1
|
Li Z, Yang J, Peng J, Cheng Z, Liu X, Zhang Z, Bhadauria V, Zhao W, Peng YL. Transcriptional Landscapes of Long Non-coding RNAs and Alternative Splicing in Pyricularia oryzae Revealed by RNA-Seq. FRONTIERS IN PLANT SCIENCE 2021; 12:723636. [PMID: 34589103 PMCID: PMC8475275 DOI: 10.3389/fpls.2021.723636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Pyricularia oryzae causes the rice blast, which is one of the most devastating crop diseases worldwide, and is a model fungal pathogen widely used for dissecting the molecular mechanisms underlying fungal virulence/pathogenicity. Although the whole genome sequence of P. oryzae is publicly available, its current transcriptomes remain incomplete, lacking the information on non-protein coding genes and alternative splicing. Here, we performed and analyzed RNA-Seq of conidia and hyphae, resulting in the identification of 3,374 novel genes. Interestingly, the vast majority of these novel genes likely transcribed long non-coding RNAs (lncRNAs), and most of them were localized in the intergenic regions. Notably, their expressions were concomitant with the transcription of neighboring genes thereof in conidia and hyphae. In addition, 2,358 genes were found to undergo alternative splicing events. Furthermore, we exemplified that a lncRNA was important for hyphal growth likely by regulating the neighboring protein-coding gene and that alternative splicing of the transcription factor gene CON7 was required for appressorium formation. In summary, results from this study indicate that lncRNA transcripts and alternative splicing events are two important mechanisms for regulating the expression of genes important for conidiation, hyphal growth, and pathogenesis, and provide new insights into transcriptomes and gene regulation in the rice blast fungus.
Collapse
Affiliation(s)
- Zhigang Li
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihua Cheng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinsen Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Vijai Bhadauria
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - You-Liang Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Alternative Splicing of the Aflatoxin-Associated Baeyer⁻Villiger Monooxygenase from Aspergillus flavus: Characterisation of MoxY Isoforms. Toxins (Basel) 2018; 10:toxins10120521. [PMID: 30563144 PMCID: PMC6315744 DOI: 10.3390/toxins10120521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 01/24/2023] Open
Abstract
Aflatoxins are carcinogenic mycotoxins that are produced by the filamentous fungus Aspergillus flavus, a contaminant of numerous food crops. Aflatoxins are synthesised via the aflatoxin biosynthesis pathway, with the enzymes involved encoded by the aflatoxin biosynthesis gene cluster. MoxY is a type I Baeyer–Villiger monooxygenase (BVMO), responsible for the conversion of hydroxyversicolorone (HVN) and versicolorone (VN) to versiconal hemiacetal acetate (VHA) and versiconol acetate (VOAc), respectively. Using mRNA data, an intron near the C-terminus was identified that is alternatively spliced, creating two possible MoxY isoforms which exist in vivo, while analysis of the genomic DNA suggests an alternative start codon leading to possible elongation of the N-terminus. These four variants of the moxY gene were recombinantly expressed in Escherichia coli, and their activity evaluated with respect to their natural substrates HVN and VN, as well as surrogate ketone substrates. Activity of the enzyme is absolutely dependent on the additional 22 amino acid residues at the N-terminus. Two MoxY isoforms with alternative C-termini, MoxYAltN and MoxYAltNC, converted HVN and VN, in addition to a range of ketone substrates. Stability and flavin-binding data suggest that MoxYAltN is, most likely, the dominant isoform. MoxYAltNC is generated by intron splicing, in contrast to intron retention, which is the most prevalent type of alternative splicing in ascomycetes. The alternative C-termini did not alter the substrate acceptance profile, or regio- or enantioselectivity of the enzyme, but did significantly affect the solubility and stability.
