1
|
Saleem A, Mumtaz PT, Saleem S, Manzoor T, Taban Q, Dar MA, Bhat B, Ahmad SM. Comparative transcriptome analysis of E. coli & Staphylococcus aureus infected goat mammary epithelial cells reveals genes associated with infection. Int Immunopharmacol 2024; 126:111213. [PMID: 37995572 DOI: 10.1016/j.intimp.2023.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Mastitis, an inflammatory disease of the mammary gland, imposes a significant financial burden on the dairy sector. However, the specific molecular mechanisms underlying their interactions with goat mammary epithelial cells (GMECs) remain poorly understood. This study aimed to investigate the transcriptomic response of GMECs during infection with E. coli and S. aureus, providing insights into the host-pathogen interactions. Differential expression of gene (DEGs) analysis was done to find genes and pathways dysregulated in the wake of infection. E. coli infection triggered a robust upregulation of immune response genes, including pro-inflammatory chemokines and cytokines as well as genes involved in tissue repair and remodeling. Conversely, S. aureus infection showed a more complex pattern, involving the activation of immune-related gene as well as those involved in autophagy, apoptosis and tissue remodeling. Furthermore, several key pathways, such as Toll-like receptor signaling and cytokine-cytokine receptor interaction, were differentially modulated in response to each pathogen. Understanding the specific responses of GMECs to these pathogens will provide a foundation for understanding the complex dynamics of infection and host response, offering potential avenues for the development of novel strategies to prevent and treat bacterial infections in both animals and humans.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | | | - Sahar Saleem
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Qamar Taban
- Nutrition & Health Sciences, University of Nebraska-Lincoln, United States
| | - Mashooq Ahmad Dar
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland
| | - Basharat Bhat
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| |
Collapse
|
2
|
Moschovas M, Pavlatos G, Basdagianni Z, Manessis G, Bossis I. A Cross-Sectional Study of Risk Factors Affecting Milk Quality in Dairy Cows. Animals (Basel) 2023; 13:3470. [PMID: 38003088 PMCID: PMC10668648 DOI: 10.3390/ani13223470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Despite years of research devoted to bovine mastitis, the disease remains a serious problem in dairy cattle, causing economic losses to the dairy industry worldwide due to reduced milk yield, lower milk quality, drug costs and early culling of cows. The aim of this study is to determine the importance of several risk factors affecting milk quality in dairy cows, as well as to highlight proper milking techniques. A cross-sectional study was performed in one Greek dairy farm with the inclusion of a total of 1004 Holstein Friesian cows in the study. The udder and teat traits were recorded for each cow, while individual milk samples were used to estimate the somatic cell count (SCC) and gross milk composition. The traits recorded were examined as potential risk factors affecting milk quality using the Akaike information criterion (AIC) and the algorithm stepAIC to select the best linear regression model which explains the data. Overall, the prevalence of mastitis was ca. 9%. With an increase in the lactation period, the SCC increased (p ≤ 0.05) while fat (p ≤ 0.05), protein (p ≤ 0.001) and lactose (p ≤ 0.001) content decreased. Teat hyperkeratosis increased the SCC (p ≤ 0.05) and decreased P content (p ≤ 0.05). Proper husbandry management and milking procedures are considered essential to maintain milk quality of high standards.
Collapse
Affiliation(s)
- Marios Moschovas
- Chrisodima Veterinary Services S.H., Andrea Syngrou Avenue 191, 17121 Athens, Greece;
| | - Georgios Pavlatos
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.P.); (G.M.)
| | - Zoitsa Basdagianni
- Laboratory of Animal Husbandry, Department of Agricultural Sciences, School of Agriculture, Forestry and Natural Resources, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece;
| | - Georgios Manessis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.P.); (G.M.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Agricultural Sciences, School of Agriculture, Forestry and Natural Resources, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Hasankhani A, Bakherad M, Bahrami A, Shahrbabak HM, Pecho RDC, Shahrbabak MM. Integrated analysis of inflammatory mRNAs, miRNAs, and lncRNAs elucidates the molecular interactome behind bovine mastitis. Sci Rep 2023; 13:13826. [PMID: 37620551 PMCID: PMC10449796 DOI: 10.1038/s41598-023-41116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational systems biology approaches, to gain a deeper understanding of the molecular interactome involved in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein-Friesian cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits of mastitis. Functional enrichment analysis was conducted to understand the functional behavior of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based modules and constructed an integrated regulatory network based on the modules of interest. To enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, protein-protein interaction (PPI) network construction, screening of hub-hub RNAs, and target prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six modules showed strong associations with clinical characteristics of mastitis. Functional enrichment analysis revealed that the turquoise module was directly related to inflammation persistence and mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for the development of molecular diagnosis and biological therapies for mastitis.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Maryam Bakherad
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hossein Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | - Mohammad Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
4
|
Brajnik Z, Ogorevc J. Candidate genes for mastitis resistance in dairy cattle: a data integration approach. J Anim Sci Biotechnol 2023; 14:10. [PMID: 36759924 PMCID: PMC9912691 DOI: 10.1186/s40104-022-00821-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammation of the mammary tissue (mastitis) is one of the most detrimental health conditions in dairy ruminants and is considered the most economically important infectious disease of the dairy sector. Improving mastitis resistance is becoming an important goal in dairy ruminant breeding programmes. However, mastitis resistance is a complex trait and identification of mastitis-associated alleles in livestock is difficult. Currently, the only applicable approach to identify candidate loci for complex traits in large farm animals is to combine different information that supports the functionality of the identified genomic regions with respect to a complex trait. METHODS To identify the most promising candidate loci for mastitis resistance we integrated heterogeneous data from multiple sources and compiled the information into a comprehensive database of mastitis-associated candidate loci. Mastitis-associated candidate genes reported in association, expression, and mouse model studies were collected by searching the relevant literature and databases. The collected data were integrated into a single database, screened for overlaps, and used for gene set enrichment analysis. RESULTS The database contains candidate genes from association and expression studies and relevant transgenic mouse models. The 2448 collected candidate loci are evenly distributed across bovine chromosomes. Data integration and analysis revealed overlaps between different studies and/or with mastitis-associated QTL, revealing promising candidate genes for mastitis resistance. CONCLUSION Mastitis resistance is a complex trait influenced by numerous alleles. Based on the number of independent studies, we were able to prioritise candidate genes and propose a list of the 22 most promising. To our knowledge this is the most comprehensive database of mastitis associated candidate genes and could be helpful in selecting genes for functional validation studies.
Collapse
Affiliation(s)
- Zala Brajnik
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230 Slovenia
| | - Jernej Ogorevc
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230, Slovenia.
| |
Collapse
|
5
|
Cao H, Fang C, Wang Q, Liu LL, Liu WJ. Transcript Characteristics on the Susceptibility Difference of Bovine Respiratory Disease. Int J Genomics 2023; 2023:9934684. [PMID: 37180342 PMCID: PMC10175020 DOI: 10.1155/2023/9934684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Bovine respiratory disease (BRD) is one of the major health issues in the cattle industry, resulting in significant financial crises globally. There is currently no good treatment, and cattle are made resistant to pneumonia through disease-resistant breeding. The serial blood samples from six Xinjiang brown (XJB) calves were collected for the RNA sequencing (RNA-seq). The obtained six samples were grouped into two groups, in each group as infected with BRD and healthy calves, respectively. In our study, the differential expression mRNAs were detected by using RNA-seq and constructed a protein-protein interaction (PPI) network related to the immunity in cattle. The key genes were identified by protein interaction network analysis, and the results from RNA-seq were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 488 differentially expressed (DE) mRNAs were identified. Importantly, the enrichment analysis of these identified DEGs classified them as mainly enriched in the regulation and immune response processes. The 16 hub genes were found to be related to immune pathways categorized by PPIs analysis. Results revealed that many hub genes were related to the immune response to respiratory disease. These results will provide the basis for a better understanding of the molecular mechanism of bovine resistance to BRD.
Collapse
Affiliation(s)
- Hang Cao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Chao Fang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Qiong Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Ling-Ling Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Wu-Jun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| |
Collapse
|
6
|
Darang E, Pezeshkian Z, Mirhoseini SZ, Ghovvati S. Identification of Key Genes and Potential Pathways Associated with Mastitis Induced by E. coli. Biochem Genet 2023; 61:202-220. [PMID: 35834114 PMCID: PMC9281188 DOI: 10.1007/s10528-022-10254-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Mastitis is one of the most important diseases of dairy cattle. It is an infectious disease leading to an inflammatory reaction in the cow's mammary gland. Escherichia coli is one of the common bacteria which induce mastitis in cows. The aim of this study was to identify key genes and potential pathways associated with mastitis induced by E. coli in dairy cattle using bioinformatics analysis. The gene expression profile of ten samples including five adjacent tissues from a quarter infected with Escherichia coli and five tissues from a healthy quarter of dairy cattle was assessed using GEO2R. Gene ontology and pathway analysis were performed using bioinformatics tools. A total of 156 differentially expressed genes were detected which 95 genes were upregulated and 61 genes were downregulated in adjacent tissue of quarter infected compared with healthy tissue. Cellular oxidant detoxification and oxidation-reduction process were the most significant biological process terms in gene ontology analysis. The most important pathways of DEGs were the biosynthesis of amino acids, p53 signaling pathway, and Metabolic pathways. Three important modules were identified and their path enrichment analysis was performed. There are 10 core genes, among which SOD2, COL1A2, COL3A1, POSTN, ALDH18A1, and CBS may be the main genes associated with mastitis, which can be considered as candidate genes in the prevention and carly diagnosis program of mastitis.
Collapse
Affiliation(s)
- Elham Darang
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, 41635-1314, Guilan, Iran
| | - Zahra Pezeshkian
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, 41635-1314, Guilan, Iran
| | - Seyed Ziaeddin Mirhoseini
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, 41635-1314, Guilan, Iran
| | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, 41635-1314, Guilan, Iran.
| |
Collapse
|
7
|
Wang M, Bissonnette N, Laterrière M, Dudemaine PL, Gagné D, Roy JP, Zhao X, Sirard MA, Ibeagha-Awemu EM. Methylome and transcriptome data integration reveals potential roles of DNA methylation and candidate biomarkers of cow Streptococcus uberis subclinical mastitis. J Anim Sci Biotechnol 2022; 13:136. [PMCID: PMC9639328 DOI: 10.1186/s40104-022-00779-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Mastitis caused by different pathogens including Streptococcus uberis (S. uberis) is responsible for huge economic losses to the dairy industry. In order to investigate the potential genetic and epigenetic regulatory mechanisms of subclinical mastitis due to S. uberis, the DNA methylome (whole genome DNA methylation sequencing) and transcriptome (RNA sequencing) of milk somatic cells from cows with naturally occurring S. uberis subclinical mastitis and healthy control cows (n = 3/group) were studied.
