1
|
de Oliveira RS, Gonçalves AR, Ajulo AA, Oliveira LR, Lanna AC, de Filippi MCC. Survey and genomic characterization of Serratia marcescens on endophytism, biofilm, and phosphorus solubilization in rice plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65834-65848. [PMID: 39604718 DOI: 10.1007/s11356-024-35554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Serratia marcescens, isolated from the rhizosphere of rice crops, has the potential to improve the acquisition of scarce minerals and provide plant growth. Rice seeds microbiolized with S. marcescens and non-microbiolized seeds were sown in a culture medium enriched with non-labile phosphorus, and the roots were analyzed in WinRhizo. The plant segments were documented by scanning electron microscopy (SEM) and incubated in an NBRIP culture medium. DNAs from endophytic colonies were extracted and analyzed by PCR. The genome of S. marcescens was annotated using subsystem technology to detect genes involved in phosphorus solubilization, biofilm production, and growth promotion. The root system increased in area, volume, and length by 61.5, 31.5, and 101%, respectively. Halos were formed around segments of microbiolized plants, indicating the solubilization of non-labile phosphorus. SEM detected the presence of biofilms and microcolonies, identified as S. marcescens by the molecular markers. Genome annotation found genes with potential functions in plant growth promotion, including genes involved in the biosynthesis of indole-3-acetic acid, phosphate solubilization, and biofilm production. In the low phosphorus crop, the treated plants showed a 181% increase in total biomass. S. marcescens solubilizes non-labile phosphorus, colonizes endophytes, modifies the architecture of the root system, and promotes the growth of rice plants, and can be considered a biofertilizer for growing upland rice.
Collapse
Affiliation(s)
- Rodrigo Silva de Oliveira
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Ariany Rosa Gonçalves
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Akintunde Abiodun Ajulo
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Lorena Resende Oliveira
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Anna Cristina Lanna
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Marta Cristina Corsi de Filippi
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil.
| |
Collapse
|
2
|
Kinch LN, Schaeffer RD, Zhang J, Cong Q, Orth K, Grishin N. Insights into virulence: structure classification of the Vibrio parahaemolyticus RIMD mobilome. mSystems 2023; 8:e0079623. [PMID: 38014954 PMCID: PMC10734457 DOI: 10.1128/msystems.00796-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The pandemic Vpar strain RIMD causes seafood-borne illness worldwide. Previous comparative genomic studies have revealed pathogenicity islands in RIMD that contribute to the success of the strain in infection. However, not all virulence determinants have been identified, and many of the proteins encoded in known pathogenicity islands are of unknown function. Based on the EOCD database, we used evolution-based classification of structure models for the RIMD proteome to improve our functional understanding of virulence determinants acquired by the pandemic strain. We further identify and classify previously unknown mobile protein domains as well as fast evolving residue positions in structure models that contribute to virulence and adaptation with respect to a pre-pandemic strain. Our work highlights key contributions of phage in mediating seafood born illness, suggesting this strain balances its avoidance of phage predators with its successful colonization of human hosts.
Collapse
Affiliation(s)
- Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nick Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Behera DU, Dixit S, Gaur M, Mishra R, Sahoo RK, Sahoo M, Behera BK, Subudhi BB, Bharat SS, Subudhi E. Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways. Genes (Basel) 2023; 14:1279. [PMID: 37372459 DOI: 10.3390/genes14061279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Morganella morganii is a Gram-negative opportunistic Enterobacteriaceae pathogen inherently resistant to colistin. This species causes various clinical and community-acquired infections. This study investigated the virulence factors, resistance mechanisms, functional pathways, and comparative genomic analysis of M. morganii strain UM869 with 79 publicly available genomes. The multidrug resistance strain UM869 harbored 65 genes associated with 30 virulence factors, including efflux pump, hemolysin, urease, adherence, toxin, and endotoxin. Additionally, this strain contained 11 genes related to target alteration, antibiotic inactivation, and efflux resistance mechanisms. Further, the comparative genomic study revealed a high genetic relatedness (98.37%) among the genomes, possibly due to the dissemination of genes between adjoining countries. The core proteome of 79 genomes contains the 2692 core, including 2447 single-copy orthologues. Among them, six were associated with resistance to major antibiotic classes manifested through antibiotic target alteration (PBP3, gyrB) and antibiotic efflux (kpnH, rsmA, qacG; rsmA; CRP). Similarly, 47 core orthologues were annotated to 27 virulence factors. Moreover, mostly core orthologues were mapped to transporters (n = 576), two-component systems (n = 148), transcription factors (n = 117), ribosomes (n = 114), and quorum sensing (n = 77). The presence of diversity in serotypes (type 2, 3, 6, 8, and 11) and variation in gene content adds to the pathogenicity, making them more difficult to treat. This study highlights the genetic similarity among the genomes of M. morganii and their restricted emergence, mostly in Asian countries, in addition to their growing pathogenicity and resistance. However, steps must be taken to undertake large-scale molecular surveillance and to direct suitable therapeutic interventions.