Collapse
|
3
|
Luo X, Xu L, Liang D, Wang Y, Zhang W, Zhu X, Zhu Y, Jiang H, Tang M, Liu L. Comparative transcriptomics uncovers alternative splicing and molecular marker development in radish (Raphanus sativus L.). BMC Genomics 2017; 18:505. [PMID: 28673249 PMCID: PMC5496183 DOI: 10.1186/s12864-017-3874-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Background Alternative splicing (AS) plays important roles in gene expression and proteome diversity. Single nucleotide polymorphism (SNP) and insertion/deletion (InDel) are abundant polymorphisms and co-dominant inheritance markers, which have been widely used in germplasm identification, genetic mapping and marker-assisted selection in plants. So far, however, little information is available on utilization of AS events and development of SNP and InDel markers from transcriptome in radish. Results In this study, three radish transcriptome datasets were collected and aligned to the reference radish genome. A total of 56,530 AS events were identified from three radish genotypes with intron retention (IR) being the most frequent AS type, which accounted for 59.4% of the total expressed genes in radish. In all, 22,412 SNPs and 9436 InDels were identified with an average frequency of 1 SNP/17.9 kb and 1 InDel/42.5 kb, respectively. A total of 43,680 potential SSRs were identified in 31,604 assembled unigenes with a density of 1 SSR/2.5 kb. The ratio of SNPs with nonsynonymous/synonymous mutations was 1.05:1. Moreover, 35 SNPs and 200 InDels were randomly selected and validated by Sanger sequencing, 83.9% of the SNPs and 70% of the InDels exhibited polymorphism among these three genotypes. In addition, the 15 SNPs and 125 InDels were found to be unevenly distributed on 9 linkage groups. Furthermore, 40 informative InDel markers were successfully used for the genetic diversity analysis on 32 radish accessions. Conclusions These results would not only provide new insights into transcriptome complexity and AS regulation, but also furnish large amount of molecular marker resources for germplasm identification, genetic mapping and further genetic improvement of radish in breeding programs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3874-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dongyi Liang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haiyan Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
4
|
Tress ML, Abascal F, Valencia A. Alternative Splicing May Not Be the Key to Proteome Complexity. Trends Biochem Sci 2016; 42:98-110. [PMID: 27712956 DOI: 10.1016/j.tibs.2016.08.008] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/19/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Alternative splicing is commonly believed to be a major source of cellular protein diversity. However, although many thousands of alternatively spliced transcripts are routinely detected in RNA-seq studies, reliable large-scale mass spectrometry-based proteomics analyses identify only a small fraction of annotated alternative isoforms. The clearest finding from proteomics experiments is that most human genes have a single main protein isoform, while those alternative isoforms that are identified tend to be the most biologically plausible: those with the most cross-species conservation and those that do not compromise functional domains. Indeed, most alternative exons do not seem to be under selective pressure, suggesting that a large majority of predicted alternative transcripts may not even be translated into proteins.
Collapse
Affiliation(s)
- Michael L Tress
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Federico Abascal
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; Human Genetics Department, Sandhu Group, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alfonso Valencia
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Integrative analyses reveal transcriptome-proteome correlation in biological pathways and secondary metabolism clusters in A. flavus in response to temperature. Sci Rep 2015; 5:14582. [PMID: 26416011 PMCID: PMC4586720 DOI: 10.1038/srep14582] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
To investigate the changes in transcript and relative protein levels in response to temperature, complementary transcriptomic and proteomic analyses were used to identify changes in Aspergillus flavus grown at 28 °C and 37 °C. A total of 3,886 proteins were identified, and 2,832 proteins were reliably quantified. A subset of 664 proteins was differentially expressed upon temperature changes and enriched in several Kyoto Encyclopedia of Genes and Genomes pathways: translation-related pathways, metabolic pathways, and biosynthesis of secondary metabolites. The changes in protein profiles showed low congruency with alterations in corresponding transcript levels, indicating that post-transcriptional processes play a critical role in regulating the protein level in A. flavus. The expression pattern of proteins and transcripts related to aflatoxin biosynthesis showed that most genes were up-regulated at both the protein and transcript level at 28 °C. Our data provide comprehensive quantitative proteome data of A. flavus at conducive and nonconducive temperatures.
Collapse
|
6
|
Loziuk PL, Parker J, Li W, Lin CY, Wang JP, Li Q, Sederoff RR, Chiang VL, Muddiman DC. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa. J Proteome Res 2015; 14:4158-68. [PMID: 26325666 DOI: 10.1021/acs.jproteome.5b00233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.
Collapse
Affiliation(s)
- Philip L Loziuk
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Jennifer Parker
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Wei Li
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Chien-Yuan Lin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry , Beijing 100091, China
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Vincent L Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Wawrzyn GT, Quin MB, Choudhary S, López-Gallego F, Schmidt-Dannert C. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. ACTA ACUST UNITED AC 2014; 19:772-83. [PMID: 22726691 DOI: 10.1016/j.chembiol.2012.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023]
Abstract
The secondary metabolome of Basidiomycota represents a largely uncharacterized source of pharmaceutically relevant natural products. Terpenoids are the primary class of bioactive compounds isolated from mushrooms. The Jack O'Lantern mushroom Omphalotus olearius was identified 50 years ago as a prolific producer of anticancer illudin sesquiterpenoids; however, to date there have been exceptionally few studies into the biosynthesis of these important compounds. Here, we report the draft genome sequence of O. olearius, which reveals a diverse network of sesquiterpene synthases and two metabolic gene clusters associated with illudin biosynthesis. Characterization of the sesquiterpene synthases enabled a comprehensive survey of all currently available Basidiomycota genomes, thereby creating a predictive resource for terpenoid natural product biosynthesis in these organisms. Our results will facilitate discovery and biosynthetic production of unique pharmaceutically relevant bioactive compounds from Basidiomycota.
