1
|
Longbottom D, Livingstone M, Ribeca P, Beeckman DSA, van der Ende A, Pannekoek Y, Vanrompay D. Whole genome de novo sequencing and comparative genomic analyses suggests that Chlamydia psittaci strain 84/2334 should be reclassified as Chlamydia abortus species. BMC Genomics 2021; 22:159. [PMID: 33676404 PMCID: PMC7937271 DOI: 10.1186/s12864-021-07477-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia abortus and Chlamydia psittaci are important pathogens of livestock and avian species, respectively. While C. abortus is recognized as descended from C. psittaci species, there is emerging evidence of strains that are intermediary between the two species, suggesting they are recent evolutionary ancestors of C. abortus. Such strains include C. psittaci strain 84/2334 that was isolated from a parrot. Our aim was to classify this strain by sequencing its genome and explore its evolutionary relationship to both C. abortus and C. psittaci. RESULTS In this study, methods based on multi-locus sequence typing (MLST) of seven housekeeping genes and on typing of five species discriminant proteins showed that strain 84/2334 clustered with C. abortus species. Furthermore, whole genome de novo sequencing of the strain revealed greater similarity to C. abortus in terms of GC content, while 16S rRNA and whole genome phylogenetic analysis, as well as network and recombination analysis showed that the strain clusters more closely with C. abortus strains. The analysis also suggested a closer evolutionary relationship between this strain and the major C. abortus clade, than to two other intermediary avian C. abortus strains or C. psittaci strains. Molecular analyses of genes (polymorphic membrane protein and transmembrane head protein genes) and loci (plasticity zone), found in key virulence-associated regions that exhibit greatest diversity within and between chlamydial species, reveal greater diversity than present in sequenced C. abortus genomes as well as similar features to both C. abortus and C. psittaci species. The strain also possesses an extrachromosomal plasmid, as found in most C. psittaci species but absent from all sequenced classical C. abortus strains. CONCLUSION Overall, the results show that C. psittaci strain 84/2334 clusters very closely with C. abortus strains, and are consistent with the strain being a recent C. abortus ancestral species. This suggests that the strain should be reclassified as C. abortus. Furthermore, the identification of a C. abortus strain bearing an extra-chromosomal plasmid has implications for plasmid-based transformation studies to investigate gene function as well as providing a potential route for the development of a next generation vaccine to protect livestock from C. abortus infection.
Collapse
Affiliation(s)
- David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK.
| | - Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Paolo Ribeca
- Biomathematics and Statistics Scotland, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Delphine Sylvie Anne Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium.,Current address: BASF Belgium Coordination Center CommV - Innovation Center Gent, Ghent, Belgium
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daisy Vanrompay
- Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Braun C, Hegemann JH, Mölleken K. Insights Into a Chlamydia pneumoniae-Specific Gene Cluster of Membrane Binding Proteins. Front Cell Infect Microbiol 2020; 10:565808. [PMID: 33194804 PMCID: PMC7609445 DOI: 10.3389/fcimb.2020.565808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022] Open
Abstract
Chlamydia pneumoniae is an obligate intracellular pathogen that causes diseases of the upper and lower respiratory tract and is linked to a number of severe and chronic conditions. Here, we describe a large, C. pneumoniae-specific cluster of 13 genes (termed mbp1-13) that encode highly homologous chlamydial proteins sharing the capacity to bind to membranes. The gene cluster is localized on the chromosome between the highly diverse adhesin-encoding pmp genes pmp15 and pmp14. Comparison of human clinical isolates to the predicted ancestral koala isolate indicates that the cluster was acquired in the ancestor and was adapted / modified during evolution. SNPs and IN/DELs within the cluster are specific to isolates taken from different human tissues and show an ongoing adaptation. Most of the cluster proteins harbor one or two domains of unknown function (DUF575 and DUF562). During ectopic expression in human cells these DUF domains are crucial for the association of cluster proteins to the endo-membrane system. Especially DUF575 which harbors a predicted transmembrane domain is important for binding to the membrane, while presence of the DUF562 seems to be of regulatory function. For Mbp1, founding member of the cluster that exhibits a very limited sequence identity to the human Rab36 protein, we found a specific binding to vesicles carrying the early endosomal marker PtdIns(3)P and the endosomal Rab GTPases Rab11 and Rab14. This binding is dependent on a predicted transmembrane domain with an α-helical / β-strand secondary structure, as the mutant version Mbp1mut, which lacks the β-strand secondary structure, shows a reduced association to PtdIns(3)P-positive membranes carrying Rab11 and Rab14. Furthermore, we could not only show that Mbp1 associates with Rab36, but found this specific Rab protein to be recruited to the early C. pneumoniae inclusion. Detection of endogenous Mbp1 and Mbp4 reveal a colocalization to the chlamydial outer membrane protein Momp on EBs. The same colocalization pattern with Momp was observed when we ectopically expressed Mbp4 in C. trachomatis. Thus, we identified a C. pneumoniae-specific cluster of 13 membrane binding proteins (Mbps) localizing to the bacterial outer membrane system.
