl H, Stamminger W, Fricker N, Hess T, Oldenburg J, Nöthen MM, Schumacher J, Hübner MP, Hoerauf A. Transcriptome-wide analysis of filarial extract-primed human monocytes reveal changes in LPS-induced PTX3 expression levels. Sci Rep 2019; 9:2562. [PMID: 30796272 PMCID: PMC6385373 DOI: 10.1038/s41598-019-38985-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 01/15/2019] [Indexed: 12/24/2022] Open
Abstract
Filarial nematodes modulate immune responses in their host to enable their survival and mediate protective effects against autoimmunity and allergies. In this study, we examined the immunomodulatory capacity of extracts from the human pathogenic filaria Brugia malayi (BmA) on human monocyte responses in a transcriptome-wide manner to identify associated pathways and diseases. As previous transcriptome studies often observed quiescent responses of innate cells to filariae, the potential of BmA to alter LPS driven responses was investigated by analyzing >47.000 transcripts of monocytes from healthy male volunteers stimulated with BmA, Escherichia coli LPS or a sequential stimulation of both. In comparison to ~2200 differentially expressed genes in LPS-only stimulated monocytes, only a limited number of differentially expressed genes were identified upon BmA priming before LPS re-stimulation with only PTX3↓ reaching statistical significance after correcting for multiple testing. Nominal significant differences were reached for metallothioneins↑, MMP9↑, CXCL5/ENA-78↑, CXCL6/GCP-2↑, TNFRSF21↓, and CCL20/MIP3α↓ and were confirmed by qPCR or ELISA. Flow cytometric analysis of activation markers revealed a reduced LPS-induced expression of HLA-DR and CD86 on BmA-primed monocytes as well as a reduced apoptosis of BmA-stimulated monocytes. While our experimental design does not allow a stringent extrapolation of our results to the development of filarial pathology, several genes that were identified in BmA-primed monocytes had previously been associated with filarial pathology, supporting the need for further research.
Collapse
Affiliation(s)
- B C Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - L Gölz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Erlangen, Germany
| | - A Hofmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - H Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - W Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - N Fricker
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - T Hess
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - J Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - M M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - J Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - M P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.
| | - A Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
7
|
Cellular immunity in the insect Galleria mellonella against insect non-parasitic nematodes. Parasitology 2018; 146:708-715. [DOI: 10.1017/s003118201800210x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractImmunity to microbial infections is well understood; however, information regarding the immunity to parasitic multicellular organisms remains lacking. To understand innate host cellular immunity to nematodes, we compared the cellular response of the greater wax moth (Galleria mellonella) larvae against the non-parasitic, bacterial-feeding nematode Caenorhabditis elegans and pathogenic nematode Heterorhabditis bacteriophora. When intact first-instar or dauer larvae of C. elegans were injected into a G. mellonella larva, most of the nematodes were alive and not confined by the surrounding reaction by insect haemocytes (encapsulation), similarly as the pathogenic nematode, whereas most of the heat-killed nematodes of both species were severely encapsulated by 24 h after inoculation. Other non-parasitic nematodes were also not encapsulated. Surprisingly, C. elegans injected into the insect haemocoel grew and propagated in the live insect, resulting in death of the host insect. Our results suggest that C. elegans has some basic mechanisms to evade immunity of G. mellonenlla and grow in the haemocoel.
Collapse
|
8
|
Jex AR, Gasser RB, Schwarz EM. Transcriptomic Resources for Parasitic Nematodes of Veterinary Importance. Trends Parasitol 2018; 35:72-84. [PMID: 30529253 DOI: 10.1016/j.pt.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Parasitic nematodes are important pathogens of animals, causing diseases that impact on agricultural production worldwide. Research on these worms has been constrained by a lack of genetic and genomic tools. Nonetheless, over the past decade this field has made substantial advances, many of which have been led by transcriptomic sequencing. The present review summarises major transcriptomic studies of veterinary parasitic nematodes in recent years, and comments on overarching themes stemming from this work that inform our understanding of parasitism. Finally, we comment on current, state-of-the-art informatic tools for the analysis of complex worm transcriptomes to extract maximum the molecular information from them.
Collapse
Affiliation(s)
- Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Erich M Schwarz
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
9
|
Affiliation(s)
- Sara Lustigman
- Molecular Parasitology, New York Blood Center, New York, NY, United States of America
- * E-mail:
| | - Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
- College of Global Public Health, New York University, New York, NY, United States of America
| |
Collapse
|
10
|
Grote A, Lustigman S, Ghedin E. Lessons from the genomes and transcriptomes of filarial nematodes. Mol Biochem Parasitol 2017; 215:23-29. [PMID: 28126543 DOI: 10.1016/j.molbiopara.2017.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/21/2017] [Indexed: 12/20/2022]
Abstract
Human filarial infections are a leading cause of morbidity in the developing world. While a small arsenal of drugs exists to treat these infections, there remains a tremendous need for the development of additional interventions. Recent genome sequences and transcriptome analyses of filarial nematodes have provided novel biological insight and allowed for the prediction of novel drug targets as well as potential vaccine candidates. In this review, we discuss the currently available data, insights gained into the metabolism of these organisms, and how the filaria field can move forward by leveraging these data.