Collapse
Affiliation(s)
- Grayson T Wawrzyn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
8
|
Sibthorp C, Wu H, Cowley G, Wong PWH, Palaima P, Morozov IY, Weedall GD, Caddick MX. Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genomics 2013; 14:847. [PMID: 24299161 PMCID: PMC4046813 DOI: 10.1186/1471-2164-14-847] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The filamentous fungus Aspergillus nidulans has been a tractable model organism for cell biology and genetics for over 60 years. It is among a large number of Aspergilli whose genomes have been sequenced since 2005, including medically and industrially important species. In order to advance our knowledge of its biology and increase its utility as a genetic model by improving gene annotation we sequenced the transcriptome of A. nidulans with a focus on 5' end analysis. RESULTS Strand-specific whole transcriptome sequencing showed that 80-95% of annotated genes appear to be expressed across the conditions tested. We estimate that the total gene number should be increased by approximately 1000, to 11,800. With respect to splicing 8.3% of genes had multiple alternative transcripts, but alternative splicing by exon-skipping was very rare. 75% of annotated genes showed some level of antisense transcription and for one gene, meaB, we demonstrated the antisense transcript has a regulatory role. Specific sequencing of the 5' ends of transcripts was used for genome wide mapping of transcription start sites, allowing us to interrogate over 7000 promoters and 5' untranslated regions. CONCLUSIONS Our data has revealed the complexity of the A. nidulans transcriptome and contributed to improved genome annotation. The data can be viewed on the AspGD genome browser.
Collapse
Affiliation(s)
- Christopher Sibthorp
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Huihai Wu
- />Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool, L69 3BX UK
| | - Gwendolyn Cowley
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Prudence W H Wong
- />Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool, L69 3BX UK
| | - Paulius Palaima
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Igor Y Morozov
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
- />Department of Biomolecular and Sports Sciences, Faculty of Health and Life Sciences, Coventry University, James Starley Building, Coventry, CV1 5FB UK
| | - Gareth D Weedall
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Mark X Caddick
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
9
|
Pang CNI, Tay AP, Aya C, Twine NA, Harkness L, Hart-Smith G, Chia SZ, Chen Z, Deshpande NP, Kaakoush NO, Mitchell HM, Kassem M, Wilkins MR. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing. J Proteome Res 2013; 13:84-98. [PMID: 24152167 DOI: 10.1021/pr400820p] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct links between proteomic and genomic/transcriptomic data are not frequently made, partly because of lack of appropriate bioinformatics tools. To help address this, we have developed the PG Nexus pipeline. The PG Nexus allows users to covisualize peptides in the context of genomes or genomic contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene validation and supports the identification of mRNA splice junction boundaries and splice variants that are protein-coding. This is illustrated with an analysis of splice junctions covered by human phosphopeptides, and other examples of relevance to the Chromosome-Centric Human Proteome Project. The PG Nexus is open-source and available from https://github.com/IntersectAustralia/ap11_Samifier. It has been integrated into Galaxy and made available in the Galaxy tool shed.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- Systems Biology Initiative, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Loziuk PL, Wang J, Li Q, Sederoff RR, Chiang VL, Muddiman DC. Understanding the Role of Proteolytic Digestion on Discovery and Targeted Proteomic Measurements Using Liquid Chromatography Tandem Mass Spectrometry and Design of Experiments. J Proteome Res 2013; 12:5820-9. [DOI: 10.1021/pr4008442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Philip L. Loziuk
- W.M. Keck
Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Jack Wang
- Forest
Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Quanzi Li
- Forest
Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Ronald R. Sederoff
- Forest
Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Vincent L. Chiang
- Forest
Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - David C. Muddiman
- W.M. Keck
Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, United States
| |
Collapse
|
11
|
Kempken F. Alternative splicing in ascomycetes. Appl Microbiol Biotechnol 2013; 97:4235-41. [DOI: 10.1007/s00253-013-4841-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 01/08/2023]
|
12
|
Maiolica A, Jünger MA, Ezkurdia I, Aebersold R. Targeted proteome investigation via selected reaction monitoring mass spectrometry. J Proteomics 2012; 75:3495-513. [PMID: 22579752 DOI: 10.1016/j.jprot.2012.04.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 12/20/2022]
Abstract
Due to the enormous complexity of proteomes which constitute the entirety of protein species expressed by a certain cell or tissue, proteome-wide studies performed in discovery mode are still limited in their ability to reproducibly identify and quantify all proteins present in complex biological samples. Therefore, the targeted analysis of informative subsets of the proteome has been beneficial to generate reproducible data sets across multiple samples. Here we review the repertoire of antibody- and mass spectrometry (MS) -based analytical tools which is currently available for the directed analysis of predefined sets of proteins. The topics of emphasis for this review are Selected Reaction Monitoring (SRM) mass spectrometry, emerging tools to control error rates in targeted proteomic experiments, and some representative examples of applications. The ability to cost- and time-efficiently generate specific and quantitative assays for large numbers of proteins and posttranslational modifications has the potential to greatly expand the range of targeted proteomic coverage in biological studies. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Alessio Maiolica
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | | | | | | |
Collapse
|