Collapse
Affiliation(s)
- Corinna Braun
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katja Mölleken
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
3
|
Jelocnik M. Chlamydiae from Down Under: The Curious Cases of Chlamydial Infections in Australia. Microorganisms 2019; 7:microorganisms7120602. [PMID: 31766703 PMCID: PMC6955670 DOI: 10.3390/microorganisms7120602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
In Australia, the most researched and perhaps the most successful chlamydial species are the human pathogen Chlamydia trachomatis, animal pathogens Chlamydia pecorum and Chlamydia psittaci. C. trachomatis remains the leading cause of sexually transmitted infections in Australians and trachoma in Australian Indigenous populations. C. pecorum is globally recognised as the infamous koala and widespread livestock pathogen, whilst the avian C. psittaci is emerging as a horse pathogen posing zoonotic risks to humans. Certainly not innocuous, the human infections with Chlamydia pneumoniae seem to be less prevalent that other human chlamydial pathogens (namely C. trachomatis). Interestingly, the complete host range for C. pecorum and C. psittaci remains unknown, and infections by other chlamydial organisms in Australian domesticated and wildlife animals are understudied. Considering that chlamydial organisms can be encountered by either host at the human/animal interface, I review the most recent findings of chlamydial organisms infecting Australians, domesticated animals and native wildlife. Furthermore, I also provide commentary from leading Australian Chlamydia experts on challenges and future directions in the Chlamydia research field.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs 4557, Australia
| |
Collapse
|
4
|
Shima K, Wanker M, Skilton RJ, Cutcliffe LT, Schnee C, Kohl TA, Niemann S, Geijo J, Klinger M, Timms P, Rattei T, Sachse K, Clarke IN, Rupp J. The Genetic Transformation of Chlamydia pneumoniae. mSphere 2018; 3:e00412-18. [PMID: 30305318 PMCID: PMC6180227 DOI: 10.1128/msphere.00412-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022] Open
Abstract
We demonstrate the genetic transformation of Chlamydia pneumoniae using a plasmid shuttle vector system which generates stable transformants. The equine C. pneumoniae N16 isolate harbors the 7.5-kb plasmid pCpnE1. We constructed the plasmid vector pRSGFPCAT-Cpn containing a pCpnE1 backbone, plus the red-shifted green fluorescent protein (RSGFP), as well as the chloramphenicol acetyltransferase (CAT) gene used for the selection of plasmid shuttle vector-bearing C. pneumoniae transformants. Using the pRSGFPCAT-Cpn plasmid construct, expression of RSGFP in koala isolate C. pneumoniae LPCoLN was demonstrated. Furthermore, we discovered that the human cardiovascular isolate C. pneumoniae CV-6 and the human community-acquired pneumonia-associated C. pneumoniae IOL-207 could also be transformed with pRSGFPCAT-Cpn. In previous studies, it was shown that Chlamydia spp. cannot be transformed when the plasmid shuttle vector is constructed from a different plasmid backbone to the homologous species. Accordingly, we confirmed that pRSGFPCAT-Cpn could not cross the species barrier in plasmid-bearing and plasmid-free C. trachomatis, C. muridarum, C. caviae, C. pecorum, and C. abortus However, contrary to our expectation, pRSGFPCAT-Cpn did transform C. felis Furthermore, pRSGFPCAT-Cpn did not recombine with the wild-type plasmid of C. felis Taken together, we provide for the first time an easy-to-handle transformation protocol for C. pneumoniae that results in stable transformants. In addition, the vector can cross the species barrier to C. felis, indicating the potential of horizontal pathogenic gene transfer via a plasmid.IMPORTANCE The absence of tools for the genetic manipulation of C. pneumoniae has hampered research into all aspects of its biology. In this study, we established a novel reproducible method for C. pneumoniae transformation based on a plasmid shuttle vector system. We constructed a C. pneumoniae plasmid backbone shuttle vector, pRSGFPCAT-Cpn. The construct expresses the red-shifted green fluorescent protein (RSGFP) fused to chloramphenicol acetyltransferase in C. pneumoniaeC. pneumoniae transformants stably retained pRSGFPCAT-Cpn and expressed RSGFP in epithelial cells, even in the absence of chloramphenicol. The successful transformation in C. pneumoniae using pRSGFPCAT-Cpn will advance the field of chlamydial genetics and is a promising new approach to investigate gene functions in C. pneumoniae biology. In addition, we demonstrated that pRSGFPCAT-Cpn overcame the plasmid species barrier without the need for recombination with an endogenous plasmid, indicating the potential probability of horizontal chlamydial pathogenic gene transfer by plasmids between chlamydial species.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - Maximilian Wanker
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
| | - Rachel J Skilton
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Lesley T Cutcliffe
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-lnstitute (Federal Research Institute for Animal Health), Jena, Germany
| | - Thomas A Kohl
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Javier Geijo
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | | | - Peter Timms
- University of Sunshine Coast, Maroochydore, Australia
| | - Thomas Rattei
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ian N Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
| |
Collapse
|
5
|
Borel N, Polkinghorne A, Pospischil A. A Review on Chlamydial Diseases in Animals: Still a Challenge for Pathologists? Vet Pathol 2018; 55:374-390. [PMID: 29310550 DOI: 10.1177/0300985817751218] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlamydiae have a worldwide distribution causing a wide range of diseases in human hosts, livestock, and companion animals as well as in wildlife and exotic species. Moreover, they can persist in their hosts as asymptomatic infections for extended periods of time. The introduction of molecular techniques has revolutionized the Chlamydia field by expanding the host range of known chlamydial species but also by discovering new species and even new families of bacteria in the broader order Chlamydiales. The wide range of hosts, diseases, and tissues affected by chlamydiae complicate the diagnosis such that standard diagnostic approaches for these bacteria are rare. Bacteria of the Chlamydiales order are small and their inclusions are difficult to detect by standard microscopy. With the exception of avian and ovine chlamydiosis, macroscopic and/or histologic changes might not be pathognomic or indicative for a chlamydial infection or even not present at all. Moreover, detection of chlamydial DNA in specimens in the absence of other methods or related pathological lesions questions the significance of such findings. The pathogenic potential of the majority of recently identified Chlamydia-related bacteria remains largely unknown and awaits investigation through experimental or natural infection models including histomorphological characterization of associated lesions. This review aims to summarize the historical background and the most important developments in the field of animal chlamydial research in the past 5 years with a special focus on pathology. It will summarize the current nomenclature, present critical thoughts about diagnostics, and give an update on chlamydial infections in domesticated animals such as livestock, companion animals and birds, as well as free-ranging and captive wild animals such as reptiles, fish, and marsupials.