Results
Globally, the DNA methylation levels of CpG sites were low in the promoters and first exons but high in inner exons and introns. The DNA methylation levels at the promoter, first exon and first intron regions were negatively correlated with the expression level of genes at a whole-genome-wide scale. In general, DNA methylation level was lower in S. uberis-positive group (SUG) than in the control group (CTG). A total of 174,342 differentially methylated cytosines (DMCs) (FDR < 0.05) were identified between SUG and CTG, including 132,237, 7412 and 34,693 DMCs in the context of CpG, CHG and CHH (H = A or T or C), respectively. Besides, 101,612 methylation haplotype blocks (MHBs) were identified, including 451 MHBs that were significantly different (dMHB) between the two groups. A total of 2130 differentially expressed (DE) genes (1378 with up-regulated and 752 with down-regulated expression) were found in SUG. Integration of methylome and transcriptome data with MethGET program revealed 1623 genes with significant changes in their methylation levels and/or gene expression changes (MetGDE genes, MethGET P-value < 0.001). Functional enrichment of genes harboring ≥ 15 DMCs, DE genes and MetGDE genes suggest significant involvement of DNA methylation changes in the regulation of the host immune response to S. uberis infection, especially cytokine activities. Furthermore, discriminant correlation analysis with DIABLO method identified 26 candidate biomarkers, including 6 DE genes, 15 CpG-DMCs and 5 dMHBs that discriminated between SUG and CTG.
Conclusion
The integration of methylome and transcriptome of milk somatic cells suggests the possible involvement of DNA methylation changes in the regulation of the host immune response to subclinical mastitis due to S. uberis. The presented genetic and epigenetic biomarkers could contribute to the design of management strategies of subclinical mastitis and breeding for mastitis resistance.
Collapse
|
8
|
Transcriptomic Analysis of Circulating Leukocytes Obtained during the Recovery from Clinical Mastitis Caused by Escherichia coli in Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12162146. [PMID: 36009735 PMCID: PMC9404729 DOI: 10.3390/ani12162146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Escherichia coli is a bacterium which infects cow udders causing clinical mastitis, a potentially severe disease with welfare and economic consequences. During an infection, white blood cells (leukocytes) enter the udder to provide immune defence and assist tissue repair. We sequenced RNA derived from circulating leukocytes to investigate which genes are up- or down-regulated in dairy cows with naturally occurring cases of clinical mastitis in comparison with healthy control cows from the same farm. We also looked for genetic variations between infected and healthy cows. Blood samples were taken either EARLY (around 10 days) or LATE (after 4 weeks) during the recovery phase after diagnosis. Many genes (1090) with immune and inflammatory functions were up-regulated during the EARLY phase. By the LATE phase only 29 genes were up-regulated including six haemoglobin subunits, possibly important for the production of new red blood corpuscles. Twelve genetic variations which were associated with an increased or decreased expression of some important immune genes were identified between the infected and control cows. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite the cows having received prompt veterinary treatment, but they had largely recovered within 4 weeks. Genetic differences between cows may predispose some animals to infection. Abstract The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts’ phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein cows with naturally occurring cases of clinical mastitis, diagnosed using clinical symptoms and milk microbiology. Healthy lactation-matched cows served as controls (CONT, n = 6). Blood samples were collected at two time periods during the recovery phase post diagnosis: EARLY (10.3 ± 1.8 days, n = 6) and LATE (46.7 ± 11 days, n = 3). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21 and subjected to enrichment analysis. Variant calling was performed following GATKv3.8 best practice. The comparison of E. coli(+) EARLY and CONT cows found the up-regulation of 1090 DEGs, mainly with immune and inflammatory functions. The key signalling pathways involved NOD-like and interleukin-1 receptors and chemokines. Many up-regulated DEGs encoded antimicrobial peptides including cathelicidins, beta-defensins, S100 calcium binding proteins, haptoglobin and lactoferrin. Inflammation had largely resolved in the E. coli(+) LATE group, with only 29 up-regulated DEGs. Both EARLY and LATE cows had up-regulated DEGs encoding ATP binding cassette (ABC) transporters and haemoglobin subunits were also up-regulated in LATE cows. Twelve candidate genetic variants were identified in DEGs between the infected and CONT cows. Three were in contiguous genes WIPI1, ARSG and SLC16A6 on BTA19. Two others (RAC2 and ARHGAP26) encode a Rho-family GTPase and Rho GTPase-activating protein 26. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite prompt treatment and provide preliminary evidence for genetic differences between cows that may predispose them to infection.
Collapse
|
9
|
Umesh A, Guttula PK, Gupta MK. Prediction of potential molecular markers of bovine mastitis by meta-analysis of differentially expressed genes using combined p value and robust rank aggregation. Trop Anim Health Prod 2022; 54:269. [PMID: 35984525 DOI: 10.1007/s11250-022-03258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/29/2022] [Indexed: 12/01/2022]
Abstract
Bovine mastitis causes significant economic loss to the dairy industry by affecting milk quality and quantity. Escherichia coli and Staphylococcus aureus are the two common mastitis-causing bacteria among the consortia of mastitis pathogens, wherein E. coli is an opportunistic environmental pathogen, and S. aureus is a contagious pathogen. This study was designed to predict molecular markers of bovine mastitis by meta-analysis of differentially expressed genes (DEG) in E. coli- or S. aureus-infected mammary epithelial cells (MECs) using p value combination and robust rank aggregation (RRA) methods. High-throughput transcriptome of bovine MECs, infected with E. coli or S. aureus, were analyzed, and correlation of z-scores were computed for the expression datasets to identify the lineage profile and functional ontology of DEGs. Key pathways enriched in infected MECs were deciphered by Gene Set Enrichment Analysis (GSEA), following which combined p value and RRA were used to perform DEG meta-analysis to limit type I error in the analysis. The miRNA-gene networks were then built to uncover potential molecular markers of mastitis. Lineage profiling of MECs showed that the gene expression levels were associated with mammary tissue lineage. The up-regulated genes were enriched in immune-related pathways, whereas down-regulated genes influenced the cellular processes. GSEA analysis of DEGs deciphered the involvement of Toll-like receptor (TLR), and NF-kappa B signaling pathway during infection. Comparison after meta-analysis yielded with genes ZC3H12A, RND1, and MAP3K8 having significant expression levels in both E. coli and S. aureus dataset, and on evaluating miRNA-gene network, 7 pairs were common to both sets identifying them as potential molecular markers.
Collapse
Affiliation(s)
- Anushri Umesh
- Department of Biotechnology and Medical Engineering / Center for Bioinformatics and Computational Biology, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Praveen Kumar Guttula
- Department of Biotechnology and Medical Engineering / Center for Bioinformatics and Computational Biology, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering / Center for Bioinformatics and Computational Biology, National Institute of Technology Rourkela, Odisha, 769008, India.
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, Center for Bioinformatics and Computational Biology, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
10
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
11
|
Chen L, Liu X, Li Z, Wang J, Tian R, Zhang H. Integrated Analysis of Transcriptome mRNA and miRNA Profiles Reveals Self-Protective Mechanism of Bovine MECs Induced by LPS. Front Vet Sci 2022; 9:890043. [PMID: 35812870 PMCID: PMC9260119 DOI: 10.3389/fvets.2022.890043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022] Open
Abstract
Many studies have investigated the molecular crosstalk between mastitis-pathogens and cows by either miRNA or mRNA profiles. Here, we employed both miRNA and mRNA profiles to understand the mechanisms of the response of bovine mammary epithelial cells (bMECs) to lipopolysaccharide (LPS) by RNA-Seq. The total expression level of miRNAs increased while mRNAs reduced after LPS treatment. About 41 differentially expressed mRNAs and 45 differentially expressed miRNAs involved in inflammation were screened out. We found the NFκB-dependent chemokine, CXCL1, CXCL3, CXCL6, IL8, and CX3CL1 to be strongly induced. The anti-apoptosis was active because BCL2A1 and BIRC3 significantly increased with a higher expression. The effects of anti-microbe and inflammation were weakly activated because TNF, IL1, CCL20, CFB, S100A, MMP9, and NOS2A significantly increased but with a low expression, IL6 and β-defensin decreased. These activities were supervised by the NFKBIA to avoid excessive damage to bMECs. The bta-let-7a-5p, bta-miR-30a-5p, bta-miR-125b, and bta-miR-100 were essential to regulate infection process in bMECs after LPS induction. Moreover, the lactation potential of bMECs was undermined due to significantly downregulated SOSTDC1, WNT7B, MSX1, and bta-miR-2425-5p. In summary, bMECs may not be good at going head-to-head with the pathogens; they seem to be mainly charged with sending out signals for help and anti-apoptosis for maintaining lives after LPS induction.
Collapse
Affiliation(s)
- Ling Chen
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- *Correspondence: Xiaolin Liu
| | - Zhixiong Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Jian Wang
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Rongfu Tian
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
Lippolis JD, Putz EJ, Reinhardt TA, Casas E, Weber WJ, Crooker BA. Effect of Holstein genotype on immune response to an intramammary Escherichia coli challenge. J Dairy Sci 2022; 105:5435-5448. [DOI: 10.3168/jds.2021-21166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
|
13
|
Mumtaz PT, Taban Q, Bhat B, Ahmad SM, Dar MA, Kashoo ZA, Ganie NA, Shah RA. Expression of lncRNAs in response to bacterial infections of goat mammary epithelial cells reveals insights into mammary gland diseases. Microb Pathog 2021; 162:105367. [PMID: 34963641 DOI: 10.1016/j.micpath.2021.105367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Mastitis or inflammation of the mammary gland is a highly economic and deadly alarming disease for the dairy sector as well as policymakers caused by microbial infection. Transcriptomic and proteomic approaches have been widely employed to identify the underlying molecular mechanisms of bacterial infections in the mammary gland. Numerous differentially expressed mRNAs, miRNAs, and proteins together with their associated signaling pathways have been identified during bacterial infection, paving the way for analysis of their biological functions. Long noncoding RNAs (lncRNAs) are important regulators of multiple biological processes. However, little is known regarding their role in bacterial infection in mammary epithelial cells. Hence, RNA-sequencing was performed by infecting primary mammary epithelial cells (pMECs) with both gram-negative (E. coli) and gram-positive bacteria (S. aureus). Using stringent pipeline, a set of 1957 known and 1175 novel lncRNAs were identified, among which, 112 lncRNAs were found differentially expressed in bacteria challenged PMECs compared with the control. Additionally, potential targets of the lncRNAs were predicted in cis- and trans-configuration. KEGG analysis revealed that DE lncRNAs were associated with at least 15 immune-related pathways. Therefore, our study revealed that bacterial challenge triggers the expression of lncRNAs associated with immune response and defense mechanisms in goat mammary epithelial cells.
Collapse
Affiliation(s)
- Peerzada Tajamul Mumtaz
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India; Department of Biochemistry, School of Life Sciences Jaipur National University, India
| | - Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India.