Collapse
Affiliation(s)
- Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | | | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA.
| |
Collapse
|
11
|
Slatko BE, Luck AN, Dobson SL, Foster JM. Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol 2014; 195:88-95. [DOI: 10.1016/j.molbiopara.2014.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023]
|
12
|
Haçarız O, Sayers G. Fasciola hepatica - where is 28S ribosomal RNA? Exp Parasitol 2013; 135:426-9. [PMID: 23954260 DOI: 10.1016/j.exppara.2013.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022]
Abstract
Advanced molecular biology techniques are currently used to develop new effective strategies against fasciolosis. Assessment of the quality of extracted total RNA is an important step prior to commencing many molecular biology methods such as transcriptomics. However, RNA quality assessment is complicated for some organisms, including Fasciola hepatica, by the absence of a 28S rRNA peak/band, when assessed with modern protocols. In this study, electrophoretic profiles of F. hepatica ribosomal RNAs were evaluated using microfluidics capillary based and conventional non-denaturing gel electrophoresis methods. An important modification to recommended protocols, the exclusion of heat-denaturation step, in the microfluidics capillary based electrophoresis is critical to visualise the expected 28S rRNA and obtain an RNA integrity number (RIN). The intensity of the 28S rRNA band is reduced by the effect of non-denaturing gel electrophoresis.
Collapse
Affiliation(s)
- Orçun Haçarız
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey.
| | | |
Collapse
|
13
|
Morris CP, Evans H, Larsen SE, Mitre E. A comprehensive, model-based review of vaccine and repeat infection trials for filariasis. Clin Microbiol Rev 2013; 26:381-421. [PMID: 23824365 PMCID: PMC3719488 DOI: 10.1128/cmr.00002-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY Filarial worms cause highly morbid diseases such as elephantiasis and river blindness. Since the 1940s, researchers have conducted vaccine trials in 27 different animal models of filariasis. Although no vaccine trial in a permissive model of filariasis has provided sterilizing immunity, great strides have been made toward developing vaccines that could block transmission, decrease pathological sequelae, or decrease susceptibility to infection. In this review, we have organized, to the best of our ability, all published filaria vaccine trials and reviewed them in the context of the animal models used. Additionally, we provide information on the life cycle, disease phenotype, concomitant immunity, and natural immunity during primary and secondary infections for 24 different filaria models.
Collapse
Affiliation(s)
- C. Paul Morris
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly Evans
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sasha E. Larsen
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Wang S, Beerntsen BT. Insights into the different functions of multiple peptidoglycan recognition proteins in the immune response against bacteria in the mosquito, Armigeres subalbatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:533-543. [PMID: 23541606 DOI: 10.1016/j.ibmb.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a group of proteins that recognize and/or bind to peptidoglycan on the surface of a number of pathogens. To understand the roles of multiple PGRPs in the mosquito Armigeres subalbatus (AsPGRPs), we studied the effects of infection of two bacteria, the gram negative Escherichia coli and the gram positive Micrococcus luteus, on the transcriptional expression of AsPGRPs and RNA interference (RNAi) of AsPGRPs on the immune responses of mosquitoes against the two bacteria. Injection of E. coli or M. luteus into adult mosquitoes both significantly increased the transcription of AsPGRP-S1, but not the other AsPGRPs. A mosquito survival assay using injection of E. coli or M. luteus into AsPGRP double-stranded RNA (dsRNA) injected mosquitoes showed that RNAi of AsPGRPs had different impacts on the survival abilities of mosquitoes, and that AsPGRP-LCs seem to be the most critical ones. Real-time Polymerase Chain Reaction (real-time PCR) analysis indicated that the expression of four antimicrobial peptides (AMPs) was dramatically changed after AsPGRP-LB and AsPGRP-LC RNAi, although AsPGRP-S1 and AsPGRP-LE had slight, but significant, effects, suggesting that the changes in survival abilities were potentially due to the changes in AMP expression after AsPGRP RNAi. In addition, bacterial challenges following AsPGRP-LC RNAi did not induce the expression of AMPs to their normal level as in control experiments. An in vivo assay indicated that AsPGRP-LC RNAi had no significant effects on the phagocytic ability of the hemocytes, suggesting that AsPGRP-LC is not a key factor mediating phagocytosis of bacteria in this mosquito.
