1
|
Sharma H, Batra R, Kumar S, Kumar M, Kumar S, Balyan HS, Gupta PK. Identification and characterization of 20S proteasome genes and their relevance to heat/drought tolerance in bread wheat. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Cagirici HB, Budak H, Sen TZ. Genome-wide discovery of G-quadruplexes in barley. Sci Rep 2021; 11:7876. [PMID: 33846409 PMCID: PMC8041835 DOI: 10.1038/s41598-021-86838-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures with closely spaced guanine bases forming square planar G-quartets. Aberrant formation of G4 structures has been associated with genomic instability. However, most plant species are lacking comprehensive studies of G4 motifs. In this study, genome-wide identification of G4 motifs in barley was performed, followed by a comparison of genomic distribution and molecular functions to other monocot species, such as wheat, maize, and rice. Similar to the reports on human and some plants like wheat, G4 motifs peaked around the 5′ untranslated region (5′ UTR), the first coding domain sequence, and the first intron start sites on antisense strands. Our comparative analyses in human, Arabidopsis, maize, rice, and sorghum demonstrated that the peak points could be erroneously merged into a single peak when large window sizes are used. We also showed that the G4 distributions around genic regions are relatively similar in the species studied, except in the case of Arabidopsis. G4 containing genes in monocots showed conserved molecular functions for transcription initiation and hydrolase activity. Additionally, we provided examples of imperfect G4 motifs.
Collapse
Affiliation(s)
- H Busra Cagirici
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture - Agricultural Research Service, 800 Buchanan St, Albany, CA, 94710, USA
| | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT, USA.,Agrogen, LLC., Omaha, NE, USA
| | - Taner Z Sen
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture - Agricultural Research Service, 800 Buchanan St, Albany, CA, 94710, USA.
| |
Collapse
|
3
|
Transcriptome Analysis Identifies a 140 kb Region of Chromosome 3B Containing Genes Specific to Fusarium Head Blight Resistance in Wheat. Int J Mol Sci 2018. [PMID: 29538315 PMCID: PMC5877713 DOI: 10.3390/ijms19030852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive fungal diseases of wheat (Triticum aestivum L.). Because of the quantitative nature of FHB resistance, its mechanism is poorly understood. We conducted a comparative transcriptome analysis to identify genes that are differentially expressed in FHB-resistant and FHB-susceptible wheat lines grown under field conditions for various periods after F. graminearum infection and determined the chromosomal distribution of the differentially expressed genes (DEGs). For each line, the expression in the spike (which exhibits symptoms in the infected plants) was compared with that in the flag leaves (which do not exhibit symptoms in the infected plants). We identified an island of 53 constitutive DEGs in a 140 kb region with high homology to the FhbL693b region on chromosome 3B. Of these genes, 13 were assigned to specific chloroplast-related pathways. Furthermore, one gene encoded inositol monophosphate (IMPa) and two genes encoded ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Our findings suggest that the temporary susceptibility in locally infected spikes results from the cross-talk between RuBisCO and IMPa, which blocks secondary signaling pathways mediated by salicylic acid and induces a systemic acquired resistance in the distant leaf tissue.