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Zahid Amin Kashoo
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Nazir A Ganie
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| |
Collapse
|
14
|
Shangraw EM, McFadden TB. Graduate Student Literature Review: Systemic mediators of inflammation during mastitis and the search for mechanisms underlying impaired lactation. J Dairy Sci 2021; 105:2718-2727. [PMID: 34955254 DOI: 10.3168/jds.2021-20776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
The negative effect of mastitis on lactation is well established, yet the mechanisms causing reduced milk production in the afflicted dairy cow are not. As one of the major inflammatory diseases in the dairy industry, mastitis has rightly received considerable research interest for decades. However, the focus on distinct, pathologic effects in mastitic glands has largely overlooked systemic effects on noninflamed mammary glands. This is particularly evident in the severe, acute response to the potent inflammatory mediator, lipopolysaccharide (LPS). Whereas secretory cell death, impaired tight junctions, and migration of leukocytes are locally restricted to an inflamed, LPS-challenged gland, changes in milk yield and milk components may be detectable in all mammary glands. Further, these differences extend to the mammary transcriptome. Notably, few transcriptomic studies have been designed to test for effects of systemic mediators of inflammation on gene expression. Relevant changes in the noninflamed mammary gland, identified through biochemical analyses and transcriptional studies, warrant further research. Current evidence suggests proinflammatory cytokines play a role in regulating lactose synthesis, but additional candidates and mechanisms continue to be identified. Ultimately, understanding how systemic mediators of inflammation affect mammary function may lead to the development of interventions that enable more efficient milk production without sacrificing the benefits of inflammation.
Collapse
Affiliation(s)
- E M Shangraw
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| | - T B McFadden
- Division of Animal Sciences, University of Missouri, Columbia 65211
| |
Collapse
|
15
|
Ghahramani N, Shodja J, Rafat SA, Panahi B, Hasanpur K. Integrative Systems Biology Analysis Elucidates Mastitis Disease Underlying Functional Modules in Dairy Cattle. Front Genet 2021; 12:712306. [PMID: 34691146 PMCID: PMC8531812 DOI: 10.3389/fgene.2021.712306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mastitis is the most prevalent disease in dairy cattle and one of the most significant bovine pathologies affecting milk production, animal health, and reproduction. In addition, mastitis is the most common, expensive, and contagious infection in the dairy industry. Methods: A meta-analysis of microarray and RNA-seq data was conducted to identify candidate genes and functional modules associated with mastitis disease. The results were then applied to systems biology analysis via weighted gene coexpression network analysis (WGCNA), Gene Ontology, enrichment analysis for the Kyoto Encyclopedia of Genes and Genomes (KEGG), and modeling using machine-learning algorithms. Results: Microarray and RNA-seq datasets were generated for 2,089 and 2,794 meta-genes, respectively. Between microarray and RNA-seq datasets, a total of 360 meta-genes were found that were significantly enriched as "peroxisome," "NOD-like receptor signaling pathway," "IL-17 signaling pathway," and "TNF signaling pathway" KEGG pathways. The turquoise module (n = 214 genes) and the brown module (n = 57 genes) were identified as critical functional modules associated with mastitis through WGCNA. PRDX5, RAB5C, ACTN4, SLC25A16, MAPK6, CD53, NCKAP1L, ARHGEF2, COL9A1, and PTPRC genes were detected as hub genes in identified functional modules. Finally, using attribute weighting and machine-learning methods, hub genes that are sufficiently informative in Escherichia coli mastitis were used to optimize predictive models. The constructed model proposed the optimal approach for the meta-genes and validated several high-ranked genes as biomarkers for E. coli mastitis using the decision tree (DT) method. Conclusion: The candidate genes and pathways proposed in this study may shed new light on the underlying molecular mechanisms of mastitis disease and suggest new approaches for diagnosing and treating E. coli mastitis in dairy cattle.
Collapse
Affiliation(s)
- Nooshin Ghahramani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
16
|
Genome-Wide Association Study Using Whole-Genome Sequence Data for Fertility, Health Indicator, and Endoparasite Infection Traits in German Black Pied Cattle. Genes (Basel) 2021; 12:genes12081163. [PMID: 34440337 PMCID: PMC8391191 DOI: 10.3390/genes12081163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
This genome-wide association study (GWAS) aimed to identify sequence variants (SVs) and candidate genes associated with fertility and health in endangered German Black Pied cattle (DSN) based on whole-genome sequence (WGS) data. We used 304 sequenced DSN cattle for the imputation of 1797 genotyped DSN to WGS. The final dataset included 11,413,456 SVs of 1886 cows. Cow traits were calving-to-first service interval (CTFS), non-return after 56 days (NR56), somatic cell score (SCS), fat-to-protein ratio (FPR), and three pre-corrected endoparasite infection traits. We identified 40 SVs above the genome-wide significance and suggestive threshold associated with CTFS and NR56, and three important potential candidate genes (ARHGAP21, MARCH11, and ZNF462). For SCS, most associations were observed on BTA 25. The GWAS revealed 61 SVs, a cluster of 10 candidate genes on BTA 13, and 7 pathways for FPR, including key mediators involved in milk fat synthesis. The strongest associations for gastrointestinal nematode and Dictyocaulus viviparus infections were detected on BTA 8 and 24, respectively. For Fasciola hepatica infections, the strongest associated SVs were located on BTA 4 and 7. We detected 200 genes for endoparasite infection traits, related to 16 pathways involved in host immune response during infection.
Collapse
|
17
|
Jaiswal S, Jagannadham J, Kumari J, Iquebal MA, Gurjar AKS, Nayan V, Angadi UB, Kumar S, Kumar R, Datta TK, Rai A, Kumar D. Genome Wide Prediction, Mapping and Development of Genomic Resources of Mastitis Associated Genes in Water Buffalo. Front Vet Sci 2021; 8:593871. [PMID: 34222390 PMCID: PMC8253262 DOI: 10.3389/fvets.2021.593871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Water buffalo (Bubalus bubalis) are an important animal resource that contributes milk, meat, leather, dairy products, and power for plowing and transport. However, mastitis, a bacterial disease affecting milk production and reproduction efficiency, is most prevalent in populations having intensive selection for higher milk yield, especially where the inbreeding level is also high. Climate change and poor hygiene management practices further complicate the issue. The management of this disease faces major challenges, like antibiotic resistance, maximum residue level, horizontal gene transfer, and limited success in resistance breeding. Bovine mastitis genome wide association studies have had limited success due to breed differences, sample sizes, and minor allele frequency, lowering the power to detect the diseases associated with SNPs. In this work, we focused on the application of targeted gene panels (TGPs) in screening for candidate gene association analysis, and how this approach overcomes the limitation of genome wide association studies. This work will facilitate the targeted sequencing of buffalo genomic regions with high depth coverage required to mine the extremely rare variants potentially associated with buffalo mastitis. Although the whole genome assembly of water buffalo is available, neither mastitis genes are predicted nor TGP in the form of web-genomic resources are available for future variant mining and association studies. Out of the 129 mastitis associated genes of cattle, 101 were completely mapped on the buffalo genome to make TGP. This further helped in identifying rare variants in water buffalo. Eighty-five genes were validated in the buffalo gene expression atlas, with the RNA-Seq data of 50 tissues. The functions of 97 genes were predicted, revealing 225 pathways. The mastitis proteins were used for protein-protein interaction network analysis to obtain additional cross-talking proteins. A total of 1,306 SNPs and 152 indels were identified from 101 genes. Water Buffalo-MSTdb was developed with 3-tier architecture to retrieve mastitis associated genes having genomic coordinates with chromosomal details for TGP sequencing for mining of minor alleles for further association studies. Lastly, a web-genomic resource was made available to mine variants of targeted gene panels in buffalo for mastitis resistance breeding in an endeavor to ensure improved productivity and the reproductive efficiency of water buffalo.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Juli Kumari
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anoop Kishor Singh Gurjar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Varij Nayan
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Buffaloes, Hisar, India
| | - Ulavappa B Angadi
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sunil Kumar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, Indian Council of Agricultural Research (ICAR)-National Dairy research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, Indian Council of Agricultural Research (ICAR)-National Dairy research Institute, Karnal, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
18
|
Shangraw EM, Rodrigues RO, Choudhary RK, Zhao FQ, McFadden TB. Hypogalactia in mammary quarters adjacent to lipopolysaccharide-infused quarters is associated with transcriptional changes in immune genes. J Dairy Sci 2021; 104:9276-9286. [PMID: 34053759 DOI: 10.3168/jds.2020-20048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Infusion of lipopolysaccharides (LPS) into a mammary gland can provoke inflammatory responses and impair lactation in both the infused gland and neighboring glands. To gain insight into the mechanisms controlling the spatiotemporal response to localized mastitis in lactating dairy cows, we performed RNA sequencing on mammary tissue from quarters infused with LPS, neighboring quarters in the same animals, and control quarters from untreated animals at 3 and 12 h postinfusion. Differences in gene expression were annotated to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Comparing mammary transcriptomes from all 3 treatments revealed 3,088 and 1,644 differentially expressed (DE) genes at 3 and 12 h, respectively. Of these genes, >95% were DE only in LPS-infused quarters and represented classical responses to LPS: inflammation, apoptosis, tissue remodeling, and altered cell signaling and metabolism. Although relatively few genes were DE in neighboring quarters (56 at 3 h; 74 at 12 h), these represented several common pathways. At 3 h, tumor necrosis factor (TNF), nuclear factor-κB, and nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathways were identified by the upregulation of anti-inflammatory (NFKBIA, TNFAIP3) and cell adhesion molecule (VCAM1, ICAM1) genes in neighboring glands. Additionally, at 12 h, several genes linked to 1-carbon and serine metabolism were upregulated. Some responses were also regulated over time. The proinflammatory response in LPS-infused glands diminished between 3 and 12 h, indicating tight control over transcription to re-establish homeostasis. In contrast, 2 glucocorticoid-responsive genes, FKBP5 and ZBTB16, were among the top DE genes upregulated in neighboring quarters at both time points, indicating potential regulation by glucocorticoids. We conclude that a transient, systemic immune response was sufficient to disrupt lactation in neighboring glands. This response may be mediated directly by proinflammatory factors from the LPS-infused gland or indirectly by secondary factors released in response to systemic inflammatory signals.
Collapse
Affiliation(s)
- E M Shangraw
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - R O Rodrigues
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - R K Choudhary
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - F-Q Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - T B McFadden
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| |
Collapse
|
19
|
Ex vivo tumor necrosis factor-alpha response of blood leukocytes in Danish Holstein-Friesian cows stimulated by Gram-positive and Gram-negative bacteria isolated from mastitic milk. Vet Immunol Immunopathol 2021; 234:110204. [PMID: 33611159 DOI: 10.1016/j.vetimm.2021.110204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 01/15/2023]
Abstract
A whole blood stimulation assay was used to investigate the effects of parity, number of weeks after calving and Gram-positive and Gram-negative bacteria on the ex vivo TNF-α responsiveness of Danish Holstein-Friesian cows of first to third lactation (n = 28). Blood samples were collected in weeks 2, 3, 5 and 8 after parturition and stimulated with Escherichia coli LPS (10 μg/mL), Staphylococcus aureus peptidoglycan (PGN, 10 μg/mL) and dead Escherichia coli, Streptococcus uberis, Staphylococcus aureus, and Streptococcus dysgalactiae at a concentration of 2.5 × 106/mL. The antibiotic polymyxin-B (100 μg/mL) was added to the Gram-positive bacteria to avoid the influence of environmental endotoxin by ELISA test. Overall, parity had no effect, whereas number of weeks after calving altered the TNF-α responsiveness of the majority of the stimulants. Ex vivo, Gram-positive bacteria always resulted in a higher TNF-α response than Gram-negative bacteria with large differences within the individual cows. High correlations were found within the Gram-negative stimulants panel (r = 0.83) and within the Gram-positive (r = 0.81 to 0.86) stimulants panel except PGN. The higher TNF-α responsiveness by Gram-positive bacteria is in agreement with in vitro studies in human but in contrast to the in vivo TNF-α responsiveness in bovine udder.