Collapse
Affiliation(s)
- Nicole Borel
- 1 Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Adam Polkinghorne
- 2 Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Andreas Pospischil
- 1 Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
McCallum H, Kerlin DH, Ellis W, Carrick F. Assessing the significance of endemic disease in conservation-koalas, chlamydia, and koala retrovirus as a case study. Conserv Lett 2017. [DOI: 10.1111/conl.12425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hamish McCallum
- Griffith School of Environment and Environmental Futures Research Institute; Griffith University; Nathan Queensland Australia
| | - Douglas H. Kerlin
- Environmental Futures Research Institute; Griffith University; Nathan Queensland 4111 Australia
| | - William Ellis
- School of Agriculture and Food Science; The University of Queensland; Brisbane Queensland Australia
| | - Frank Carrick
- Koala Study Program, Centre for Mined Land Rehabilitation; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
7
|
Taylor-Brown A, Spang L, Borel N, Polkinghorne A. Culture-independent metagenomics supports discovery of uncultivable bacteria within the genus Chlamydia. Sci Rep 2017; 7:10661. [PMID: 28878306 PMCID: PMC5587560 DOI: 10.1038/s41598-017-10757-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/14/2017] [Indexed: 12/02/2022] Open
Abstract
Advances in culture-independent methods have meant that we can more readily detect and diagnose emerging infectious disease threats in humans and animals. Metagenomics is fast becoming a popular tool for detection and characterisation of novel bacterial pathogens in their environment, and is particularly useful for obligate intracellular bacteria such as Chlamydiae that require labour-intensive culturing. We have used this tool to investigate the microbial metagenomes of Chlamydia-positive cloaca and choana samples from snakes. The microbial complexity within these anatomical sites meant that despite previous detection of chlamydial 16S rRNA sequences by single-gene broad-range PCR, only a chlamydial plasmid could be detected in all samples, and a chlamydial chromosome in one sample. Comparative genomic analysis of the latter revealed it represented a novel taxon, Ca. Chlamydia corallus, with genetic differences in regards to purine and pyrimidine metabolism. Utilising statistical methods to relate plasmid phylogeny to the phylogeny of chromosomal sequences showed that the samples also contain additional novel strains of Ca. C. corallus and two putative novel species in the genus Chlamydia. This study highlights the value of metagenomics methods for rapid novel bacterial discovery and the insights it can provide into the biology of uncultivable intracellular bacteria such as Chlamydiae.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Labolina Spang
- Centre for Animal Health Innovation, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| |
Collapse
|
8
|
Vidgen ME, Hanger J, Timms P. Microbiota composition of the koala (Phascolarctos cinereus) ocular and urogenital sites, and their association with Chlamydia infection and disease. Sci Rep 2017; 7:5239. [PMID: 28701755 PMCID: PMC5507983 DOI: 10.1038/s41598-017-05454-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022] Open
Abstract
Disease caused by Chlamydia pecorum is characterised by ocular and urogenital infections that can lead to blindness and infertility in koalas. However, koalas that are infected with C. pecorum do not always progress to disease. In other host systems, the influence of the microbiota has been implicated in either accelerating or preventing infections progressing to disease. This study investigates the contribution of koala urogenital and ocular microbiota to Chlamydia infection and disease in a free ranging koala population. Using univariate and multivariate analysis, it was found that reproductive status in females and sexual maturation in males, were defining features in the koala urogenital microbiota. Changes in the urogenital microbiota of koalas is correlated with infection by the common pathogen, C. pecorum. The correlation of microbiota composition and C. pecorum infection is suggestive of members of the microbiota being involved in the acceleration or prevention of infections progressing to disease. The analysis also suggests that multiple microbes are likely to be associated with this process of disease progression, rather than a single organism. While other Chlamydia-like organisms were also detected, they are unlikely to contribute to chlamydial disease as they are rare members of the urogenital and ocular microbiota communities.
