1
|
Qian YX, Guo SG, Zhao XH, Li ZW, Qiu R, Kan YC, Li DD. Role of small nucleolar RNAs in alternative splicing of the doublesex gene in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22117. [PMID: 38706214 DOI: 10.1002/arch.22117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
More and more evidence shows that small noncoding RNAs (ncRNAs) play diverse roles in development, stress response and other cellular processes, but functional study of intermediate-size ncRNAs is still rare. Here, the expression profile of 16 intermediate-size ncRNAs in ovary and testis of silkworm Bombyx mori were analyzed. Twelve ncRNAs, including 5 small nucleolar RNAs (snoRNAs) and 7 unclassified ncRNAs, accumulated more in the testis than in the ovary of silkworm, especially Bm-163, Bm-51 and Bm-68. Four ncRNAs (including three orphan snoRNAs and one unclassified ncRNA) had higher expression level in the ovary than in the testis, especially Bm-86. Overexpression of the testis-enriched snoRNA Bm-68 in the female led to the accumulation of male-specific isoform of doublesex (BmdsxM) and increased the expression ratio of BmdsxM: BmdsxF. While overexpression of ovary-enriched snoRNA Bm-86 in the male decreased the expression ratio of BmdsxM: BmdsxF, indicating the roles of the two snoRNAs played in the alternative splicing of Bmdsx of silkworm, which will provide new clues for the functional study of snoRNAs in insects.
Collapse
Affiliation(s)
- Yu-Xin Qian
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Shi-Gang Guo
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Xu-Hui Zhao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Zhong-Wei Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Reng Qiu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Yun-Chao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
- Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Dan-Dan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
2
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
4
|
Yang X, Chen K, Wang Y, Yang D, Huang Y. The Sex Determination Cascade in the Silkworm. Genes (Basel) 2021; 12:genes12020315. [PMID: 33672402 PMCID: PMC7926724 DOI: 10.3390/genes12020315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
- Correspondence:
| |
Collapse
|
5
|
Chen K, Yu Y, Yang D, Yang X, Tang L, Liu Y, Luo X, R. Walter J, Liu Z, Xu J, Huang Y. Gtsf1 is essential for proper female sex determination and transposon silencing in the silkworm, Bombyx mori. PLoS Genet 2020; 16:e1009194. [PMID: 33137136 PMCID: PMC7660909 DOI: 10.1371/journal.pgen.1009194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/12/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
Sex determination pathways are astoundingly diverse in insects. For instance, the silk moth Bombyx mori uniquely use various components of the piRNA pathway to produce the Fem signal for specification of the female fate. In this study, we identified BmGTSF1 as a novel piRNA factor which participates in B. mori sex determination. We found that BmGtsf1 has a distinct expression pattern compared to Drosophila and mouse. CRISPR/Cas9 induced mutation in BmGtsf1 resulted in partial sex reversal in genotypically female animals by shifting expression of the downstream targets BmMasc and Bmdsx to the male pattern. As levels of Fem piRNAs were substantially reduced in female mutants, we concluded that BmGtsf1 plays a critical role in the biogenesis of the feminizing signal. We also demonstrated that BmGTSF1 physically interacted with BmSIWI, a protein previously reported to be involved in female sex determination, indicating BmGTSF1 function as the cofactor of BmSIWI. BmGtsf1 mutation resulted in piRNA pathway dysregulation, including piRNA biogenesis defects and transposon derepression, suggesting BmGtsf1 is also a piRNA factor in the silkworm. Furthermore, we found that BmGtsf1 mutation leads to gametogenesis defects in both male and female. Our data suggested that BmGtsf1 is a new component involved in the sex determination pathway in B. mori. Sex determination is a fundamentally important process in most sexually reproducing metazoan. Nevertheless, the underlying mechanisms of sex determination are highly diverse. In B. mori, piRNAs derived from the W-chromosome-linked Fem precursor serve as the primary female determining signal. However, we still know little about the initiation of B. mori sex determination and its relationship with piRNA pathway. Here, we provided evidence that BmGTSF1 is a novel piRNA factor which is indispensable for B.mori female sex determination. Mutations in BmGtsf1 resulted in dysregulation of the piRNA pathway and caused partial female-male sex reversal. We also detected dramatic diminution of Fem piRNA in female mutant, indicating BmGTSF1 regulates B. mori sex determination via piRNA pathway. More importantly, we showed that BmGTSF1 interacted with BmSIWI, which protein had been reported to be involved in piRNA pathway and sex determination in B. mori, supporting the conclusion that BmGTSF1 is a novel factor for piRNA pathway and sex determination.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Linmeng Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yujia Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - James R. Walter
- Department of Ecology and Evolutionary Biology, University of Kansas, NV, United States of America
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JX); (YH)
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (JX); (YH)
| |
Collapse
|
6
|
Wang Y, Li J, Wan QX, Zhao Q, Wang KX, Zha XF. Spliceosomal Protein Gene BmSPX Regulates Reproductive Organ Development in Bombyx mori. Int J Mol Sci 2020; 21:ijms21072579. [PMID: 32276369 PMCID: PMC7177926 DOI: 10.3390/ijms21072579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sex determination and differentiation are nearly universal to all eukaryotic organisms, encompassing diverse systems and mechanisms. Here, we identified a spliceosomal protein gene BmSPX involved in sex determination of the lepidopeteran insect, Bombyx mori. In a transgenic silkworm line that overexpressed the BmSPX gene, transgenic silkworm males exhibited differences in their external genitalia compared to wild-type males, but normal internal genitalia. Additionally, transgenic silkworm females exhibited a developmental disorder of the reproductive organs. Upregulation of BmSPX significantly increased the expression levels of sex-determining genes (BmMasc and BmIMP) and reduced the female-type splice isoform of Bmdsx, which is a key switch gene downstream of the sex-determination pathway. Additionally, co-immunoprecipitation assays confirmed an interaction between the BmSPX protein and BmPSI, an upstream regulatory factor of Bmdsx. Quantitative real-time PCR showed that BmSPX over-expression upregulated the expression of the Hox gene abdominal-B (Adb-B), which is required for specification of the posterior abdomen, external genitalia, and gonads of insects, as well as the genes in the Receptor Tyrosine Kinase (RTK) signaling pathway. In conclusion, our study suggested the involvement of BmSPX, identified as a novel regulatory factor, in the sex-determination pathway and regulation of reproductive organ development in silkworms.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; (Y.W.); (J.L.); (Q.-X.W.); (Q.Z.); (K.-X.W.)