Collapse
|
4
|
Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol 2015; 16:188. [PMID: 26353816 PMCID: PMC4563886 DOI: 10.1186/s13059-015-0754-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Bread wheat is not only an important crop, but its large (17 Gb), highly repetitive, and hexaploid genome makes it a good model to study the organization and evolution of complex genomes. Recently, we produced a high quality reference sequence of wheat chromosome 3B (774 Mb), which provides an excellent opportunity to study the evolutionary dynamics of a large and polyploid genome, specifically the impact of single gene duplications. Results We find that 27 % of the 3B predicted genes are non-syntenic with the orthologous chromosomes of Brachypodium distachyon, Oryza sativa, and Sorghum bicolor, whereas, by applying the same criteria, non-syntenic genes represent on average only 10 % of the predicted genes in these three model grasses. These non-syntenic genes on 3B have high sequence similarity to at least one other gene in the wheat genome, indicating that hexaploid wheat has undergone massive small-scale interchromosomal gene duplications compared to other grasses. Insertions of non-syntenic genes occurred at a similar rate along the chromosome, but these genes tend to be retained at a higher frequency in the distal, recombinogenic regions. The ratio of non-synonymous to synonymous substitution rates showed a more relaxed selection pressure for non-syntenic genes compared to syntenic genes, and gene ontology analysis indicated that non-syntenic genes may be enriched in functions involved in disease resistance. Conclusion Our results highlight the major impact of single gene duplications on the wheat gene complement and confirm the accelerated evolution of the Triticeae lineage among grasses. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0754-6) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Akpinar BA, Magni F, Yuce M, Lucas SJ, Šimková H, Šafář J, Vautrin S, Bergès H, Cattonaro F, Doležel J, Budak H. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics 2015; 16:453. [PMID: 26070810 PMCID: PMC4465308 DOI: 10.1186/s12864-015-1641-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Federica Magni
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Meral Yuce
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Stuart J Lucas
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Sonia Vautrin
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Hélène Bergès
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Hikmet Budak
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
6
|
Cviková K, Cattonaro F, Alaux M, Stein N, Mayer KF, Doležel J, Bartoš J. High-throughput physical map anchoring via BAC-pool sequencing. BMC PLANT BIOLOGY 2015; 15:99. [PMID: 25887276 PMCID: PMC4407875 DOI: 10.1186/s12870-015-0429-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/20/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
Collapse
Affiliation(s)
- Kateřina Cviková
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| | - Federica Cattonaro
- Istituto di Genomica Applicata, Via J. Linussio 51, 33100, Udine, Italy.
| | - Michael Alaux
- INRA, UR1164 URGI - Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026, Versailles, France.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany.
| | - Klaus Fx Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| | - Jan Bartoš
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| |
Collapse
|
7
|
Türkösi E, Farkas A, Aranyi NR, Hoffmann B, Tóth V, Molnár-Láng M. Improvement of the agronomic traits of a wheat-barley centric fusion by introgressing the 3HS.3BL translocation into a modern wheat cultivar. Genome 2015; 57:601-7. [PMID: 25806585 DOI: 10.1139/gen-2014-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3HS.3BL spontaneous Robertsonian translocation obtained from the progenies of wheat-barley (Chinese Spring × Betzes) hybrids backcrossed with wheat line Mv9kr1 was transferred into the modern Martonvásár wheat cultivar Mv Bodri. The translocation was identified with molecular cytogenetic methods. The inheritance of the translocation was traced using genomic in situ hybridization. Fluorescence in situ hybridization using barley subtelomeric (HvT01) and centromere-specific [(AGGGAG)4] repetitive DNA probes confirmed that the complete barley chromosome arm was involved in the Robertsonian translocation. The wheat-specific repetitive DNA probes identified the presence of the whole wheat genome, except the short arm of the 3B chromosome. Genotypes homozygous for the centric fusion were selected, after which morphological analysis was performed on the plants and the yield components were measured in the field during two consecutive vegetative seasons. The introgression of the 3HS.3BL translocation into the modern wheat cultivar Mv Bodri significantly reduced the plant height due to the incorporation of the dwarfing allele RhtD1b. The presence of the 3HS.3BL translocation in the Mv9kr1 and Mv Bodri wheat background improved tillering and seeds per plant productivity in field experiments carried out in Martonvásár and Keszthely, Hungary.
Collapse
Affiliation(s)
- Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | | | | | | | | | | |
Collapse
|
8
|
Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 2013; 14:R138. [PMID: 24359668 PMCID: PMC4053865 DOI: 10.1186/gb-2013-14-12-r138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Collapse
|
9
|
Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, Spielmeyer W, Šimková H, Šafář J, Cattonaro F, Scalabrin S, Magni F, Vautrin S, Bergès H, Paux E, Fahima T, Doležel J, Korol A, Feuillet C, Keller B. A physical map of the short arm of wheat chromosome 1A. PLoS One 2013; 8:e80272. [PMID: 24278269 PMCID: PMC3836966 DOI: 10.1371/journal.pone.0080272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022] Open
Abstract
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.