Collapse
Affiliation(s)
- Miranda E Vidgen
- University of the Sunshine Coast, Faculty of Science, Health, Education & Engineering, Centre for Animal Health Innovation, Locked Bag 4, Maroochydore, Qld 4558, Australia
| | - Jonathan Hanger
- Endeavour Veterinary Ecology Pty Ltd., 1695 Pumicestone Rd., Toorbul, Qld 4510, Australia
| | - Peter Timms
- University of the Sunshine Coast, Faculty of Science, Health, Education & Engineering, Centre for Animal Health Innovation, Locked Bag 4, Maroochydore, Qld 4558, Australia.
| |
Collapse
|
9
|
Marti H, Kim H, Joseph SJ, Dojiri S, Read TD, Dean D. Tet(C) Gene Transfer between Chlamydia suis Strains Occurs by Homologous Recombination after Co-infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Front Microbiol 2017; 8:156. [PMID: 28223970 PMCID: PMC5293829 DOI: 10.3389/fmicb.2017.00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Chlamydia suis is a swine pathogen that has also recently been found to cause zoonotic infections of the human eye, pharynx, and gastrointestinal tract. Many strains contain a tetracycline class C gene [tet(C)] cassette that confers tetracycline resistance. The cassette was likely originally acquired by horizontal gene transfer from a Gram-negative donor after the introduction of tetracycline into animal feed in the 1950s. Various research groups have described the capacity for different Chlamydia species to exchange DNA by homologous recombination. Since over 90% of C. suis strains are tetracycline resistant, they represent a potential source for antibiotic-resistance spread within and between Chlamydiaceae species. Here, we examined the genetics of tet(C)-transfer among C. suis strains. Tetracycline-sensitive C. suis strain S45 was simultaneously or sequentially co-infected with tetracycline-resistant C. suis strains in McCoy cells. Potential recombinants were clonally purified by a harvest assay derived from the classic plaque assay. C. suis strain Rogers132, lacking transposases IS200 and IS605, was the most efficient donor, producing two unique recombinants detected in three of the 56 (5.4%) clones screened. Recombinants were found to have a minimal inhibitory concentration (MIC) of 8-16 μg/mL for tetracycline. Resistance remained stable over 10 passages as long as recombinants were initially grown in tetracycline at twice the MIC of S45 (0.032 μg/mL). Genomic analysis revealed that tet(C) had integrated into the S45 genome by homologous recombination at two unique sites depending on the recombinant: a 55 kb exchange between nrqF and pckG, and a 175 kb exchange between kdsA and cysQ. Neither site was associated with inverted repeats or motifs associated with recombination hotspots. Our findings show that cassette transfer into S45 has low frequency, does not require IS200/IS605 transposases, is stable if initially grown in tetracycline, and results in multiple genomic configurations. We provide a model for stable cassette transfer to better understand the capability for cassette acquisition by Chlamydiaceae species that infect humans, a matter of public health importance.
Collapse
Affiliation(s)
- Hanna Marti
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Hoyon Kim
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Stacey Dojiri
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, OaklandCA, USA; Joint Graduate Program in Bioengineering, University of California, San Francisco, San FranciscoCA, USA; Joint Graduate Program in Bioengineering, University of California, Berkeley, BerkeleyCA, USA; Departments of Medicine and Pediatrics, University of California, San Francisco, San FranciscoCA, USA
| |
Collapse
|
10
|
Shima K, Coopmeiners J, Graspeuntner S, Dalhoff K, Rupp J. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett 2016; 590:3887-3904. [PMID: 27509029 DOI: 10.1002/1873-3468.12353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
Community-acquired pneumonia is caused by intra- and extracellular bacteria, with some of these bacteria also being linked to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease. Chlamydia pneumoniae is an obligate intracellular pathogen that is highly sensitive to micro-environmental conditions controlling both pathogen growth and host immune responses. The availability of nutrients, as well as changes in oxygen, pH and interferon-γ levels, have been shown to directly influence the chlamydial life cycle and clearance. Although the lung has been traditionally regarded as a sterile environment, sequencing approaches have enabled the identification of a large number of bacteria in healthy and diseased lungs. The influence of the lung microbiota on respiratory infections has not been extensively studied so far and data on chlamydial infections are currently unavailable. In the present study, we speculate on how lung microbiota might interfere with acute and chronic infections by focusing exemplarily on the obligate intracellular C. pneumoniae. Furthermore, we consider changes in the gut microbiota as an additional player in the control of lung infections, especially in view the increasing evidence suggesting the involvement of the gut microbiota in various immunological processes throughout the human body.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Jonas Coopmeiners
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Klaus Dalhoff
- Medical Clinic III, University-Hospital Schleswig-Holstein/Campus Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| |
Collapse
|
11
|
Chlamydia pecorum is the endemic intestinal species in cattle while C. gallinacea, C. psittaci and C. pneumoniae associate with sporadic systemic infection. Vet Microbiol 2016; 193:93-9. [PMID: 27599935 DOI: 10.1016/j.vetmic.2016.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022]
Abstract
To investigate the prevalence and diversity of bovine Chlamydia spp. in cattle, whole blood from dairy and beef cattle in 11 provinces of China (n=2003) and vaginal swabs, whole blood samples, feces, milk samples from cows in a Yangzhou dairy farm (n=108) were examined using genus- and species-specific PCRs. In cattle from 11 provinces, 2.4% (48/2003) of whole-blood samples were positive for Chlamydia spp., and four Chlamydia species (C. pneumoniae, 41.7%, 20/48; C. psittaci, 22.9%, 11/48; C. gallinacea, 20.8%, 10/48; C. pecorum, 6.3%, 3/48) were identified. In a further study on a Yangzhou dairy farm, 64.8% (70/108) of the cows were positive for Chlamydia spp. C. pecorum was the intestinal endemic species (51/51, 100%), and C. gallinacea was the most frequent species in vaginal swabs (24/27, 88.9%), whole blood buffy coats (5/8, 62.5%) and milk (4/6, 66.7%). C. psittaci and C. pneumoniae were infrequently detected. DNA sequencing of the ompA gene demonstrated the presence of multiple in-herd C. pecorum serovars and single C. gallinacea and C. psittaci serovars which were identical with those of poultry from Yangzhou. This is the first report of C. gallinacea and C. pneumoniae in cattle. Further study is required to address the transmission of Chlamydia spp., in particular of C. gallinacea and C. pneumoniae from their natural hosts, and their potential pathogenic effect on health and production of cattle.