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200438, China
| | - Juan Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; (Y.W.); (J.L.); (Q.-X.W.); (Q.Z.); (K.-X.W.)
| | - Qiu-Xing Wan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; (Y.W.); (J.L.); (Q.-X.W.); (Q.Z.); (K.-X.W.)
| | - Qin Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; (Y.W.); (J.L.); (Q.-X.W.); (Q.Z.); (K.-X.W.)
| | - Kai-Xuan Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; (Y.W.); (J.L.); (Q.-X.W.); (Q.Z.); (K.-X.W.)
| | - Xing-Fu Zha
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; (Y.W.); (J.L.); (Q.-X.W.); (Q.Z.); (K.-X.W.)
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-68251573; Fax: +86-23-68251128
| |
Collapse
|
7
|
Wang Y, Zhao Q, Wan QX, Wang KX, Zha XF. P-element Somatic Inhibitor Protein Binding a Target Sequence in dsx Pre-mRNA Conserved in Bombyx mori and Spodoptera litura. Int J Mol Sci 2019; 20:ijms20092361. [PMID: 31086020 PMCID: PMC6539025 DOI: 10.3390/ijms20092361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Bombyx mori doublesex (Bmdsx) functions as a double-switch gene in the final step of the sex-determination cascade in the silkworm Bombyx mori. The P-element somatic inhibitor (PSI) protein in B. mori interacts with Bmdsx pre-mRNA in CE1 as an exonic splicing silencer to promote male-specific splicing of Bmdsx. However, the character of the interaction between BmPSI and Bmdsx pre-mRNA remains unclear. Electrophoretic mobility shift assay (EMSA) results showed that the four KH_1 motifs in BmPSI are all essential for the binding, especially the former two KH_1 motifs. Three active sites (I116, L127, and IGGI) in the KH_1 motif were found to be necessary for the binding through EMSA, circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The PSI homologous protein in S. litura (SlPSI) was purified and the binding of SlPSI and CE1 was verified. Compared with BmPSI, the mutant SlPSI proteins of I116 and IGGI lost their ability to bind to CE1. In conclusion, the binding of PSI and dsx pre-mRNA are generally conserved in both B. mori and S. litura. These findings provide clues for sex determination in Lepidoptera.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Qin Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Qiu-Xing Wan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Kai-Xuan Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Xing-Fu Zha
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Śliwińska EB, Martyka R, Tryjanowski P. Evolutionary interaction between W/Y chromosome and transposable elements. Genetica 2016; 144:267-78. [PMID: 27000053 PMCID: PMC4879163 DOI: 10.1007/s10709-016-9895-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.
Collapse
Affiliation(s)
- Ewa B Śliwińska
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland.
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
| | - Rafał Martyka
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| |
Collapse
|
9
|
Yoshido A, Marec F, Sahara K. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction. Heredity (Edinb) 2016; 116:424-33. [PMID: 26758188 DOI: 10.1038/hdy.2015.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 11/09/2022] Open
Abstract
Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety (WZ/ZZ or derived variants). The maternally inherited W chromosome is known to determine female sex in the silkworm, Bombyx mori. However, little is known about the role of W chromosome in other lepidopteran species. Here we describe two forms of the W chromosome, W and neo-W, that are transmitted to both sexes in offspring of hybrids from reciprocal crosses between subspecies of wild silkmoths, Samia cynthia. We performed crosses between S. c. pryeri (2n=28, WZ/ZZ) and S. c. walkeri (2n=26, neo-Wneo-Z/neo-Zneo-Z) and examined fitness and sex chromosome constitution in their hybrids. The F1 hybrids of both reciprocal crosses had reduced fertility. Fluorescence in situ hybridization revealed not only the expected sex chromosome constitutions in the backcross and F2 hybrids of both sexes but also females without the W (or neo-W) chromosome and males carrying the W (or neo-W) chromosome. Furthermore, crosses between the F2 hybrids revealed no association between the presence or absence of W (or neo-W) chromosome and variations in the hatchability of their eggs. Our results clearly suggest that the W (or neo-W) chromosome of S. cynthia ssp. plays no role in sex determination and reproduction, and thus does not contribute to the formation of reproductive barriers between different subspecies.