Collapse
Affiliation(s)
- Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
- Department of Biotechnology & Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Rukmini Mishra
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 761211, Odisha, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Maheswata Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Bijay Kumar Behera
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Gwalior Road, Jhansi 284003, Uttar Pradesh, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sutar Suhas Bharat
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 761211, Odisha, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| |
Collapse
|
4
|
Jing M, Xu X, Peng J, Li C, Zhang H, Lian C, Chen Y, Shen Z, Chen C. Comparative Genomics of Three Aspergillus Strains Reveals Insights into Endophytic Lifestyle and Endophyte-Induced Plant Growth Promotion. J Fungi (Basel) 2022; 8:jof8070690. [PMID: 35887447 PMCID: PMC9323082 DOI: 10.3390/jof8070690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus includes both plant pathogenic and beneficial fungi. Although endophytes beneficial to plants have high potential for plant growth promotion and improving stress tolerance, studies on endophytic lifestyles and endophyte-plant interactions are still limited. Here, three endophytes belonging to Aspergillus, AS31, AS33, and AS42, were isolated. They could successfully colonize rice roots and significantly improved rice growth. The genomes of strains AS31, AS33, and AS42 were sequenced and compared with other Aspergillus species covering both pathogens and endophytes. The genomes of AS31, AS33, and AS42 were 36.8, 34.8, and 35.3 Mb, respectively. The endophytic genomes had more genes encoding carbohydrate-active enzymes (CAZymes) and small secreted proteins (SSPs) and secondary metabolism gene clusters involved in indole metabolism than the pathogens. In addition, these endophytes were able to improve Pi (phosphorus) accumulation and transport in rice by inducing the expression of Pi transport genes in rice. Specifically, inoculation with endophytes significantly increased Pi contents in roots at the early stage, while the Pi contents in inoculated shoots were significantly increased at the late stage. Our results not only provide important insights into endophyte-plant interactions but also provide strain and genome resources, paving the way for the agricultural application of Aspergillus endophytes.
Collapse
Affiliation(s)
- Minyu Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Jing Peng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Can Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Tokyo 188-0002, Japan;
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.S.); (C.C.); Tel.: +86-2584396391 (C.C.)
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.S.); (C.C.); Tel.: +86-2584396391 (C.C.)
| |
Collapse
|
5
|
Guardiola-Avila I, Sánchez-Busó L, Acedo-Félix E, Gomez-Gil B, Zúñiga-Cabrera M, González-Candelas F, Noriega-Orozco L. Core and Accessory Genome Analysis of Vibrio mimicus. Microorganisms 2021; 9:microorganisms9010191. [PMID: 33477474 PMCID: PMC7831076 DOI: 10.3390/microorganisms9010191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023] Open
Abstract
Vibrio mimicus is an emerging pathogen, mainly associated with contaminated seafood consumption. However, little is known about its evolution, biodiversity, and pathogenic potential. This study analyzes the pan-, core, and accessory genomes of nine V. mimicus strains. The core genome yielded 2424 genes in chromosome I (ChI) and 822 genes in chromosome II (ChII), with an accessory genome comprising an average of 10.9% of the whole genome for ChI and 29% for ChII. Core genome phylogenetic trees were obtained, and V. mimicus ATCC-33654 strain was the closest to the outgroup in both chromosomes. Additionally, a phylogenetic study of eight conserved genes (ftsZ, gapA, gyrB, topA, rpoA, recA, mreB, and pyrH), including Vibrio cholerae, Vibrio parilis, Vibrio metoecus, and Vibrio caribbenthicus, clearly showed clade differentiation. The main virulence genes found in ChI corresponded with type I secretion proteins, extracellular components, flagellar proteins, and potential regulators, while, in ChII, the main categories were type-I secretion proteins, chemotaxis proteins, and antibiotic resistance proteins. The accessory genome was characterized by the presence of mobile elements and toxin encoding genes in both chromosomes. Based on the genome atlas, it was possible to characterize differential regions between strains. The pan-genome of V. mimicus encompassed 3539 genes for ChI and 2355 genes for ChII. These results give us an insight into the virulence and gene content of V. mimicus, as well as constitute the first approach to its diversity.