Collapse
|
12
|
Frutos MC, Monetti MS, Mosmann J, Kiguen AX, Venezuela FR, Ré VE, Cuffini CG. Molecular characterization of Chlamydia pneumoniae in animals and humans from Argentina: Genetic characterization of Chlamydia pneumoniae. INFECTION GENETICS AND EVOLUTION 2016; 44:43-45. [PMID: 27328126 DOI: 10.1016/j.meegid.2016.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022]
Abstract
In this study, genetic diversity of Chlamydia pneumoniae was investigated and the relationships between sequences amplified of different sources, clinical conditions and geographical regions of central Argentina were established. Samples amplified were similar to human C. pneumoniae patterns and show the high clonality of the population.
Collapse
Affiliation(s)
- María C Frutos
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marina S Monetti
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jessica Mosmann
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana X Kiguen
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernando R Venezuela
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia G Cuffini
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
13
|
Jelocnik M, Bachmann NL, Seth-Smith H, Thomson NR, Timms P, Polkinghorne AM. Molecular characterisation of the Chlamydia pecorum plasmid from porcine, ovine, bovine, and koala strains indicates plasmid-strain co-evolution. PeerJ 2016; 4:e1661. [PMID: 26870613 PMCID: PMC4748734 DOI: 10.7717/peerj.1661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Background. Highly stable, evolutionarily conserved, small, non-integrative plasmids are commonly found in members of the Chlamydiaceae and, in some species, these plasmids have been strongly linked to virulence. To date, evidence for such a plasmid in Chlamydia pecorum has been ambiguous. In a recent comparative genomic study of porcine, ovine, bovine, and koala C. pecorum isolates, we identified plasmids (pCpec) in a pig and three koala strains, respectively. Screening of further porcine, ovine, bovine, and koala C. pecorum isolates for pCpec showed that pCpec is common, but not ubiquitous in C. pecorum from all of the infected hosts. Methods. We used a combination of (i) bioinformatic mining of previously sequenced C. pecorum genome data sets and (ii) pCpec PCR-amplicon sequencing to characterise a further 17 novel pCpecs in C. pecorum isolates obtained from livestock, including pigs, sheep, and cattle, as well as those from koala. Results and Discussion. This analysis revealed that pCpec is conserved with all eight coding domain sequences (CDSs) present in isolates from each of the hosts studied. Sequence alignments revealed that the 21 pCpecs show 99% nucleotide sequence identity, with 83 single nucleotide polymorphisms (SNPs) shown to differentiate all of the plasmids analysed in this study. SNPs were found to be mostly synonymous and were distributed evenly across all eight pCpec CDSs as well as in the intergenic regions. Although conserved, analyses of the 21 pCpec sequences resolved plasmids into 12 distinct genotypes, with five shared between pCpecs from different isolates, and the remaining seven genotypes being unique to a single pCpec. Phylogenetic analysis revealed congruency and co-evolution of pCpecs with their cognate chromosome, further supporting polyphyletic origin of the koala C. pecorum. This study provides further understanding of the complex epidemiology of this pathogen in livestock and koala hosts and paves the way for studies to evaluate the function of this putative C. pecorum virulence factor.
Collapse
Affiliation(s)
- Martina Jelocnik
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Helena Seth-Smith
- Functional Genomics Center Zurich, University of Zurich , Zurich , Switzerland
| | - Nicholas R Thomson
- Infection Genomics, The Wellcome Trust Sanger Institute , Cambridge , United Kingdom
| | - Peter Timms
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Adam M Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| |
Collapse
|
14
|
Roulis E, Bachmann N, Humphrys M, Myers G, Huston W, Polkinghorne A, Timms P. Phylogenetic analysis of human Chlamydia pneumoniae strains reveals a distinct Australian indigenous clade that predates European exploration of the continent. BMC Genomics 2015; 16:1094. [PMID: 26694618 PMCID: PMC4687280 DOI: 10.1186/s12864-015-2281-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/08/2015] [Indexed: 12/05/2022] Open
Abstract
Background The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key polymorphisms and additional coding capacity when human and animal strains are compared. Results In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains, with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these distinct strains. Conclusions Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains, and suggests that a wider range of strains may be circulating in the human population than current sampling indicates.
Collapse
Affiliation(s)
- Eileen Roulis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Nathan Bachmann
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Michael Humphrys
- Institute for Genomic Sciences, University of Maryland, Baltimore, MD, USA.
| | - Garry Myers
- i3 Institute, University of Technology, Sydney, NSW, Australia.
| | - Wilhelmina Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia. .,i3 Institute, University of Technology, Sydney, NSW, Australia.