Collapse
Affiliation(s)
- James Breen
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Isabelle Bertin
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Romain Philippe
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | | | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | | | - Etienne Paux
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Catherine Feuillet
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, Šimková H, Šafář J, Bellec A, Vautrin S, Frenkel Z, Cattonaro F, Magni F, Scalabrin S, Martis MM, Mayer KFX, Korol A, Bergès H, Doležel J, Feuillet C. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol 2013; 14:R64. [PMID: 23800011 PMCID: PMC4054855 DOI: 10.1186/gb-2013-14-6-r64] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. RESULTS Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. CONCLUSIONS Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.
Collapse
Affiliation(s)
- Romain Philippe
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Etienne Paux
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Isabelle Bertin
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Pierre Sourdille
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Fréderic Choulet
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Christel Laugier
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Sonia Vautrin
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Zeev Frenkel
- University of Haifa, Institute of Evolution and Department of Evolutionary and Environmental Biology, Haifa 31905, Israel
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Federica Magni
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Simone Scalabrin
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | | | - Klaus FX Mayer
- MIPS/IBIS; Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Abraham Korol
- University of Haifa, Institute of Evolution and Department of Evolutionary and Environmental Biology, Haifa 31905, Israel
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Catherine Feuillet
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| |
Collapse
|
11
|
Genomics approaches for crop improvement against abiotic stress. ScientificWorldJournal 2013; 2013:361921. [PMID: 23844392 PMCID: PMC3690750 DOI: 10.1155/2013/361921] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022] Open
Abstract
As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses.
Collapse
|
12
|
Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLoS One 2013; 8:e59542. [PMID: 23613713 PMCID: PMC3628912 DOI: 10.1371/journal.pone.0059542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 12/02/2022] Open
Abstract
Background Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis. Methodology/Principal Findings We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC-based or 583 LTC-based contigs. Conclusions/Significance The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A.
Collapse
|
13
|
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics 2012. [PMID: 23161406 DOI: 10.1007/s10142‐012‐0300‐5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic resources of small grain cereals that include some of the most important crop species such as wheat, barley, and rye are attaining a level of completion that now is contributing to new structural and functional studies as well as refining molecular marker development and mapping strategies for increasing the efficiency of breeding processes. The integration of new efforts to obtain reference sequences in bread wheat and barley, in particular, is accelerating the acquisition and interpretation of genome-level analyses in both of these major crops.
Collapse
Affiliation(s)
- C Feuillet
- INRA-UBP UMR 1095 Genetics and Diversity of Cereals, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics 2012; 12:573-83. [PMID: 23161406 PMCID: PMC3508266 DOI: 10.1007/s10142-012-0300-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
The genomic resources of small grain cereals that include some of the most important crop species such as wheat, barley, and rye are attaining a level of completion that now is contributing to new structural and functional studies as well as refining molecular marker development and mapping strategies for increasing the efficiency of breeding processes. The integration of new efforts to obtain reference sequences in bread wheat and barley, in particular, is accelerating the acquisition and interpretation of genome-level analyses in both of these major crops.
Collapse
Affiliation(s)
- C Feuillet
- INRA-UBP UMR 1095 Genetics and Diversity of Cereals, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sehgal SK, Li W, Rabinowicz PD, Chan A, Šimková H, Doležel J, Gill BS. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC PLANT BIOLOGY 2012; 12:64. [PMID: 22559868 PMCID: PMC3438119 DOI: 10.1186/1471-2229-12-64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/09/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Bread wheat, one of the world's staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. RESULTS The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. CONCLUSION This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping.