Collapse
|
20
|
Khan MZ, Khan A, Xiao J, Ma Y, Ma J, Gao J, Cao Z. Role of the JAK-STAT Pathway in Bovine Mastitis and Milk Production. Animals (Basel) 2020; 10:ani10112107. [PMID: 33202860 PMCID: PMC7697124 DOI: 10.3390/ani10112107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The cytokine-activated Janus kinase (JAK)—signal transducer and activator of transcription (STAT) pathway has an important role in the regulation of immunity and inflammation. In addition, the signaling of this pathway has been reported to be associated with mammary gland development and milk production. Because of such important functions, the JAK-STAT pathway has been widely targeted in both human and animal diseases as a therapeutic agent. Recently, the JAK2, STATs, and inhibitors of the JAK-STAT pathway, especially cytokine signaling suppressors (SOCSs), have been reported to be associated with milk production and mastitis-resistance phenotypic traits in dairy cattle. Thus, in the current review, we attempt to overview the development of the JAK-STAT pathway role in bovine mastitis and milk production. Abstract The cytokine-activated Janus kinase (JAK)—signal transducer and activator of transcription (STAT) pathway is a sequence of communications between proteins in a cell, and it is associated with various processes such as cell division, apoptosis, mammary gland development, lactation, anti-inflammation, and immunity. The pathway is involved in transferring information from receptors on the cell surface to the cell nucleus, resulting in the regulation of genes through transcription. The Janus kinase 2 (JAK2), signal transducer and activator of transcription A and B (STAT5 A & B), STAT1, and cytokine signaling suppressor 3 (SOCS3) are the key members of the JAK-STAT pathway. Interestingly, prolactin (Prl) also uses the JAK-STAT pathway to regulate milk production traits in dairy cattle. The activation of JAK2 and STATs genes has a critical role in milk production and mastitis resistance. The upregulation of SOCS3 in bovine mammary epithelial cells inhibits the activation of JAK2 and STATs genes, which promotes mastitis development and reduces the lactational performance of dairy cattle. In the current review, we highlight the recent development in the knowledge of JAK-STAT, which will enhance our ability to devise therapeutic strategies for bovine mastitis control. Furthermore, the review also explores the role of the JAK-STAT pathway in the regulation of milk production in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
- Correspondence: ; Tel.: +86-10-62733746
| |
Collapse
|
21
|
Miles AM, Huson HJ. Graduate Student Literature Review: Understanding the genetic mechanisms underlying mastitis. J Dairy Sci 2020; 104:1183-1191. [PMID: 33162090 DOI: 10.3168/jds.2020-18297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/16/2020] [Indexed: 01/24/2023]
Abstract
Mastitis is the costliest disease facing dairy producers today; consequently, it has been the subject of substantial research focus. Efforts have evolved from an initial focus on understanding the etiology of intramammary infections to the application of preventative measures, including attempts to breed cows that are resistant to infection. However, breeding for resistance to infection has proven difficult, given the complexity of the disease and the high expense associated with assembling high-quality genotypes and phenotypes. This review provides a brief background on mastitis; illustrates current understanding of the genetics influencing mastitis and the application of this knowledge; and discusses challenges and limitations in understanding these mechanisms and applying these findings to genetic improvement strategies.
Collapse
Affiliation(s)
- Asha M Miles
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
22
|
Özdemir S. Expression profiling of microRNAs in the Mycoplasma bovis infected mammary gland tissue in Holstein Friesian cattle. Microb Pathog 2020; 147:104426. [PMID: 32768518 DOI: 10.1016/j.micpath.2020.104426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/22/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022]
Abstract
The immune response associated with mastitis caused by Mycoplasma bovis is a very complicated biological process in several type of cells, including immune cells, mammary epithelial cells, and endothelial cells. Thus, revealing of the microRNAs in the Mycoplasma bovis infected mammary gland tissues is particularly important for the immune response mechanism to Mycoplasma bovis. Firstly, 20 mammary gland tissue samples were collected from Holstein Friesian cattle that was located in Erzurum province at 2018 and screened for Mycoplasma bovis. Then, total RNA was isolated from Mycoplasma bovis infected tissues and high-throughput sequencing was performed. After bioinformatics analysis, GO and KEGG analysis of target genes of identified microRNAs were conducted. In this study, a total of 616 microRNAs were found. Our results revealed that 24 of the known microRNAs were expressed differently and 13 of the novel microRNAs were expressed differently in Mycoplasma bovis positive tissues. The target genes of these microRNAs were found to be associated with especially inflammation pathways, including B cell and T cell receptor signaling, Fc gamma R-mediated, phagocytosis/chemokine signaling, and MAPK signaling. In conclusion, this study demonstrated that identified miRNAs may be involved in the signaling pathways during mastitis caused by Mycoplasma bovis.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Atatürk University, Faculty of Veterinary Medicine, Department of Genetics, Erzurum, Turkey.
| |
Collapse
|
23
|
Bakhtiarizadeh MR, Mirzaei S, Norouzi M, Sheybani N, Vafaei Sadi MS. Identification of Gene Modules and Hub Genes Involved in Mastitis Development Using a Systems Biology Approach. Front Genet 2020; 11:722. [PMID: 32754201 PMCID: PMC7371005 DOI: 10.3389/fgene.2020.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Mastitis is defined as the inflammation of the mammary gland, which impact directly on the production performance and welfare of dairy cattle. Since, mastitis is a multifactorial complex disease and the molecular pathways underlying this disorder have not been clearly understood yet, a system biology approach was used in this study to a better understanding of the molecular mechanisms behind mastitis. Methods Publicly available RNA-Seq data containing samples from milk of five infected and five healthy Holstein cows at five time points were retrieved. Gene Co-expression network analysis (WGCNA) approach and functional enrichment analysis were then applied with the aim to find the non-preserved module of genes that their connectivity were altered under infected condition. Hub genes were identified in the non-preserved modules and were subjected to protein-protein interactions (PPI) network construction. Results Among the 25 modules identified, eight modules were non-preserved and were also biologically associated with inflammation, immune response and mastitis development. Interestingly most of the hub genes in the eight modules were also densely connected in the PPI network. Of the hub genes, 250 genes were hubs in both co-expression and PPI networks and most of them were reported to play important roles in immune response or inflammatory pathways. The blue module was highly enriched in inflammatory responses and STAT1 was suggested to play an important role in mastitis development by regulating the immune related genes in this module. Moreover, a set of highly connected genes were identified such as BIRC3, PSMA6, FYN, F11R, NFKBIZ, NFKBIA, GRO1, PHB, CD3E, IL16, GSN, SOCS2, HCK, VAV1 and TLR6, which have been established to be critical for mastitis pathogenesis. Conclusion This study improved the understanding of the mechanisms underlying bovine mastitis and suggested eight non-preserved modules along with several most important genes with promising potential in etiology of mastitis.
Collapse
Affiliation(s)
| | - Shabnam Mirzaei
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Milad Norouzi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | |
Collapse
|
24
|
Li L, Chen X, Chen Z. Identification of Key Candidate Genes in Dairy Cow in Response to Escherichia coli Mastitis by Bioinformatical Analysis. Front Genet 2019; 10:1251. [PMID: 31921295 PMCID: PMC6915111 DOI: 10.3389/fgene.2019.01251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
At present, bovine mastitis is one of the most costly diseases affecting animal health and welfare. Escherichia coli (E. coli) is considered to be one of the main pathogens causing mastitis with clinical signs in dairy cattle. However, the cure rate of E. coli mastitis is low, and the pathogenesis of E. coli mastitis is not completely known. In order to develop new strategies for the rapid detection of E. coli mastitis, a comprehensive molecular investigation of E. coli mastitis is necessary. Hence, this study integrated three microarray data sets to identify the potential key candidate genes in dairy cow in response to E. coli mastitis. Differentially expressed genes (DEGs) were screened in mammary gland tissues with live E. coli infection. Furthermore, the pathways enrichment of DEGs were analyzed, and the protein–protein interaction (PPI) network was performed. In total, 105 shared DEGs were identified from the three data sets. The DEGs were significantly enriched in biological processes mainly involved in immunity. The PPI network of DEGs was constructed with 102 nodes and 546 edges. The module with the highest score through MCODE analysis was filtered from PPI; 18 central node genes were identified. However, in addition to immune-related pathways, some of the 18 DEGs were involved in signaling pathways triggered by other diseases. Considering the specificity of biomarkers for rapid detection, IL8RB, CXCL6, and MMP9 were identified as the most potential biomarker for E. coli mastitis. In conclusion, the novel DEGs and pathways identified in this study can help to improve the diagnosis and treatment strategies for E. coli mastitis in cattle.
Collapse
Affiliation(s)
- Liabin Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Xiuli Chen
- Animal Disease Prevention and Control Center of Hanzhong, Hanzhong, China
| | - Zeshi Chen
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
25
|
Transcriptomic analysis on the promoter regions discover gene networks involving mastitis in cattle. Microb Pathog 2019; 137:103801. [PMID: 31618669 DOI: 10.1016/j.micpath.2019.103801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/27/2019] [Accepted: 10/11/2019] [Indexed: 01/11/2023]
Abstract
Mastitis is one of the costliest diseases in dairy farms caused by infection of different microorganisms such as Escherichia coli, Streptococcus uberis and Staphylococcus aureus. Promoters are significantly involved in regulating gene expression and shedding light on the mechanisms of transcriptional regulation in physiological and immunological processes of the infections. Exploiting regulatory elements such as transcription factor binding sites (TFBSs modules) on the promoter region could reveal co-regulated genes, which allow screating regulatory models and executing a cross-sectional analysis on several databases. In this study, the promoter regions of 11 genes associated with contagious mastitis including CCL4, CXCL8, STAT3, IKBKB, MAPK14, NFKBIA, NFKB1, TNF, IL18, IL6, and HCK were investigated to predict the activating regulatory modules on promoters and to discover the key related transcription factors. By exploring the promoter regions, 228 genes were discovered comprising the same transcription factors modules. Out of 228 genes, 36 were validated using five microarray datasets. The promoter research of these genes revealed that as many as 7 down-regulated and 12 up-regulated genes are predictable in the network. The genes whose functions were associated with the initial gene list (11 genes), were identified by DAVID queries with TFBSs models implying that the approach provides a clear image of the underlying regulatory mechanism of gene expression profile and offers a novel approach in designing gene networks in cattle.