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia. .,Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| |
Collapse
|
15
|
He X, Liang Y, LaValley MP, Lai J, Ingalls RR. Comparative analysis of the growth and biological activity of a respiratory and atheroma isolate of Chlamydia pneumoniae reveals strain-dependent differences in inflammatory activity and innate immune evasion. BMC Microbiol 2015; 15:228. [PMID: 26494400 PMCID: PMC4619265 DOI: 10.1186/s12866-015-0569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background Chlamydia pneumoniae is a common human pathogen that is associated with upper and lower respiratory tract infections. It has also been suggested that C. pneumoniae infection can trigger or promote a number of chronic inflammatory conditions, including asthma and atherosclerosis. Several strains of C. pneumoniae have been isolated from humans and animals, and sequence data demonstrates marked genetic conservation, leaving unanswered the question as to why chronic inflammatory conditions may occur following some respiratory-acquired infections. Methods C. pneumoniae strains AR39 and AO3 were used in vitro to infect murine bone marrow derived macrophages and L929 fibroblasts, or in vivo to infect C57BL/6 mice via the intranasal route. Results We undertook a comparative study of a respiratory isolate, AR39, and an atheroma isolate, AO3, to determine if bacterial growth and host responses to infection varied between these two strains. We observed differential growth depending on the host cell type and the growth temperature; however both strains were capable of forming plaques in vitro. The host response to the respiratory isolate was found to be more inflammatory both in vitro, in terms of inflammatory cytokine induction, and in vivo, as measured by clinical response and lung inflammatory markers using a mouse model of respiratory infection. Conclusions Our data demonstrates that a subset of C. pneumoniae strains is capable of evading host innate immune defenses during the acute respiratory infection. Further studies on the genetic basis for these differences on both the host and pathogen side could enhance our understanding how C. pneumoniae contributes to the development chronic inflammation at local and distant sites.
Collapse
Affiliation(s)
- Xianbao He
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA. .,Boston University School of Medicine, Boston, MA, USA.
| | - Yanmei Liang
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA.
| | - Michael P LaValley
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | - Juying Lai
- Division of Rheumatology, Immunology and Allergy, Brigham & Women's Hospital, Boston, MA, USA.
| | - Robin R Ingalls
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA. .,Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Mutational Analysis of the Chlamydia muridarum Plasticity Zone. Infect Immun 2015; 83:2870-81. [PMID: 25939505 DOI: 10.1128/iai.00106-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed--and some may produce functional proteins--but are dispensable for infection of the murine genital tract.
Collapse
|
17
|
Weinmaier T, Hoser J, Eck S, Kaufhold I, Shima K, Strom TM, Rattei T, Rupp J. Genomic factors related to tissue tropism in Chlamydia pneumoniae infection. BMC Genomics 2015; 16:268. [PMID: 25887605 PMCID: PMC4489044 DOI: 10.1186/s12864-015-1377-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia pneumoniae (Cpn) are obligate intracellular bacteria that cause acute infections of the upper and lower respiratory tract and have been implicated in chronic inflammatory diseases. Although of significant clinical relevance, complete genome sequences of only four clinical Cpn strains have been obtained. All of them were isolated from the respiratory tract and shared more than 99% sequence identity. Here we investigate genetic differences on the whole-genome level that are related to Cpn tissue tropism and pathogenicity. RESULTS We have sequenced the genomes of 18 clinical isolates from different anatomical sites (e.g. lung, blood, coronary arteries) of diseased patients, and one animal isolate. In total 1,363 SNP loci and 184 InDels have been identified in the genomes of all clinical Cpn isolates. These are distributed throughout the whole chlamydial genome and enriched in highly variable regions. The genomes show clear evidence of recombination in at least one potential region but no phage insertions. The tyrP gene was always encoded as single copy in all vascular isolates. Phylogenetic reconstruction revealed distinct evolutionary lineages containing primarily non-respiratory Cpn isolates. In one of these, clinical isolates from coronary arteries and blood monocytes were closely grouped together. They could be distinguished from all other isolates by characteristic nsSNPs in genes involved in RB to EB transition, inclusion membrane formation, bacterial stress response and metabolism. CONCLUSIONS This study substantially expands the genomic data of Cpn and elucidates its evolutionary history. The translation of the observed Cpn genetic differences into biological functions and the prediction of novel pathogen-oriented diagnostic strategies have to be further explored.
Collapse
Affiliation(s)
- Thomas Weinmaier
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria.
| | - Jonathan Hoser
- Department of Genome Oriented Bioinformatics, Technical University Munich, 85354, Freising, Germany.
| | - Sebastian Eck
- Center for Human Genetics and Laboratory Diagnostics Dr. Klein, Dr. Rost and Colleagues, 82152, Martinsried, Germany.
| | - Inga Kaufhold
- Department of Molecular and Clinical Infectious Diseases, University of Luebeck, 23538, Luebeck, Germany.
| | - Kensuke Shima
- Department of Molecular and Clinical Infectious Diseases, University of Luebeck, 23538, Luebeck, Germany.
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria.