Collapse
Affiliation(s)
- Sunish K Sehgal
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Pablo D Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Agnes Chan
- The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Bikram S Gill
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Advances in BAC-based physical mapping and map integration strategies in plants. J Biomed Biotechnol 2012; 2012:184854. [PMID: 22500080 PMCID: PMC3303678 DOI: 10.1155/2012/184854] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 12/29/2022] Open
Abstract
In the advent of next-generation sequencing (NGS) platforms, map-based sequencing strategy has been recently suppressed being too expensive and laborious. The detailed studies on NGS drafts alone indicated these assemblies remain far from gold standard reference quality, especially when applied on complex genomes. In this context the conventional BAC-based physical mapping has been identified as an important intermediate layer in current hybrid sequencing strategy. BAC-based physical map construction and its integration with high-density genetic maps have benefited from NGS and high-throughput array platforms. This paper addresses the current advancements of BAC-based physical mapping and high-throughput map integration strategies to obtain densely anchored well-ordered physical maps. The resulted maps are of immediate utility while providing a template to harness the maximum benefits of the current NGS platforms.
Collapse
|
17
|
Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M, Uauy C. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC PLANT BIOLOGY 2012; 12:14. [PMID: 22280551 PMCID: PMC3296661 DOI: 10.1186/1471-2229-12-14] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/26/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Next generation sequencing (NGS) technologies are providing new ways to accelerate fine-mapping and gene isolation in many species. To date, the majority of these efforts have focused on diploid organisms with readily available whole genome sequence information. In this study, as a proof of concept, we tested the use of NGS for SNP discovery in tetraploid wheat lines differing for the previously cloned grain protein content (GPC) gene GPC-B1. Bulked segregant analysis (BSA) was used to define a subset of putative SNPs within the candidate gene region, which were then used to fine-map GPC-B1. RESULTS We used Illumina paired end technology to sequence mRNA (RNAseq) from near isogenic lines differing across a ~30-cM interval including the GPC-B1 locus. After discriminating for SNPs between the two homoeologous wheat genomes and additional quality filtering, we identified inter-varietal SNPs in wheat unigenes between the parental lines. The relative frequency of these SNPs was examined by RNAseq in two bulked samples made up of homozygous recombinant lines differing for their GPC phenotype. SNPs that were enriched at least 3-fold in the corresponding pool (6.5% of all SNPs) were further evaluated. Marker assays were designed for a subset of the enriched SNPs and mapped using DNA from individuals of each bulk. Thirty nine new SNP markers, corresponding to 67% of the validated SNPs, mapped across a 12.2-cM interval including GPC-B1. This translated to 1 SNP marker per 0.31 cM defining the GPC-B1 gene to within 13-18 genes in syntenic cereal genomes and to a 0.4 cM interval in wheat. CONCLUSIONS This study exemplifies the use of RNAseq for SNP discovery in polyploid species and supports the use of BSA as an effective way to target SNPs to specific genetic intervals to fine-map genes in unsequenced genomes.
Collapse
Affiliation(s)
- Martin Trick
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | - Sarah G Mugford
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Cong-Cong Jiang
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Melanie Febrer
- The Genome Analysis Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
- National Institute of Agricultural Botany, Huntingdon Road, Cambridge CB3 0LE, UK
| |
Collapse
|
18
|
Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T, Pelegrin C, Ohyanagi H, Seidel M, Giacomoni F, Reichstadt M, Alaux M, Gicquello E, Legeai F, Cerutti L, Numa H, Tanaka T, Mayer K, Itoh T, Quesneville H, Feuillet C. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes. FRONTIERS IN PLANT SCIENCE 2012; 3:5. [PMID: 22645565 PMCID: PMC3355818 DOI: 10.3389/fpls.2012.00005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/04/2012] [Indexed: 05/20/2023]
Abstract
In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future.