Collapse
|
26
|
Rosa F, Moridi M, Osorio JS, Lohakare J, Trevisi E, Filley S, Estill C, Bionaz M. 2,4-Thiazolidinedione in Well-Fed Lactating Dairy Goats: II. Response to Intra-Mammary Infection. Vet Sci 2019; 6:vetsci6020052. [PMID: 31195666 PMCID: PMC6632143 DOI: 10.3390/vetsci6020052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/17/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
In a prior experiment, treatment of goats with the putative PPARγ agonist 2,4-thiazolidinedione (2,4-TZD) ameliorated the response to intramammary infection without evidence of PPARγ activation. The lack of PPARγ activation was possibly due to deficiency of vitamin A and/or a poor body condition of the animals. Therefore, the present study hypothesized that activation of PPARγ by 2,4-TZD in goats supplemented with adequate amounts of vitamin A can improve the response to sub-clinical mastitis. Lactating goats receiving a diet that met National Research Council requirements, including vitamin A, were injected with 8 mg/kg BW of 2,4-TZD (n = 6) or saline (n = 6; control (CTR)) daily. Two weeks into treatment, all goats received Streptococcus uberis (IMI) in the right mammary gland. Blood biomarkers of metabolism, inflammation, and oxidative status plus leukocytes phagocytosis were measured. Mammary epithelial cells (MEC) and macrophages were isolated from milk and liver tissue collected for gene expression analysis. Milk fat was maintained by treatment with 2,4-TZD, but decreased in CTR, after IMI. Haptoglobin was increased after IMI only in 2,4-TZD without any effect on negative acute phase proteins, indicating an improved liver function. 2,4-TZD vs. CTR had a greater amount of globulin. The expression of inflammation-related genes was increased by IMI in both macrophages and MEC. Except for decreasing expression of SCD1 in MEC, 2,4-TZD did not affect the expression of measured genes. Results confirmed the successful induction of sub-clinical mastitis but did not confirm the positive effect of 2,4-TZD on the response to IMI in well-fed goats.
Collapse
Affiliation(s)
- Fernanda Rosa
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Misagh Moridi
- Department of Animal Science, University of Guilan, Kilometer 5 of Rasht-Qazvin Highway, Rasht 4199613776, Iran.
| | - Johan S Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Jayant Lohakare
- Department of Animal Biotechnology, Kangwon National University, KNU Ave 1, Chuncheon 200-701, Korea.
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza PC, Italy.
| | - Shelby Filley
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Charles Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
27
|
Gao J, Li T, Lu Z, Wang X, Zhao X, Ma Y. Proteomic Analyses of Mammary Glands Provide Insight into the Immunity and Metabolism Pathways Associated with Clinical Mastitis in Meat Sheep. Animals (Basel) 2019; 9:ani9060309. [PMID: 31159303 PMCID: PMC6617192 DOI: 10.3390/ani9060309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Clinical mastitis is one of the most common diseases in sheep and is of major economic concern due to treatment costs, inadequate lamb growth and premature eliminate of ewes. To preliminarily explore possible regulatory roles of proteins involved in the host-pathogen interactions during intramammary infection triggered by this disease in meat sheep, mammary tissues were harvested from sheep with healthy and clinical mastitis caused by natural infection, and the differentially expressed proteins were identified in an infected group when compared to a healthy group, using comparative proteomics based on two-dimensional electrophoresis. Further enrichment analyses indicated that most of the differentially expressed proteins mainly engaged in regulating immune responses and metabolisms. These findings offer candidate proteins for further studies on molecular mechanisms of host defense response and metabolism in sheep cases. Abstract Clinical mastitis is still an intractable problem for sheep breeding. The natural immunologic mechanisms of the mammary gland against infections are not yet understood. For a better understanding of the disease-associated proteins during clinical mastitis in meat sheep, we performed two-dimensional electrophoresis (2-DE)-based comparative proteomic analyses of mammary tissues, including from healthy mammary tissues (HMTs) and from mammary tissues with clinical mastitis (CMMTs). The 2-DE results showed that a total of 10 up-regulated and 16 down-regulated proteins were identified in CMMTs when compared to HMTs. Of these, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses revealed that most proteins were associated with immune responses or metabolisms. The results of qRT-PCR and Western blot for randomly selected four differentially expressed proteins (DEPs) including superoxide dismutase [Mn] (SOD2), annexin A2 (ANAX2), keratin 10 (KRT10) and endoplasmic reticulum resident protein 29 (ERP29) showed that their expression trends were consistent with 2-DE results except ANXA2 mRNA levels. This is an initial report describing the 2-DE-based proteomics study of the meat sheep mammary gland with clinical mastitis caused by natural infection, which provides additional insight into the immune and metabolic mechanisms during sheep mastitis.
Collapse
Affiliation(s)
- Jianfeng Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, China.
| | - Zengkui Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, China.
| |
Collapse
|
28
|
Brodhagen J, Weikard R, Thom U, Heimes A, Günther J, Hadlich F, Zerbe H, Petzl W, Meyerholz MM, Hoedemaker M, Schuberth HJ, Engelmann S, Kühn C. Development and evaluation of a milk protein transcript depletion method for differential transcriptome analysis in mammary gland tissue. BMC Genomics 2019; 20:400. [PMID: 31117949 PMCID: PMC6530097 DOI: 10.1186/s12864-019-5781-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/07/2019] [Indexed: 11/30/2022] Open
Abstract
Background In the mammary gland transcriptome of lactating dairy cows genes encoding milk proteins are highly abundant, which can impair the detection of lowly expressed transcripts and can bias the outcome in global transcriptome analyses. Therefore, the aim of this study was to develop and evaluate a method to deplete extremely highly expressed transcripts in mRNA from lactating mammary gland tissue. Results Selective RNA depletion was performed by hybridization of antisense oligonucleotides targeting genes encoding the caseins (CSN1S1, CSN1S2, CSN2 and CSN3) and whey proteins (LALBA and PAEP) within total RNA followed by RNase H-mediated elimination of the respective transcripts. The effect of the RNA depletion procedure was monitored by RNA sequencing analysis comparing depleted and non-depleted RNA samples from Escherichia coli (E. coli) challenged and non-challenged udder tissue of lactating cows in a proof of principle experiment. Using RNase H-mediated RNA depletion, the ratio of highly abundant milk protein gene transcripts was reduced in all depleted samples by an average of more than 50% compared to the non-depleted samples. Furthermore, the sensitivity for discovering transcripts with marginal expression levels and transcripts not yet annotated was improved. Finally, the sensitivity to detect significantly differentially expressed transcripts between non-challenged and challenged udder tissue was increased without leading to an inadvertent bias in the pathogen challenge-associated biological signaling pathway patterns. Conclusions The implementation of selective RNase H-mediated RNA depletion of milk protein gene transcripts from the mammary gland transcriptome of lactating cows will be highly beneficial to establish comprehensive transcript catalogues of the tissue that better reflects its transcriptome complexity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5781-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johanna Brodhagen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Ulrike Thom
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Annika Heimes
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Juliane Günther
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany
| | - Holm Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764, Oberschleissheim, Germany
| | - Wolfgang Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764, Oberschleissheim, Germany
| | - Marie M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764, Oberschleissheim, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany
| | - Hans-Joachim Schuberth
- Immunology Unit, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany
| | - Susanne Engelmann
- Institute for Microbiology, Technical University Braunschweig, 38106, Braunschweig, Germany.,Microbial Proteomics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Christa Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196, Dummerstorf, Germany. .,Agricultural and Environmental Faculty, University Rostock, 18059, Rostock, Germany.
| |
Collapse
|
29
|
Caffeic Acid Prevented LPS-Induced Injury of Primary Bovine Mammary Epithelial Cells through Inhibiting NF- κB and MAPK Activation. Mediators Inflamm 2019; 2019:1897820. [PMID: 31182930 PMCID: PMC6515104 DOI: 10.1155/2019/1897820] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
In our previous study, lipopolysaccharide (LPS) significantly reduced the cell viability of primary bovine mammary epithelial cells (bMEC) leading to cell apoptosis, which were prevented by caffeic acid (CA) through inhibiting NF-κB activation and reducing proinflammatory cytokine expression. While the underlying mechanism remains unclear, here, we determined that LPS induced the extensive microstructural damage of bMEC, especially the mitochondria and endoplasmic reticulum. Then, the obvious reduction of mitochondrial membrane potential and expression changes of apoptosis-associated proteins (Bcl-2, Bax, and casepase-3) indicated that apoptosis signaling through the mitochondria should be responsible for the cell viability decrease. Next, the high-throughput cDNA sequencing (RNA-Seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were employed to verify that the MAPK and JAK-STAT signaling pathways also were the principal targets of LPS. Following, the critical proteins (ERK, JNK, p38, and c-jun) of the MAPK signaling pathways were activated, and the release of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) regulated by NF-κB and MAPKs was significantly increased, which can promote a cascade of inflammation that induces cell injury and apoptosis. Meanwhile, CA significantly inhibited the activation of MAPKs and the release of proinflammatory cytokines in a dose-dependent manner, which were similar to its effects on the NF-κB activation that we previously published. So we concluded that CA regulates the proteins located in the upstream of multiple cell signal pathways which can reduce the LPS-induced activation of NF-κB and MAPKs, thus weakening the inflammatory response and maintaining cell structure and function, which accordingly inhibit apoptosis.
Collapse
|
30
|
Pawłowski K, Pires JAA, Faulconnier Y, Chambon C, Germon P, Boby C, Leroux C. Mammary Gland Transcriptome and Proteome Modifications by Nutrient Restriction in Early Lactation Holstein Cows Challenged with Intra-Mammary Lipopolysaccharide. Int J Mol Sci 2019; 20:E1156. [PMID: 30845783 PMCID: PMC6429198 DOI: 10.3390/ijms20051156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/27/2022] Open
Abstract
: The objective is to study the effects of nutrient restrictions, which induce a metabolic imbalance on the inflammatory response of the mammary gland in early lactation cows. The aim is to decipher the molecular mechanisms involved, by comparing a control, with a restriction group, a transcriptome and proteome, after an intra-mammary lipopolysaccharide challenge. Multi-parous cows were either allowed ad libitum intake of a lactation diet (n = 8), or a ration containing low nutrient density (n = 8; 48% barley straw and dry matter basis) for four days starting at 24 ± 3 days in milk. Three days after the initiation of their treatments, one healthy rear mammary quarter of 12 lactating cows was challenged with 50 µg of lipopolysaccharide (LPS). Transcriptomic and proteomic analyses were performed on mammary biopsies obtained 24 h after the LPS challenge, using bovine 44K microarrays, and nano-LC-MS/MS, respectively. Restriction-induced deficits in energy, led to a marked negative energy balance (41 versus 97 ± 15% of Net Energy for Lactation (NEL) requirements) and metabolic imbalance. A microarray analyses identified 25 differentially expressed genes in response to restriction, suggesting that restriction had modified mammary metabolism, specifically β-oxidation process. Proteomic analyses identified 53 differentially expressed proteins, which suggests that the modification of protein synthesis from mRNA splicing to folding. Under-nutrition influenced mammary gland expression of the genes involved in metabolism, thereby increasing β-oxidation and altering protein synthesis, which may affect the response to inflammation.