- Department of Genome Oriented Bioinformatics, Technical University Munich, 85354, Freising, Germany.
| | - Jan Rupp
- Department of Molecular and Clinical Infectious Diseases, University of Luebeck, 23538, Luebeck, Germany.
| |
Collapse
|
18
|
Chacko A, Beagley KW, Timms P, Huston WM. Human Chlamydia pneumoniae isolates demonstrate ability to recover infectivity following penicillin treatment whereas animal isolates do not. FEMS Microbiol Lett 2015; 362:fnv015. [PMID: 25663156 DOI: 10.1093/femsle/fnv015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chlamydia pneumoniae strains have recently been demonstrated to have substantially different capacities to enter and recover from IFN-γ-induced persistence, depending on whether they are from human or animal host sources. Here, we examined the ability of two human and two animal strains to enter and be rescued from penicillin-induced persistence. The ability to form inclusions after the addition of penicillin was much reduced in the two animal isolates (koala LPCoLN, bandicoot B21) compared to the two human isolates (respiratory AR39 and heart A03). The penicillin treatment resulted in a dose-dependent loss of infectious progeny for all isolates, with the human strains failing to produce infectious progeny at lower doses of penicillin than the animal strains. The most remarkable finding however was the contrasting ability of the isolates to recover infectious progeny production after rescue by removal of the penicillin (at 72 h) and continued culture. The animal isolates both showed virtually no recovery from the penicillin treatment conditions. In contrast, the human isolates showed a significant ability to recovery infectivity, with the heart isolate (A03) showing the most marked recovery. Combined, these data further support the hypothesis that the ability to establish and recover from persistence appears to be enhanced in human C. pneumoniae strains compared to animal strains.
Collapse
Affiliation(s)
- Anu Chacko
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
19
|
Rosenwald AG, Murray B, Toth T, Madupu R, Kyrillos A, Arora G. Evidence for horizontal gene transfer between Chlamydophila pneumoniae and Chlamydia phage. BACTERIOPHAGE 2014; 4:e965076. [PMID: 26713222 PMCID: PMC4589997 DOI: 10.4161/21597073.2014.965076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
Abstract
Chlamydia-infecting bacteriophages, members of the Microviridae family, specifically the Gokushovirinae subfamily, are small (4.5–5 kb) single-stranded circles with 8–10 open-reading frames similar to E. coli phage ϕX174. Using sequence information found in GenBank, we examined related genes in Chlamydophila pneumoniae and Chlamydia-infecting bacteriophages. The 5 completely sequenced C. pneumoniae strains contain a gene orthologous to a phage gene annotated as the putative replication initiation protein (PRIP, also called VP4), which is not found in any other members of the Chlamydiaceae family sequenced to date. The C. pneumoniae strain infecting koalas, LPCoLN, in addition contains another region orthologous to phage sequences derived from the minor capsid protein gene, VP3. Phylogenetically, the phage PRIP sequences are more diverse than the bacterial PRIP sequences; nevertheless, the bacterial sequences and the phage sequences each cluster together in their own clade. Finally, we found evidence for another Microviridae phage-related gene, the major capsid protein gene, VP1 in a number of other bacterial species and 2 eukaryotes, the woodland strawberry and a nematode. Thus, we find considerable evidence for DNA sequences related to genes found in bacteriophages of the Microviridae family not only in a variety of prokaryotic but also eukaryotic species.
Collapse
Affiliation(s)
- Anne G Rosenwald
- Department of Biology; Georgetown University ; Washington, DC USA
| | - Bradley Murray
- Department of Biology; Georgetown University ; Washington, DC USA
| | - Theodore Toth
- Department of Biology; Georgetown University ; Washington, DC USA
| | | | | | - Gaurav Arora
- Department of Biology; Georgetown University ; Washington, DC USA
| |
Collapse
|
20
|
Bachmann NL, Fraser TA, Bertelli C, Jelocnik M, Gillett A, Funnell O, Flanagan C, Myers GSA, Timms P, Polkinghorne A. Comparative genomics of koala, cattle and sheep strains of Chlamydia pecorum. BMC Genomics 2014; 15:667. [PMID: 25106440 PMCID: PMC4137089 DOI: 10.1186/1471-2164-15-667] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced. RESULTS Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these point mutations. CONCLUSIONS The genomic data revealed that variation between C. pecorum strains were mainly due to the accumulation of SNPs, some of which cause gene inactivation. The identification of these genetic differences will provide the basis for further studies to understand the biology and evolution of this important animal pathogen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs 4558, Queensland, Australia.
| |
Collapse
|
21
|
Chacko A, Barker CJ, Beagley KW, Hodson MP, Plan MR, Timms P, Huston WM. Increased sensitivity to tryptophan bioavailability is a positive adaptation by the human strains of Chlamydia pneumoniae. Mol Microbiol 2014; 93:797-813. [PMID: 24989637 DOI: 10.1111/mmi.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 11/30/2022]
Abstract
One of the most significant activities induced by interferon-gamma against intracellular pathogens is the induction of IDO (indoleamine 2,3-dioxygenase) expression, which subsequently results in the depletion of tryptophan. We tested the hypothesis that human strains of Chlamydia pneumoniae are more sensitive to tryptophan limitation than animal C. pneumoniae strains. The human strains were significantly more sensitive to IFN-γ than the animal strains in a lung epithelia cell model (BEAS-2B), with exposure to 1 U ml(-1) IFN-γ resulting in complete loss of infectious yield of human strains, compared to the animal strains where reductions in infectious progeny were around 3.5-4.0 log. Strikingly, the IFN-γ induced loss of ability to form infectious progeny production was completely rescued by removal of the IFN-γ and addition of exogenous tryptophan for the human strains, but not the animal strains. In fact, a human heart strain was more capable of entering a non-infectious, viable persistent stage when exposed to IFN-γ and was also more effectively rescued, compared to a human respiratory strain. Exquisite susceptibility to IFN-γ, specifically due to tryptophan availability appears to be a core adaptation of the human C. pneumoniae strains, which may reflect the chronic nature of their infections in this host.