Collapse
Affiliation(s)
- Iliana Guardiola-Avila
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico; (I.G.-A.); (E.A.-F.)
| | - Leonor Sánchez-Busó
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), 46020 Valencia, Spain;
| | - Evelia Acedo-Félix
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico; (I.G.-A.); (E.A.-F.)
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Mazatlán, Unit for Aquaculture and Environmental Management, Mazatlan, Sinaloa 82112, Mexico;
| | - Manuel Zúñiga-Cabrera
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSSIC), 46980 Paterna, Spain;
| | - Fernando González-Candelas
- Joint Research Unit Infección y Salud Pública, FISABIO-Universitat de Valencia, I2SysBio, CIBERESP, 46980 Valencia, Spain;
| | - Lorena Noriega-Orozco
- Guaymas Unit, Centro de Investigación en Alimentación y Desarrollo (CIAD), Guaymas, Sonora 85480, Mexico
- Correspondence: ; Tel.: +52-662-289-2400
| |
Collapse
|
6
|
Comparative Genomics of 86 Whole-Genome Sequences in the Six Species of the Elizabethkingia Genus Reveals Intraspecific and Interspecific Divergence. Sci Rep 2019; 9:19167. [PMID: 31844108 PMCID: PMC6915712 DOI: 10.1038/s41598-019-55795-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Bacteria of the genus Elizabethkingia are emerging infectious agents that can cause infection in humans. The number of published whole-genome sequences of Elizabethkingia is rapidly increasing. In this study, we used comparative genomics to investigate the genomes of the six species in the Elizabethkingia genus, namely E. meningoseptica, E. anophelis, E. miricola, E. bruuniana, E. ursingii, and E. occulta. In silico DNA–DNA hybridization, whole-genome sequence-based phylogeny, pan genome analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, and clusters of orthologous groups were evaluated. Of the 86 whole-genome sequences available in GenBank, 21 were complete genome sequences and 65 were shotgun sequences. In silico DNA–DNA hybridization clearly delineated the six Elizabethkingia species. Phylogenetic analysis confirmed that E. bruuniana, E. ursingii, and E. occulta were closer to E. miricola than to E. meningoseptica and E. anophelis. A total of 2,609 clusters of orthologous groups were identified among the six type strains of the Elizabethkingia genus. Metabolism-related clusters of orthologous groups accounted for the majority of gene families in KEGG analysis. New genes were identified that substantially increased the total repertoire of the pan genome after the addition of 86 Elizabethkingia genomes, which suggests that Elizabethkingia has shown adaptive evolution to environmental change. This study presents a comparative genomic analysis of Elizabethkingia, and the results of this study provide knowledge that facilitates a better understanding of this microorganism.
Collapse
|
7
|
Moldovan MA, Gelfand MS. Pangenomic Definition of Prokaryotic Species and the Phylogenetic Structure of Prochlorococcus spp. Front Microbiol 2018; 9:428. [PMID: 29593678 PMCID: PMC5857598 DOI: 10.3389/fmicb.2018.00428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/23/2018] [Indexed: 11/13/2022] Open
Abstract
The pangenome is the collection of all groups of orthologous genes (OGGs) from a set of genomes. We apply the pangenome analysis to propose a definition of prokaryotic species based on identification of lineage-specific gene sets. While being similar to the classical biological definition based on allele flow, it does not rely on DNA similarity levels and does not require analysis of homologous recombination. Hence this definition is relatively objective and independent of arbitrary thresholds. A systematic analysis of 110 accepted species with the largest numbers of sequenced strains yields results largely consistent with the existing nomenclature. However, it has revealed that abundant marine cyanobacteria Prochlorococcus marinus should be divided into two species. As a control we have confirmed the paraphyletic origin of Yersinia pseudotuberculosis (with embedded, monophyletic Y. pestis) and Burkholderia pseudomallei (with B. mallei). We also demonstrate that by our definition and in accordance with recent studies Escherichia coli and Shigella spp. are one species.