Collapse
Affiliation(s)
- Karol Pawłowski
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences,02-776 Warsaw, Poland.
| | - José A A Pires
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Yannick Faulconnier
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Christophe Chambon
- INRA, INRA, Plateforme d'Exploration du Métabolisme, composante protéomique PFEMcp), F-63122 Saint-Genès Champanelle, France.
| | - Pierre Germon
- INRA Val de Loire, UMR ISP, F-37380 Nouzilly, France.
| | - Céline Boby
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Christine Leroux
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
31
|
IL-1β directly inhibits milk lipid production in lactating mammary epithelial cells concurrently with enlargement of cytoplasmic lipid droplets. Exp Cell Res 2018; 370:365-372. [DOI: 10.1016/j.yexcr.2018.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
|
32
|
Zhang Y, Wang X, Jiang Q, Hao H, Ju Z, Yang C, Sun Y, Wang C, Zhong J, Huang J, Zhu H. DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows. Cell Stress Chaperones 2018; 23:617-628. [PMID: 29353404 PMCID: PMC6045551 DOI: 10.1007/s12192-017-0871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Interleukin-6 receptor-alpha (IL6R) interacts with IL6 and forms a ligand-receptor complex, which can stimulate various cellular responses, such as cell proliferation, cell differentiation, and activation of inflammatory processes. Both genetic mutation and epigenetic modification regulate gene transcription. We identified a novel splice variant of bovine IL6R, designated as IL6R-TV, which is characterized by the skipping of exon 2 of the NCBI-referenced IL6R gene (IL6R-reference). The expression levels of IL6R-TV and IL6R-reference transcripts were lower in normal mammary gland tissues. These transcripts play a potential role during inflammatory infection. We also detected two putative functional SNPs (g.19711 T > C and g.19731 G > C) located within the upstream 100 bp of exon 2. These SNPs formed two haplotypes (T-G and C-C). Two mutant pSPL3 exon-trapping plasmids (pSPL3-T-G and pSPL3-C-C) were transferred into the bovine mammary epithelial cells (MAC-T) and human embryonic kidney 293 T cells (HEK293T) to investigate the relationship between the two SNPs and the aberrant splicing of IL6R. DNA methylation levels of the alternatively spliced exon in normal and mastitis-infected mammary gland tissues were quantified through nested bisulfate sequencing PCR (BSP) and cloning sequencing. We found that DNA methylation regulated IL6R transcription. The DNA methylation level was high in mastitis-infected mammary gland tissues and stimulated IL6R expression, thereby promoting the inclusion of the alternatively spliced exon. The upregulated expression of the two transcripts was due to DNA methylation modification rather than genetic mutations.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Haisheng Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Chunhong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Yan Sun
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Changfa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Jifeng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Jinming Huang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China.
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, People's Republic of China.
| | - Huabin Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China.
| |
Collapse
|
33
|
Hughes K, Watson CJ. The Mammary Microenvironment in Mastitis in Humans, Dairy Ruminants, Rabbits and Rodents: A One Health Focus. J Mammary Gland Biol Neoplasia 2018; 23:27-41. [PMID: 29705830 PMCID: PMC5978844 DOI: 10.1007/s10911-018-9395-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
The One Health concept promotes integrated evaluation of human, animal, and environmental health questions to expedite advances benefiting all species. A recognition of the multi-species impact of mastitis as a painful condition with welfare implications leads us to suggest that mastitis is an ideal target for a One Health approach. In this review, we will evaluate the role of the mammary microenvironment in mastitis in humans, ruminants and rabbits, where appropriate also drawing on studies utilising laboratory animal models. We will examine subclinical mastitis, clinical lactational mastitis, and involution-associated, or dry period, mastitis, highlighting important anatomical and immunological species differences. We will synthesise knowledge gained across different species, comparing and contrasting disease presentation. Subclinical mastitis (SCM) is characterised by elevated Na/K ratio, and increased milk IL-8 concentrations. SCM affecting the breastfeeding mother may result in modulation of infant mucosal immune system development, whilst in ruminants notable milk production losses may ensue. In the case of clinical lactational mastitis, we will focus on mastitis caused by Staphylococcus aureus and Escherichia coli. Understanding of the pathogenesis of involution-associated mastitis requires characterization of the structural and molecular changes occurring during involution and we will review these changes across species. We speculate that milk accumulation may act as a nidus for infection, and that the involution 'wound healing phenotype' may render the tissue susceptible to bacterial infection. We will discuss the impact of concurrent pregnancy and a 'parallel pregnancy and involution signature' during bovine mammary involution.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
34
|
Santana AM, Thomas FC, Silva DG, McCulloch E, Vidal AMC, Burchmore RJS, Fagliari JJ, Eckersall PD. Reference 1D and 2D electrophoresis maps for potential disease related proteins in milk whey from lactating buffaloes and blood serum from buffalo calves (Water buffalo, Bubalus bubalis). Res Vet Sci 2018; 118:449-465. [PMID: 29734122 DOI: 10.1016/j.rvsc.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/24/2018] [Indexed: 01/05/2023]
Abstract
The aim of this study was to identify potential disease related proteins in milk whey of lactating buffaloes and blood serum of buffalo calves, in order to define a reference electrophoresis map for 1-DE and 2-DE. Additionally, changes in some protein patterns from buffalo calves during salmonellosis and lactating buffaloes during mastitis are presented. Milk samples were collected and distributed into groups: Milk samples from healthy buffaloes (SCC < 100.000 cells/ml, negative microbiology and CMT) (G1, n = 5) and buffaloes with subclinical mastitis (SCC > 500.000 cells/ml, positive microbiology and CMT) (G2, n = 5). Blood samples from buffalo calves (n = 6) were collected, and three calves were experimentally infected with Salmonella Dublin and samples analyzed before (M0) and 72 h after inoculation (M1). 1-DE was accomplished by loading 10 μg of TP into SDS-PAGE, stained with Coomassie blue. 2-DE was accomplished by loading 200 μg of TP into 11 cm, pH 3-10 non-linear IPG strips, followed by SDS-PAGE, stained with Coomassie blue. Protein bands/spots were excised, subjected to tryptic in-gel digestion and analyzed by LC/ESI-MS/MS. Protein identity was assigned using NCBI databases. After bands/spots from 1-DE and 2-DE were analyzed, a protein map with 35 and 40 different identified proteins in blood serum and milk whey, respectively, was generated. Significant changes in patterns of haptoglobin were observed in buffalo calves with salmonellosis and in patterns of IgLC, β-lactoglobulin and α-lactalbumin of lactating buffaloes during mastitis. The establishment of a protein map for 1-DE and 2-DE, identifying potential disease related proteins, can help to address alterations during diseases in buffaloes.
Collapse
Affiliation(s)
- André M Santana
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV/UNESP), Jaboticabal, SP, Brazil.
| | - Funmilola C Thomas
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Daniela G Silva
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Eilidh McCulloch
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ana M C Vidal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), Pirassununga, SP, Brazil
| | - Richard J S Burchmore
- Institute of Infection, Immunity and Inflammation, Glasgow Polyomics Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - José J Fagliari
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Peter D Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
35
|
Bhattarai D, Worku T, Dad R, Rehman ZU, Gong X, Zhang S. Mechanism of pattern recognition receptors (PRRs) and host pathogen interplay in bovine mastitis. Microb Pathog 2018; 120:64-70. [PMID: 29635052 DOI: 10.1016/j.micpath.2018.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
Bacterial infection in the mammary gland parenchyma induces local and subsequently systemic inflammation that results in a complex disease. Mastitis in bovine is the result of various factors which function together. This review is aimed to analyze the factors involved in the pathogenesis of common bacterial species for bovine mastitis. The bacterial growth patterns, signaling pathway and the pathogen-associated molecular patterns (PAMPs) which activate immune responses is discussed. Clear differences in bacterial infection pattern are shown between bacterial species and illustrated TLRs, NLRs and RLGs molecular mechanism for the initiation of intramammary infection. The underlying reasons for the differences and the resulting host response are analyzed. Understandings of the mechanisms that activate and regulate these responses are central to the development of efficient anticipatory and treatment management. The knowledge of bovine mammary gland to common mastitis causing pathogens with possible immune mechanism could be a new conceptual understanding for the prospect of mastitis control program.
Collapse
Affiliation(s)
- Dinesh Bhattarai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China.
| | - Tesfaye Worku
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Rahim Dad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zia Ur Rehman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Xiaoling Gong
- The Agricultural Broadcasting and Television School in Hubei Province, Wuhan, 430064, China
| | - Shujun Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China.
| |
Collapse
|
36
|
Filippo PAD, Lannes ST, Meireles MA, Nogueira AF, Ribeiro LM, Graça FA, Glória LS. Acute phase proteins in serum and cerebrospinal fluid in healthy cattle: possible use for assessment of neurological diseases. PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Use of acute-phase proteins (APPs) for assessment of health and disease in animals has increased greatly within the last decade. The objective was to determine the normal concentration of APPs in the serum and cerebrospinal fluid (CSF) of healthy cattle by polyacrylamide gel electrophoresis. Fifty crossbred animals (350±70kg of BW and 18±1.2 months of age), 25 heifers and 25 steers were used. CSF samples were collected from atlanto-occipital (AO) site and blood samples were obtained from the jugular vein. CSF and serum protein electrophoresis were performed by means of sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Thirty-seven proteins with molecular weights ranging from 7 and 37kDa were identified in CSF of all animals. These eight were nominally identified with immunoglobulin A and G, celuloplasmin, transferrin, albumin, α1-antitripsin, acidic glycoprotein, and haptoglobin. All protein fractions in CSF did not differ between heifers and steers. In sera, 34 proteins with molecular weights between 7 and 244kDa were identified in heifers and steers. Similar proteins were nominally identified in the sera, but only the CSF presented α1-antitripsin. The serum values of acidic glycoprotein and immunoglobulin G were significantly higher in steers compared with heifers. In conclusion, measurement of CSF acute phase protein concentrations can be useful in diagnosing and monitoring the progression of bovine neurological diseases, perhaps even to guide therapeutic procedures. The CSF electrophoretic profile of healthy cattle does not change depending on gender.
Collapse
|
37
|
Sharifi S, Pakdel A, Ebrahimi M, Reecy JM, Fazeli Farsani S, Ebrahimie E. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One 2018; 13:e0191227. [PMID: 29470489 PMCID: PMC5823400 DOI: 10.1371/journal.pone.0191227] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid detection of this disease is so important in order to prevent transmission to other cows and helps to reduce inappropriate use of antibiotics. With the rapid progress in high-throughput technologies, and accumulation of various kinds of '-omics' data in public repositories, there is an opportunity to retrieve, integrate, and reanalyze these resources to improve the diagnosis and treatment of different diseases and to provide mechanistic insights into host resistance in an efficient way. Meta-analysis is a relatively inexpensive option with good potential to increase the statistical power and generalizability of single-study analysis. In the current meta-analysis research, six microarray-based studies that investigate the transcriptome profile of mammary gland tissue after induced mastitis by E. coli infection were used. This meta-analysis not only reinforced the findings in individual studies, but also several novel terms including responses to hypoxia, response to drug, anti-apoptosis and positive regulation of transcription from RNA polymerase II promoter enriched by up-regulated genes. Finally, in order to identify the small sets of genes that are sufficiently informative in E. coli mastitis, the differentially expressed gene introduced by meta-analysis were prioritized by using ten different attribute weighting algorithms. Twelve meta-genes were detected by the majority of attribute weighting algorithms (with weight above 0.7) as most informative genes including CXCL8 (IL8), NFKBIZ, HP, ZC3H12A, PDE4B, CASP4, CXCL2, CCL20, GRO1(CXCL1), CFB, S100A9, and S100A8. Interestingly, the results have been demonstrated that all of these genes are the key genes in the immune response, inflammation or mastitis. The Decision tree models efficiently discovered the best combination of the meta-genes as bio-signature and confirmed that some of the top-ranked genes -ZC3H12A, CXCL2, GRO, CFB- as biomarkers for E. coli mastitis (with the accuracy 83% in average). This research properly indicated that by combination of two novel data mining tools, meta-analysis and machine learning, increased power to detect most informative genes that can help to improve the diagnosis and treatment strategies for E. coli associated with mastitis in cattle.