Collapse
Affiliation(s)
- A Yoshido
- Institute of Entomology, Biology Centre of The Czech Academy of Science, České Budějovice, Czech Republic.,Laboratory of Applied Molecular Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - F Marec
- Institute of Entomology, Biology Centre of The Czech Academy of Science, České Budějovice, Czech Republic
| | - K Sahara
- Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
10
|
A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 2014; 509:633-6. [PMID: 24828047 DOI: 10.1038/nature13315] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/08/2014] [Indexed: 11/08/2022]
Abstract
The silkworm Bombyx mori uses a WZ sex determination system that is analogous to the one found in birds and some reptiles. In this system, males have two Z sex chromosomes, whereas females have Z and W sex chromosomes. The silkworm W chromosome has a dominant role in female determination, suggesting the existence of a dominant feminizing gene in this chromosome. However, the W chromosome is almost fully occupied by transposable element sequences, and no functional protein-coding gene has been identified so far. Female-enriched PIWI-interacting RNAs (piRNAs) are the only known transcripts that are produced from the sex-determining region of the W chromosome, but the function(s) of these piRNAs are unknown. Here we show that a W-chromosome-derived, female-specific piRNA is the feminizing factor of B. mori. This piRNA is produced from a piRNA precursor which we named Fem. Fem sequences were arranged in tandem in the sex-determining region of the W chromosome. Inhibition of Fem-derived piRNA-mediated signalling in female embryos led to the production of the male-specific splice variants of B. mori doublesex (Bmdsx), a gene which acts at the downstream end of the sex differentiation cascade. A target gene of Fem-derived piRNA was identified on the Z chromosome of B. mori. This gene, which we named Masc, encoded a CCCH-type zinc finger protein. We show that the silencing of Masc messenger RNA by Fem piRNA is required for the production of female-specific isoforms of Bmdsx in female embryos, and that Masc protein controls both dosage compensation and masculinization in male embryos. Our study characterizes a single small RNA that is responsible for primary sex determination in the WZ sex determination system.
Collapse
|
11
|
Nie Z, Zhou F, Li D, Lv Z, Chen J, Liu Y, Shu J, Sheng Q, Yu W, Zhang W, Jiang C, Yao Y, Yao J, Jin Y, Zhang Y. RIP-seq of BmAgo2-associated small RNAs reveal various types of small non-coding RNAs in the silkworm, Bombyx mori. BMC Genomics 2013; 14:661. [PMID: 24074203 PMCID: PMC3849828 DOI: 10.1186/1471-2164-14-661] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022] Open
Abstract
Background Small non-coding RNAs (ncRNAs) are important regulators of gene expression in eukaryotes. Previously, only microRNAs (miRNAs) and piRNAs have been identified in the silkworm, Bombyx mori. Furthermore, only ncRNAs (50-500nt) of intermediate size have been systematically identified in the silkworm. Results Here, we performed a systematic identification and analysis of small RNAs (18-50nt) associated with the Bombyx mori argonaute2 (BmAgo2) protein. Using RIP-seq, we identified various types of small ncRNAs associated with BmAGO2. These ncRNAs showed a multimodal length distribution, with three peaks at ~20nt, ~27nt and ~33nt, which included tRNA-, transposable element (TE)-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. The tRNA-derived fragments (tRFs) were found at an extremely high abundance and accounted for 69.90% of the BmAgo2-associated small RNAs. Northern blotting confirmed that many tRFs were expressed or up-regulated only in the BmNPV-infected cells, implying that the tRFs play a prominent role by binding to BmAgo2 during BmNPV infection. Additional evidence suggested that there are potential cleavage sites on the D, anti-codon and TψC loops of the tRNAs. TE-derived small RNAs and piRNAs also accounted for a significant proportion of the BmAgo2-associated small RNAs, suggesting that BmAgo2 could be involved in the maintenance of genome stability by suppressing the activities of transposons guided by these small RNAs. Finally, Northern blotting was also used to confirm the Bombyx 5.8 s rRNA-derived small RNAs, demonstrating that various novel small RNAs exist in the silkworm. Conclusions Using an RIP-seq method in combination with Northern blotting, we identified various types of small RNAs associated with the BmAgo2 protein, including tRNA-, TE-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. Our findings provide new clues for future functional studies of the role of small RNAs in insect development and evolution.
Collapse
Affiliation(s)
- Zuoming Nie
- College of Life Sciences, Zhejiang Sci-Tech University, Hanghzou 310018, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|