Collapse
Affiliation(s)
- Mikhail A. Moldovan
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail S. Gelfand
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| |
Collapse
|
8
|
Grover CE, Arick MA, Conover JL, Thrash A, Hu G, Sanders WS, Hsu CY, Naqvi RZ, Farooq M, Li X, Gong L, Mudge J, Ramaraj T, Udall JA, Peterson DG, Wendel JF. Comparative Genomics of an Unusual Biogeographic Disjunction in the Cotton Tribe (Gossypieae) Yields Insights into Genome Downsizing. Genome Biol Evol 2017; 9:3328-3344. [PMID: 29194487 PMCID: PMC5737505 DOI: 10.1093/gbe/evx248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
Long-distance insular dispersal is associated with divergence and speciation because of founder effects and strong genetic drift. The cotton tribe (Gossypieae) has experienced multiple transoceanic dispersals, generating an aggregate geographic range that encompasses much of the tropics and subtropics worldwide. Two genera in the Gossypieae, Kokia and Gossypioides, exhibit a remarkable geographic disjunction, being restricted to the Hawaiian Islands and Madagascar/East Africa, respectively. We assembled and use de novo genome sequences to address questions regarding the divergence of these two genera from each other and from their sister-group, Gossypium. In addition, we explore processes underlying the genome downsizing that characterizes Kokia and Gossypioides relative to other genera in the tribe. Using 13,000 gene orthologs and synonymous substitution rates, we show that the two disjuncts last shared a common ancestor ∼5 Ma, or half as long ago as their divergence from Gossypium. We report relative stasis in the transposable element fraction. In comparison to Gossypium, there is loss of ∼30% of the gene content in the two disjunct genera and a history of genome-wide accumulation of deletions. In both genera, there is a genome-wide bias toward deletions over insertions, and the number of gene losses exceeds the number of gains by ∼2- to 4-fold. The genomic analyses presented here elucidate genomic consequences of the demographic and biogeographic history of these closest relatives of Gossypium, and enhance their value as phylogenetic outgroups.
Collapse
Affiliation(s)
- Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| | - Mark A Arick
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| | - Adam Thrash
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| | - William S Sanders
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
- Department of Computer Science & Engineering, Mississippi State University, Mississippi State, MS
- The Jackson Laboratory, Connecticut, Farmington, CT
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Punjab, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Punjab, Pakistan
| | - Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, P.R. China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, P.R. China
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico
| | | | - Joshua A Udall
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| |
Collapse
|
9
|
Bonacina J, Suárez N, Hormigo R, Fadda S, Lechner M, Saavedra L. A genomic view of food-related and probiotic Enterococcus strains. DNA Res 2017; 24:11-24. [PMID: 27773878 PMCID: PMC5381348 DOI: 10.1093/dnares/dsw043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/18/2016] [Indexed: 11/22/2022] Open
Abstract
The study of enterococcal genomes has grown considerably in recent years. While special attention is paid to comparative genomic analysis among clinical relevant isolates, in this study we performed an exhaustive comparative analysis of enterococcal genomes of food origin and/or with potential to be used as probiotics. Beyond common genetic features, we especially aimed to identify those that are specific to enterococcal strains isolated from a certain food-related source as well as features present in a species-specific manner. Thus, the genome sequences of 25 Enterococcus strains, from 7 different species, were examined and compared. Their phylogenetic relationship was reconstructed based on orthologous proteins and whole genomes. Likewise, markers associated with a successful colonization (bacteriocin genes and genomic islands) and genome plasticity (phages and clustered regularly interspaced short palindromic repeats) were investigated for lifestyle specific genetic features. At the same time, a search for antibiotic resistance genes was carried out, since they are of big concern in the food industry. Finally, it was possible to locate 1617 FIGfam families as a core proteome universally present among the genera and to determine that most of the accessory genes code for hypothetical proteins, providing reasonable hints to support their functional characterization.