Collapse
Affiliation(s)
- Somayeh Sharifi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | | | - Esmaeil Ebrahimie
- School of Medicine, The University of Adelaide, Adelaide, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
38
|
Rosa F, Busato S, Avaroma FC, Linville K, Trevisi E, Osorio JS, Bionaz M. Transcriptional changes detected in fecal RNA of neonatal dairy calves undergoing a mild diarrhea are associated with inflammatory biomarkers. PLoS One 2018; 13:e0191599. [PMID: 29373601 PMCID: PMC5786293 DOI: 10.1371/journal.pone.0191599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
After birth, a newborn calf has to adapt to an extrauterine life characterized by several physiological changes. In particular, maturation of the gastrointestinal tract in a new environment loaded with potential pathogens, which can predispose neonatal calves to develop diarrhea, and is a major cause of morbidity and mortality during the first 4 wks of life. We aimed to investigate the inflammatory adaptations at a transcriptomic level in the gastrointestinal (GI) tract to a mild diarrhea in neonatal dairy calves using RNA isolated from fresh fecal samples. Eight newborn Jersey male calves were used from birth to 5 wks of age and housed in individual pens. After birth, calves received 1.9 L of colostrum from their respective dams. Calves had ad-libitum access to water and starter grain (22% CP) and were fed twice daily a total of 5.6 L pasteurized whole milk. Starter intake, body weight (BW), fecal score, withers height (WH), and rectal temperature (RT) were recorded throughout the experiment. Blood samples were collected weekly for metabolic and inflammatory profiling from wk 0 to wk 5. Fresh fecal samples were collected weekly and immediately flash frozen until RNA was extracted using a Trizol-based method, and subsequently, an RT-qPCR analysis was performed. Orthogonal contrasts were used to evaluate linear or quadratic effects over time. Starter intake, BW, and WH increased over time. Fecal score was greatest (2.6 ± 0.3) during wk 2. The concentrations of IL-6, ceruloplasmin, and haptoglobin had a positive quadratic effect with maximal concentrations during wk 2, which corresponded to the maximal fecal score observed during the same time. The concentration of serum amyloid A decreased over time. The mRNA expression of the proinflammatory related genes TLR4, TNFA, IL8, and IL1B had a positive quadratic effect of time. A time effect was observed for the cell membrane sodium-dependent glucose transporter SLC5A1, for the major carbohydrate facilitated transporter SLC2A2, and water transport function AQP3, where SLC5A1 and AQP3 had a negative quadratic effect over time. Our data support the use of the fecal RNA as a noninvasive tool to investigate intestinal transcriptomic profiling of dairy calves experiencing diarrhea, which would be advantageous for future research including nutritional effects and health conditions.
Collapse
Affiliation(s)
- Fernanda Rosa
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Fatima C. Avaroma
- Escuela Agrícola Panamericana El Zamorano, El Zamorano, Francisco Morazán, Honduras
| | - Kali Linville
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Erminio Trevisi
- Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Johan S. Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
39
|
Fang L, Sahana G, Ma P, Su G, Yu Y, Zhang S, Lund MS, Sørensen P. Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds. BMC Genomics 2017; 18:604. [PMID: 28797230 PMCID: PMC5553760 DOI: 10.1186/s12864-017-4004-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 08/02/2017] [Indexed: 02/08/2023] Open
Abstract
Background A better understanding of the genetic architecture underlying complex traits (e.g., the distribution of causal variants and their effects) may aid in the genomic prediction. Here, we hypothesized that the genomic variants of complex traits might be enriched in a subset of genomic regions defined by genes grouped on the basis of “Gene Ontology” (GO), and that incorporating this independent biological information into genomic prediction models might improve their predictive ability. Results Four complex traits (i.e., milk, fat and protein yields, and mastitis) together with imputed sequence variants in Holstein (HOL) and Jersey (JER) cattle were analysed. We first carried out a post-GWAS analysis in a HOL training population to assess the degree of enrichment of the association signals in the gene regions defined by each GO term. We then extended the genomic best linear unbiased prediction model (GBLUP) to a genomic feature BLUP (GFBLUP) model, including an additional genomic effect quantifying the joint effect of a group of variants located in a genomic feature. The GBLUP model using a single random effect assumes that all genomic variants contribute to the genomic relationship equally, whereas GFBLUP attributes different weights to the individual genomic relationships in the prediction equation based on the estimated genomic parameters. Our results demonstrate that the immune-relevant GO terms were more associated with mastitis than milk production, and several biologically meaningful GO terms improved the prediction accuracy with GFBLUP for the four traits, as compared with GBLUP. The improvement of the genomic prediction between breeds (the average increase across the four traits was 0.161) was more apparent than that it was within the HOL (the average increase across the four traits was 0.020). Conclusions Our genomic feature modelling approaches provide a framework to simultaneously explore the genetic architecture and genomic prediction of complex traits by taking advantage of independent biological knowledge. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4004-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingzhao Fang
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark. .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Goutam Sahana
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Peipei Ma
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Guosheng Su
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mogens Sandø Lund
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Peter Sørensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
40
|
Suravajhala P, Benso A. Prioritizing single-nucleotide polymorphisms and variants associated with clinical mastitis. Adv Appl Bioinform Chem 2017; 10:57-64. [PMID: 28652783 PMCID: PMC5473491 DOI: 10.2147/aabc.s123604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Next-generation sequencing technology has provided resources to easily explore and identify candidate single-nucleotide polymorphisms (SNPs) and variants. However, there remains a challenge in identifying and inferring the causal SNPs from sequence data. A problem with different methods that predict the effect of mutations is that they produce false positives. In this hypothesis, we provide an overview of methods known for identifying causal variants and discuss the challenges, fallacies, and prospects in discerning candidate SNPs. We then propose a three-point classification strategy, which could be an additional annotation method in identifying causalities.
Collapse
Affiliation(s)
- Prashanth Suravajhala
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Alfredo Benso
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
41
|
Kosciuczuk EM, Lisowski P, Jarczak J, Majewska A, Rzewuska M, Zwierzchowski L, Bagnicka E. Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet Res 2017; 13:161. [PMID: 28587645 PMCID: PMC5477815 DOI: 10.1186/s12917-017-1088-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide gene expression profiling allows for identification of genes involved in the defense response of the host against pathogens. As presented here, transcriptomic analysis and bioinformatics tools were applied in order to identify genes expressed in the mammary gland parenchyma of cows naturally infected with coagulase-positive and coagulase-negative Staphylococci. RESULTS In cows infected with coagulase-positive Staphylococci, being in 1st or 2nd lactation, 1700 differentially expressed genes (DEGs) were identified. However, examination of the 3rd or 4th lactations revealed 2200 DEGs. Gene ontology functional classification showed the molecular functions of the DEGs overrepresented the activity of cytokines, chemokines, and their receptors. In cows infected with coagulase-negative Staphylococci, in the 1st or 2nd lactations 418 DEGs, while in the 3rd or 4th lactations, 1200 DEGs were identified that involved in molecular functions such as protein, calcium ion and lipid binding, chemokine activity, and protein homodimerization. Gene network analysis showed DEGs associated with inflammation, cell migration, and immune response to infection, development of cells and tissues, and humoral responses to infections caused by both types of Staphylococci. CONCLUSION A coagulase-positive Staphylococci infection caused a markedly stronger host response than that of coagulase-negative, resulting in vastly increased DEGs. A significant increase in the expression of the FOS, TNF, and genes encoding the major histocompatibility complex proteins (MHC) was observed. It suggests these genes play a key role in the synchronization of the immune response of the cow's parenchyma against mastitis-causing bacteria. Moreover, the following genes that belong to several physiological pathways (KEGG pathways) were selected for further studies as candidate genes of mammary gland immune response for use in Marker Assisted Selection (MAS): chemokine signaling pathway (CCL2, CXCL5, HCK, CCR1), cell adhesion molecules (CAMs) pathway (BOLA-DQA2, BOLA-DQA1, F11R, ITGAL, CD86), antigen processing and presentation pathway (CD8A, PDIA3, LGMN, IFI30, HSPA1A), and NOD-like receptor signaling pathway (TNF, IL8, IL18, NFKBIA).
Collapse
Affiliation(s)
- Ewa M Kosciuczuk
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland.,Present address: Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Paweł Lisowski
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Justyna Jarczak
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Lech Zwierzchowski
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Emilia Bagnicka
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland.
| |
Collapse
|
42
|
Fang L, Sahana G, Ma P, Su G, Yu Y, Zhang S, Lund MS, Sørensen P. Exploring the genetic architecture and improving genomic prediction accuracy for mastitis and milk production traits in dairy cattle by mapping variants to hepatic transcriptomic regions responsive to intra-mammary infection. Genet Sel Evol 2017; 49:44. [PMID: 28499345 PMCID: PMC5427631 DOI: 10.1186/s12711-017-0319-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A better understanding of the genetic architecture of complex traits can contribute to improve genomic prediction. We hypothesized that genomic variants associated with mastitis and milk production traits in dairy cattle are enriched in hepatic transcriptomic regions that are responsive to intra-mammary infection (IMI). Genomic markers [e.g. single nucleotide polymorphisms (SNPs)] from those regions, if included, may improve the predictive ability of a genomic model. RESULTS We applied a genomic feature best linear unbiased prediction model (GFBLUP) to implement the above strategy by considering the hepatic transcriptomic regions responsive to IMI as genomic features. GFBLUP, an extension of GBLUP, includes a separate genomic effect of SNPs within a genomic feature, and allows differential weighting of the individual marker relationships in the prediction equation. Since GFBLUP is computationally intensive, we investigated whether a SNP set test could be a computationally fast way to preselect predictive genomic features. The SNP set test assesses the association between a genomic feature and a trait based on single-SNP genome-wide association studies. We applied these two approaches to mastitis and milk production traits (milk, fat and protein yield) in Holstein (HOL, n = 5056) and Jersey (JER, n = 1231) cattle. We observed that a majority of genomic features were enriched in genomic variants that were associated with mastitis and milk production traits. Compared to GBLUP, the accuracy of genomic prediction with GFBLUP was marginally improved (3.2 to 3.9%) in within-breed prediction. The highest increase (164.4%) in prediction accuracy was observed in across-breed prediction. The significance of genomic features based on the SNP set test were correlated with changes in prediction accuracy of GFBLUP (P < 0.05). CONCLUSIONS GFBLUP provides a framework for integrating multiple layers of biological knowledge to provide novel insights into the biological basis of complex traits, and to improve the accuracy of genomic prediction. The SNP set test might be used as a first-step to improve GFBLUP models. Approaches like GFBLUP and SNP set test will become increasingly useful, as the functional annotations of genomes keep accumulating for a range of species and traits.