Collapse
Affiliation(s)
- Anu Chacko
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Qld, 4059, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Nunes A, Gomes JP. Evolution, phylogeny, and molecular epidemiology of Chlamydia. INFECTION GENETICS AND EVOLUTION 2014; 23:49-64. [PMID: 24509351 DOI: 10.1016/j.meegid.2014.01.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
Abstract
The Chlamydiaceae are a family of obligate intracellular bacteria characterized by a unique biphasic developmental cycle. It encompasses the single genus Chlamydia, which involves nine species that affect a wide range of vertebral hosts, causing infections with serious impact on human health (mainly due to Chlamydia trachomatis infections) and on farming and veterinary industries. It is believed that Chlamydiales originated ∼700mya, whereas C. trachomatis likely split from the other Chlamydiaceae during the last 6mya. This corresponds to the emergence of modern human lineages, with the first descriptions of chlamydial infections as ancient as four millennia. Chlamydiaceae have undergone a massive genome reduction, on behalf of the deletional bias "use it or lose it", stabilizing at 1-1.2Mb and keeping a striking genome synteny. Their phylogeny reveals species segregation according to biological properties, with huge differences in terms of host range, tissue tropism, and disease outcomes. Genome differences rely on the occurrence of mutations in the >700 orthologous genes, as well as on events of recombination, gene loss, inversion, and paralogous expansion, affecting both a hypervariable region named the plasticity zone, and genes essentially encoding polymorphic and transmembrane head membrane proteins, type III secretion effectors and some metabolic pathways. Procedures for molecular typing are still not consensual but have allowed the knowledge of molecular epidemiology patterns for some species as well as the identification of outbreaks and emergence of successful clones for C. trachomatis. This manuscript intends to provide a comprehensive review on the evolution, phylogeny, and molecular epidemiology of Chlamydia.
Collapse
Affiliation(s)
- Alexandra Nunes
- Reference Laboratory of Bacterial Sexually Transmitted Infections and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João P Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
23
|
Candidatus Syngnamydia venezia, a novel member of the phylum Chlamydiae from the broad nosed pipefish, Syngnathus typhle. PLoS One 2013; 8:e70853. [PMID: 23951025 PMCID: PMC3741330 DOI: 10.1371/journal.pone.0070853] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria and important pathogens of humans and animals. Chlamydia-related bacteria are also major fish pathogens, infecting epithelial cells of the gills and skin to cause the disease epitheliocystis. Given the wide distribution, ancient origins and spectacular diversity of bony fishes, this group offers a rich resource for the identification and isolation of novel Chlamydia. The broad-nosed pipefish (Syngnathus typhle) is a widely distributed and genetically diverse temperate fish species, susceptible to epitheliocystis across much of its range. We describe here a new bacterial species, Candidatus Syngnamydia venezia; epitheliocystis agent of S. typhle and close relative to other chlamydial pathogens which are known to infect diverse hosts ranging from invertebrates to humans.
Collapse
|
24
|
Roulis E, Polkinghorne A, Timms P. Chlamydia pneumoniae: modern insights into an ancient pathogen. Trends Microbiol 2012; 21:120-8. [PMID: 23218799 DOI: 10.1016/j.tim.2012.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/28/2012] [Accepted: 10/31/2012] [Indexed: 01/11/2023]
Abstract
Chlamydia pneumoniae is an enigmatic human and animal pathogen. Originally discovered in association with acute human respiratory disease, it is now associated with a remarkably wide range of chronic diseases as well as having a cosmopolitan distribution within the animal kingdom. Molecular typing studies suggest that animal strains are ancestral to human strains and that C. pneumoniae crossed from animals to humans as the result of at least one relatively recent zoonotic event. Whole genome analyses appear to support this concept - the human strains are highly conserved whereas the single animal strain that has been fully sequenced has a larger genome with several notable differences. When compared to the other, better known chlamydial species that is implicated in human infection, Chlamydia trachomatis, C. pneumoniae demonstrates pertinent differences in its cell biology, development, and genome structure. Here, we examine the characteristic facets of C. pneumoniae biology, offering insights into the diversity and evolution of this silent and ancient pathogen.
Collapse
Affiliation(s)
- Eileen Roulis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
| | | | | |
Collapse
|
25
|
Voigt A, Schöfl G, Saluz HP. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens. PLoS One 2012; 7:e35097. [PMID: 22506068 PMCID: PMC3323650 DOI: 10.1371/journal.pone.0035097] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis. RESULTS A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins. CONCLUSIONS This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions.
Collapse
Affiliation(s)
- Anja Voigt
- Leibniz-Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Gerhard Schöfl
- Leibniz-Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Hans Peter Saluz
- Leibniz-Institute for Natural Product Research and Infection Biology, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
26
|
Frazer LC, Darville T, Chandra-Kuntal K, Andrews CW, Zurenski M, Mintus M, AbdelRahman YM, Belland RJ, Ingalls RR, O'Connell CM. Plasmid-cured Chlamydia caviae activates TLR2-dependent signaling and retains virulence in the guinea pig model of genital tract infection. PLoS One 2012; 7:e30747. [PMID: 22292031 PMCID: PMC3265510 DOI: 10.1371/journal.pone.0030747] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022] Open
Abstract
Loss of the conserved “cryptic” plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Toni Darville
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Kumar Chandra-Kuntal
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | | | - Matthew Zurenski
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Margaret Mintus
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Yasser M. AbdelRahman
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Robert J. Belland
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robin R. Ingalls
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Catherine M. O'Connell
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|