Collapse
Affiliation(s)
- Julieta Bonacina
- Laboratorio de Genética y Biología Molecular, CERELA-CONICET, Centro de Referencia para Lactobacilos, San Miguel de Tucumán (T4000ILC), Tucumán, Argentina
| | - Nadia Suárez
- Laboratorio de Genética y Biología Molecular, CERELA-CONICET, Centro de Referencia para Lactobacilos, San Miguel de Tucumán (T4000ILC), Tucumán, Argentina
| | - Ricardo Hormigo
- Laboratorio de Genética y Biología Molecular, CERELA-CONICET, Centro de Referencia para Lactobacilos, San Miguel de Tucumán (T4000ILC), Tucumán, Argentina
| | - Silvina Fadda
- Laboratorio de Genética y Biología Molecular, CERELA-CONICET, Centro de Referencia para Lactobacilos, San Miguel de Tucumán (T4000ILC), Tucumán, Argentina
| | - Marcus Lechner
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Lucila Saavedra
- Laboratorio de Genética y Biología Molecular, CERELA-CONICET, Centro de Referencia para Lactobacilos, San Miguel de Tucumán (T4000ILC), Tucumán, Argentina
| |
Collapse
|
10
|
Khan AR, Park GS, Asaf S, Hong SJ, Jung BK, Shin JH. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS One 2017; 12:e0171534. [PMID: 28187139 PMCID: PMC5302809 DOI: 10.1371/journal.pone.0171534] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/22/2017] [Indexed: 11/28/2022] Open
Abstract
Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants.
Collapse
Affiliation(s)
- Abdur Rahim Khan
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
| | - Gun-Seok Park
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sung-Jun Hong
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung Kwon Jung
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Liu M, Stiller J, Holušová K, Vrána J, Liu D, Doležel J, Liu C. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat. Sci Rep 2016; 6:36398. [PMID: 27821854 PMCID: PMC5099574 DOI: 10.1038/srep36398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
The hexaploid wheat genotype Chinese Spring (CS) has been used worldwide as the reference base for wheat genetics and genomics, and significant resources have been used by the international community to generate a reference wheat genome based on this genotype. By sequencing flow-sorted 3B chromosome from a hexaploid wheat genotype CRNIL1A and comparing the obtained sequences with those available for CS, we detected that a large number of sequences in the former were missing in the latter. If the distribution of such sequences in the hexaploid wheat genome is random, CRNILA sequences missing in CS could be as much as 159.3 Mb even if only fragments of 50 bp or longer were considered. Analysing RNA sequences available in the public domains also revealed that dispensable genes are common in hexaploid wheat. Together with those extensive intra- and interchromosomal rearrangements in CS, the existence of such dispensable genes is another factor highlighting potential issues with the use of reference genomes in various studies. Strong deviation in distributions of these dispensable sequences among genotypes with different geographical origins provided the first evidence indicating that they could be associated with adaptation in wheat.