Collapse
Affiliation(s)
- Philippe Leroy
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise PascalClermont-Ferrand, France
- *Correspondence: Philippe Leroy and Catherine Feuillet, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise Pascal, 234 Avenue du Brézet, Domaine de Crouel, F-63000 Clermont-Ferrand, France. e-mail: ;
| | - Nicolas Guilhot
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise PascalClermont-Ferrand, France
| | - Hiroaki Sakai
- National Institute of Agrobiological SciencesTsukuba, Ibaraki, Japan
| | - Aurélien Bernard
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise PascalClermont-Ferrand, France
- ISEM UMR5554, Institut des Sciences de l’Evolution de MontpellierMontpellier, France
| | - Frédéric Choulet
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise PascalClermont-Ferrand, France
| | - Sébastien Theil
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise PascalClermont-Ferrand, France
| | - Sébastien Reboux
- UR 1164, Unité de Recherche en Génomique Informatique, Institut National de la Recherche AgronomiqueVersailles, France
| | - Naoki Amano
- National Institute of Agrobiological SciencesTsukuba, Ibaraki, Japan
- Center for iPS Cell Research and Application, Kyoto UniversitySakyo-ku Kyoto, Japan
| | - Timothée Flutre
- UR 1164, Unité de Recherche en Génomique Informatique, Institut National de la Recherche AgronomiqueVersailles, France
| | - Céline Pelegrin
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise PascalClermont-Ferrand, France
| | - Hajime Ohyanagi
- Tsukuba Division, Mitsubishi Space Software Co., Ltd. Tsukuba, Ibaraki, Japan
- Plant Genetics Laboratory, National Institute of GeneticsMishima, Shizuoka, Japan
| | - Michael Seidel
- Institute of Bioinformatics and System Biology/MIPS, Helmholtz Center MunichNeuherberg, Germany
| | - Franck Giacomoni
- UMR1019, Unité de Recherche en Nutrition Humaine, Institut National de la Recherche AgronomiqueSaint-Genès-Champanelle, France
| | - Mathieu Reichstadt
- UR1213, Unité de Recherche sur les Herbivores, Institut National de la Recherche AgronomiqueSaint-Genès-Champanelle, France
| | - Michael Alaux
- UR 1164, Unité de Recherche en Génomique Informatique, Institut National de la Recherche AgronomiqueVersailles, France
| | - Emmanuelle Gicquello
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise PascalClermont-Ferrand, France
| | - Fabrice Legeai
- UMR 1099, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, Institut National de la Recherche AgronomiqueLe Rheu, France
| | | | - Hisataka Numa
- National Institute of Agrobiological SciencesTsukuba, Ibaraki, Japan
| | - Tsuyoshi Tanaka
- National Institute of Agrobiological SciencesTsukuba, Ibaraki, Japan
| | - Klaus Mayer
- Institute of Bioinformatics and System Biology/MIPS, Helmholtz Center MunichNeuherberg, Germany
| | - Takeshi Itoh
- National Institute of Agrobiological SciencesTsukuba, Ibaraki, Japan
| | - Hadi Quesneville
- UR 1164, Unité de Recherche en Génomique Informatique, Institut National de la Recherche AgronomiqueVersailles, France
| | - Catherine Feuillet
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise PascalClermont-Ferrand, France
- *Correspondence: Philippe Leroy and Catherine Feuillet, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise Pascal, 234 Avenue du Brézet, Domaine de Crouel, F-63000 Clermont-Ferrand, France. e-mail: ;
| |
Collapse
|
19
|
Rustenholz C, Choulet F, Laugier C, Šafář J, Šimková H, Doležel J, Magni F, Scalabrin S, Cattonaro F, Vautrin S, Bellec A, Bergès H, Feuillet C, Paux E. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. PLANT PHYSIOLOGY 2011; 157:1596-608. [PMID: 22034626 PMCID: PMC3327205 DOI: 10.1104/pp.111.183921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.
Collapse
MESH Headings
- Base Sequence
- Brachypodium/genetics
- Centromere/genetics
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Plant/genetics
- DNA, Intergenic/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Gene Duplication
- Gene Expression Profiling
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/genetics
- Genome, Plant/genetics
- Genomic Islands/genetics
- Genomic Islands/physiology
- Molecular Sequence Data
- Multigene Family
- Oligonucleotide Array Sequence Analysis
- Oryza/genetics
- Physical Chromosome Mapping/methods
- Polyploidy
- Sequence Analysis, DNA
- Telomere/genetics
- Transcriptome
- Triticum/genetics
Collapse
|