Collapse
Affiliation(s)
- Songjie Wang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
15
|
Wang S, Conant GC, Ou R, Beerntsen BT. Cloning and characterization of the peptidoglycan recognition protein genes in the mosquito, Armigeres subalbatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:656-671. [PMID: 22679875 DOI: 10.1603/me11165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a group of proteins that are responsible for the recognition and, in some cases, binding of peptidoglycan (PGN), a unique cell wall component of bacteria, and initiation of immune responses to various types of pathogens. In the current study, full-length cDNA sequences of multiple PGRPs, identified via a database search, were cloned in the mosquito Armigeres subalbatus (Coquillett). During cloning, a novel transcript variant (isoform) of AsPGRP-LC (As: Ar. subalbatus) was also identified that shares a large 5' end fragment with AsPGRP-LC. All four AsPGRP genes (six transcripts) contain a conserved PGRP domain, an ortholog of the amidase-2 domain. Based on predicted functional domain, the six Ar. subalbatus PGRPs resemble both short (AsPGRP-S1) and long (AsPGRP-LBa, AsPGRP-LBb, AsPGRP-LCa, AsPGRP-LCb, and AsPGRP-LE) forms of PGRPs as in other insects. Sequence alignments showed that PGRPs are conserved across Dipterans. Phylogenetic analysis indicated that PGRPs represent an ancient gene family that has primarily diverged through speciation events among these Dipterans, with only a limited number of lineage specific gene duplications. Developmental profiling of the six AsPGRP transcripts using real-time polymerase chain reaction revealed that AsPGRP-LCa and AsPGRP-LCb are constitutively expressed at high levels in all developmental stages, while AsPGRP-S1, AsPGRP-LBa, AsPGRP-LBb, and AsPGRP-LE transcripts have low expression in most of the life stages and are increased only at certain times. Tissue profiling of the six AsPGRP transcripts showed that they are expressed in various patterns, even between the different isoforms of the same PGRP gene, indicating that these AsPGRPs may play different functions.
Collapse
Affiliation(s)
- Songjie Wang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
16
|
Winter AD, Weir W, Hunt M, Berriman M, Gilleard JS, Devaney E, Britton C. Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel. BMC Genomics 2012; 13:4. [PMID: 22216965 PMCID: PMC3282659 DOI: 10.1186/1471-2164-13-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/04/2012] [Indexed: 12/29/2022] Open
Abstract
Background MicroRNAs (miRNAs) play key roles in regulating post-transcriptional gene expression and are essential for development in the free-living nematode Caenorhabditis elegans and in higher organisms. Whether microRNAs are involved in regulating developmental programs of parasitic nematodes is currently unknown. Here we describe the the miRNA repertoire of two important parasitic nematodes as an essential first step in addressing this question. Results The small RNAs from larval and adult stages of two parasitic species, Brugia pahangi and Haemonchus contortus, were identified using deep-sequencing and bioinformatic approaches. Comparative analysis to known miRNA sequences reveals that the majority of these miRNAs are novel. Some novel miRNAs are abundantly expressed and display developmental regulation, suggesting important functional roles. Despite the lack of conservation in the miRNA repertoire, genomic positioning of certain miRNAs within or close to specific coding genes is remarkably conserved across diverse species, indicating selection for these associations. Endogenous small-interfering RNAs and Piwi-interacting (pi)RNAs, which regulate gene and transposon expression, were also identified. piRNAs are expressed in adult stage H. contortus, supporting a conserved role in germline maintenance in some parasitic nematodes. Conclusions This in-depth comparative analysis of nematode miRNAs reveals the high level of divergence across species and identifies novel sequences potentially involved in development. Expression of novel miRNAs may reflect adaptations to different environments and lifestyles. Our findings provide a detailed foundation for further study of the evolution and function of miRNAs within nematodes and for identifying potential targets for intervention.
Collapse
Affiliation(s)
- Alan D Winter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Insect immune responses to nematode parasites. Trends Parasitol 2011; 27:537-47. [PMID: 21982477 DOI: 10.1016/j.pt.2011.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 12/16/2022]
Abstract
Host innate immunity plays a central role in detecting and eliminating microbial pathogenic infections in both vertebrate and invertebrate animals. Entomopathogenic or insect pathogenic nematodes are of particular importance for the control of insect pests and vectors of pathogens, while insect-borne nematodes cause serious diseases in humans. Recent work has begun to use the power of insect models to investigate host-nematode interactions and uncover host antiparasitic immune reactions. This review describes recent findings on innate immune evasion strategies of parasitic nematodes and host cellular and humoral responses to the infection. Such information can be used to model diseases caused by human parasitic nematodes and provide clues indicating directions for research into the interplay between vector insects and their invading tropical parasites.
Collapse
|