Collapse
Affiliation(s)
- Lingzhao Fang
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark. .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Goutam Sahana
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Peipei Ma
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Guosheng Su
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mogens Sandø Lund
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Peter Sørensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
43
|
Fang L, Sahana G, Su G, Yu Y, Zhang S, Lund MS, Sørensen P. Integrating Sequence-based GWAS and RNA-Seq Provides Novel Insights into the Genetic Basis of Mastitis and Milk Production in Dairy Cattle. Sci Rep 2017; 7:45560. [PMID: 28358110 PMCID: PMC5372096 DOI: 10.1038/srep45560] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
Connecting genome-wide association study (GWAS) to biological mechanisms underlying complex traits is a major challenge. Mastitis resistance and milk production are complex traits of economic importance in the dairy sector and are associated with intra-mammary infection (IMI). Here, we integrated IMI-relevant RNA-Seq data from Holstein cattle and sequence-based GWAS data from three dairy cattle breeds (i.e., Holstein, Nordic red cattle, and Jersey) to explore the genetic basis of mastitis resistance and milk production using post-GWAS analyses and a genomic feature linear mixed model. At 24 h post-IMI, genes responsive to IMI in the mammary gland were preferentially enriched for genetic variants associated with mastitis resistance rather than milk production. Response genes in the liver were mainly enriched for variants associated with mastitis resistance at an early time point (3 h) post-IMI, whereas responsive genes at later stages were enriched for associated variants with milk production. The up- and down-regulated genes were enriched for associated variants with mastitis resistance and milk production, respectively. The patterns were consistent across breeds, indicating that different breeds shared similarities in the genetic basis of these traits. Our approaches provide a framework for integrating multiple layers of data to understand the genetic architecture underlying complex traits.
Collapse
Affiliation(s)
- Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture &National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture &National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture &National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
44
|
Fang L, Hou Y, An J, Li B, Song M, Wang X, Sørensen P, Dong Y, Liu C, Wang Y, Zhu H, Zhang S, Yu Y. Genome-Wide Transcriptional and Post-transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus aureus. Front Cell Infect Microbiol 2016; 6:193. [PMID: 28083515 PMCID: PMC5183581 DOI: 10.3389/fcimb.2016.00193] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/09/2016] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is problematic for lactating mammals and public health. Understanding of mechanisms by which the hosts respond to severe invasion of S. aureus remains elusive. In this study, the genome-wide expression of mRNAs and miRNAs in bovine mammary gland cells were interrogated at 24 h after intra-mammary infection (IMI) with high or low concentrations of S. aureus. Compared to the negative control quarters, 194 highly-confident responsive genes were identified in the quarters with high concentration (109 cfu/mL) of S. aureus, which were predominantly implicated in pathways and biological processes pertaining to innate immune system, such as cytokine-cytokine receptor interaction and inflammatory response. In contrast, only 21 highly-confident genes were significantly differentially expressed in face of low concentration (106 cfu/mL) of S. aureus, which slightly perturbed the cell signaling and invoked corresponding responses like vasoconstriction, indicating limited perturbations and immunological evading. Additionally, the significant up-regulations of bta-mir-223 and bta-mir-21-3p were observed in the quarters infected by high concentration of S. aureus. Network analysis suggested that the two miRNAs' pivotal roles in defending hosts against bacterial infection probably through inhibiting CXCL14 and KIT. The significant down-regulation of CXCL14 was also observed in bovine mammary epithelial cells at 24 h post-infection of S. aureus (108 cfu/mL) in vitro. Integrated analysis with QTL database further suggested 28 genes (e.g., CXCL14, KIT, and SLC4A11) as candidates of bovine mastitis. This study first systematically revealed transcriptional and post-transcriptional responses of bovine mammary gland cells to invading S. aureus in a dosage-dependent pattern, and highlighted a complicated responsive mechanism in a network of miRNA-gene-pathway interplay.
Collapse
Affiliation(s)
- Lingzhao Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural UniversityBeijing, China; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus UniversityTjele, Denmark
| | - Yali Hou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jing An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Bingjie Li
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University Tjele, Denmark
| | - Minyan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Xiao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural UniversityBeijing, China; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus UniversityTjele, Denmark
| | - Peter Sørensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University Tjele, Denmark
| | - Yichun Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Chao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Huabin Zhu
- Department of Animal Biotechnology and Reproduction, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| |
Collapse
|
45
|
Sipka A, Pomeroy B, Klaessig S, Schukken Y. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro. Comp Immunol Microbiol Infect Dis 2016; 48:54-60. [DOI: 10.1016/j.cimid.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
|
46
|
Characterisation of the Whole Blood mRNA Transcriptome in Holstein-Friesian and Jersey Calves in Response to Gradual Weaning. PLoS One 2016; 11:e0159707. [PMID: 27479136 PMCID: PMC4968839 DOI: 10.1371/journal.pone.0159707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Weaning of dairy calves is an early life husbandry management practice which involves the changeover from a liquid to a solid feed based diet. The objectives of the study were to use RNA-seq technology to examine the effect of (i) breed and (ii) gradual weaning, on the whole blood mRNA transcriptome of artificially reared Holstein-Friesian and Jersey calves. The calves were gradually weaned over 14 days (day (d) -13 to d 0) and mRNA transcription was examined one day before gradual weaning was initiated (d -14), one day after weaning (d 1), and 8 days after weaning (d 8). On d -14, 550 genes were differentially expressed between Holstein-Friesian and Jersey calves, while there were 490 differentially expressed genes (DEG) identified on d 1, and 411 DEG detected eight days after weaning (P < 0.05; FDR < 0.1). No genes were differentially expressed within breed, in response to gradual weaning (P > 0.05). The pathways, gene ontology terms, and biological functions consistently over-represented among the DEG between Holstein-Friesian and Jersey were associated with the immune response and immune cell signalling, specifically chemotaxis. Decreased transcription of several cytokines, chemokines, immunoglobulin-like genes, phagocytosis-promoting receptors and g-protein coupled receptors suggests decreased monocyte, natural killer cell, and T lymphocyte, chemotaxis and activation in Jersey compared to Holstein-Friesian calves. Knowledge of breed-specific immune responses could facilitate health management practices better tailored towards specific disease sensitivities of Holstein-Friesian and Jersey calves. Gradual weaning did not compromise the welfare of artificially-reared dairy calves, evidenced by the lack of alterations in the expression of any genes in response to gradual weaning.
Collapse
|
47
|
Moyes KM, Sørensen P, Bionaz M. The Impact of Intramammary Escherichia coli Challenge on Liver and Mammary Transcriptome and Cross-Talk in Dairy Cows during Early Lactation Using RNAseq. PLoS One 2016; 11:e0157480. [PMID: 27336699 PMCID: PMC4919052 DOI: 10.1371/journal.pone.0157480] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/30/2016] [Indexed: 11/18/2022] Open
Abstract
Our objective was to identify the biological response and the cross-talk between liver and mammary tissue after intramammary infection (IMI) with Escherichia coli (E. coli) using RNAseq technology. Sixteen cows were inoculated with live E. coli into one mammary quarter at ~4–6 weeks in lactation. For all cows, biopsies were performed at -144, 12 and 24 h relative to IMI in liver and at 24 h post-IMI in infected and non-infected (control) mammary quarters. For a subset of cows (n = 6), RNA was extracted from both liver and mammary tissue and sequenced using a 100 bp paired-end approach. Ingenuity Pathway Analysis and the Dynamic Impact Approach analysis of differentially expressed genes (overall effect False Discovery Rate≤0.05) indicated that IMI induced an overall activation of inflammation at 12 h post-IMI and a strong inhibition of metabolism, especially related to lipid, glucose, and xenobiotics at 24 h post-IMI in liver. The data indicated in mammary tissue an overall induction of inflammatory response with little effect on metabolism at 24 h post-IMI. We identified a large number of up-stream regulators potentially involved in the response to IMI in both tissues but a relatively small core network of transcription factors controlling the response to IMI for liver whereas a large network in mammary tissue. Transcriptomic results in liver and mammary tissue were supported by changes in inflammatory and metabolic mediators in blood and milk. The analysis of potential cross-talk between the two tissues during IMI uncovered a large communication from the mammary tissue to the liver to coordinate the inflammatory response but a relatively small communication from the liver to the mammary tissue. Our results indicate a strong induction of the inflammatory response in mammary tissue and impairment of liver metabolism 24h post-IMI partly driven by the signaling from infected mammary tissue.
Collapse
Affiliation(s)
- K. M. Moyes
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (KMM); (MB)
| | - P. Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (KMM); (MB)
| |
Collapse
|
48
|
Alhussien M, Manjari P, Mohammed S, Sheikh AA, Reddi S, Dixit S, Dang AK. Incidence of mastitis and activity of milk neutrophils in Tharparkar cows reared under semi-arid conditions. Trop Anim Health Prod 2016; 48:1291-5. [DOI: 10.1007/s11250-016-1068-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/27/2016] [Indexed: 11/24/2022]
|
49
|
Meta-Analysis of Transcriptional Responses to Mastitis-Causing Escherichia coli. PLoS One 2016; 11:e0148562. [PMID: 26933871 PMCID: PMC4775050 DOI: 10.1371/journal.pone.0148562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/19/2016] [Indexed: 12/03/2022] Open
Abstract
Bovine mastitis is a widespread disease in dairy cows, and is often caused by bacterial mammary gland infection. Mastitis causes reduced milk production and leads to excessive use of antibiotics. We present meta-analysis of transcriptional profiles of bovine mastitis from 10 studies and 307 microarrays, allowing identification of much larger sets of affected genes than any individual study. Combining multiple studies provides insight into the molecular effects of Escherichia coli infection in vivo and uncovers differences between the consequences of E. coli vs. Staphylococcus aureus infection of primary mammary epithelial cells (PMECs). In udders, live E. coli elicits inflammatory and immune defenses through numerous cytokines and chemokines. Importantly, E. coli infection causes downregulation of genes encoding lipid biosynthesis enzymes that are involved in milk production. Additionally, host metabolism is generally suppressed. Finally, defensins and bacteria-recognition genes are upregulated, while the expression of the extracellular matrix protein transcripts is silenced. In PMECs, heat-inactivated E. coli elicits expression of ribosomal, cytoskeletal and angiogenic signaling genes, and causes suppression of the cell cycle and energy production genes. We hypothesize that heat-inactivated E. coli may have prophylactic effects against mastitis. Heat-inactivated S. aureus promotes stronger inflammatory and immune defenses than E. coli. Lipopolysaccharide by itself induces MHC antigen presentation components, an effect not seen in response to E. coli bacteria. These results provide the basis for strategies to prevent and treat mastitis and may lead to the reduction in the use of antibiotics.
Collapse
|
50
|
Sørensen L, Engberg R, Løvendahl P, Larsen T. Short communication: Effects of Bos taurus autosome 9-located quantitative trait loci haplotypes on enzymatic mastitis indicators of milk from dairy cows experimentally inoculated with Escherichia coli. J Dairy Sci 2015; 98:5440-7. [DOI: 10.3168/jds.2014-9071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/15/2015] [Indexed: 11/19/2022]
|