Collapse
Affiliation(s)
- Miao Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiri Stiller
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Kateřina Holušová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia
- School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Provorov NA, Tikhonovich IA, Vorobyov NI. Symbiogenesis as a model for reconstructing the early stages of genome evolution. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Williamson A, Hjerde E, Kahlke T. Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group 'Lig E'. Mol Microbiol 2015; 99:274-90. [PMID: 26412580 DOI: 10.1111/mmi.13229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/01/2022]
Abstract
Prior to the discovery of a minimal ATP-dependent DNA ligase in Haemophilus influenzae, bacteria were thought to only possess a NAD-dependent ligase, which was involved in sealing of Okazaki fragments. We now know that a diverse range of bacterial species possess up to six of these accessory bacterial ATP-dependent DNA ligases (b-ADLs), which vary in size and enzymatic domain associations. Here we compare the domain structure of different types of b-ADLs and investigate their distribution among the bacterial domain to describe possible evolutionary trajectories that gave rise to the sequence and structural diversity of these enzymes. Previous biochemical and genetic analyses have delineated three main classes of these enzymes: Lig B, Lig C and Lig D, which appear to have descended from a common ancestor within the bacterial domain. In the present study, we delineate a fourth group of b-ADLs, Lig E, which possesses a number of unique features at the primary and tertiary structural levels. The biochemical characteristics, domain structure and inferred extracellular location sets this group apart from the other b-ADLs. The results presented here indicate that the Lig E type ligases were horizontally transferred into bacteria in a separate event from other b-ADLs possibly from a bacteriophage.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, University of Tromsø, N-9019, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, University of Tromsø, N-9019, Tromsø, Norway
| | - Tim Kahlke
- CSIRO Oceans and Atmosphere Flagship, Castray Esplanade, Hobart, TAS, 7000, Australia
| |
Collapse
|
14
|
Espinoza-Valles I, Vora GJ, Lin B, Leekitcharoenphon P, González-Castillo A, Ussery D, Høj L, Gomez-Gil B. Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792. MICROBIOLOGY-SGM 2015. [PMID: 26198743 DOI: 10.1099/mic.0.000141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vibrio harveyi CAIM 1792 is a marine bacterial strain that causes mortality in farmed shrimp in north-west Mexico, and the identification of virulence genes in this strain is important for understanding its pathogenicity. The aim of this work was to compare the V. harveyi CAIM 1792 genome with related genome sequences to determine their phylogenic relationship and explore unique regions in silico that differentiate this strain from other V. harveyi strains. Twenty-one newly sequenced genomes were compared in silico against the CAIM 1792 genome at nucleotidic and predicted proteome levels. The proteome of CAIM 1792 had higher similarity to those of other V. harveyi strains (78%) than to those of the other closely related species Vibrio owensii (67%), Vibrio rotiferianus (63%) and Vibrio campbellii (59%). Pan-genome ORFans trees showed the best fit with the accepted phylogeny based on DNA-DNA hybridization and multi-locus sequence analysis of 11 concatenated housekeeping genes. SNP analysis clustered 34/38 genomes within their accepted species. The pangenomic and SNP trees showed that V. harveyi is the most conserved of the four species studied and V. campbellii may be divided into at least three subspecies, supported by intergenomic distance analysis. blastp atlases were created to identify unique regions among the genomes most related to V. harveyi CAIM 1792; these regions included genes encoding glycosyltransferases, specific type restriction modification systems and a transcriptional regulator, LysR, reported to be involved in virulence, metabolism, quorum sensing and motility.
Collapse
Affiliation(s)
| | - Gary J Vora
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Dave Ussery
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark.,Comparative Genomics group, Biosciences Division, Oak Ridge National Labs, Oak Ridge, Tennessee, USA
| | - Lone Høj
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Bruno Gomez-Gil
- CIAD A.C., Mazatlán Unit for Aquaculture, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
15
|
Lòpez-Fernàndez S, Sonego P, Moretto M, Pancher M, Engelen K, Pertot I, Campisano A. Whole-genome comparative analysis of virulence genes unveils similarities and differences between endophytes and other symbiotic bacteria. Front Microbiol 2015; 6:419. [PMID: 26074885 PMCID: PMC4443252 DOI: 10.3389/fmicb.2015.00419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 11/14/2022] Open
Abstract
Plant pathogens and endophytes co-exist and often interact with the host plant and within its microbial community. The outcome of these interactions may lead to healthy plants through beneficial interactions, or to disease through the inducible production of molecules known as virulence factors. Unravelling the role of virulence in endophytes may crucially improve our understanding of host-associated microbial communities and their correlation with host health. Virulence is the outcome of a complex network of interactions, and drawing the line between pathogens and endophytes has proven to be conflictive, as strain-level differences in niche overlapping, ecological interactions, state of the host's immune system and environmental factors are seldom taken into account. Defining genomic differences between endophytes and plant pathogens is decisive for understanding the boundaries between these two groups. Here we describe the major differences at the genomic level between seven grapevine endophytic test bacteria, and 12 reference strains. We describe the virulence factors detected in the genomes of the test group, as compared to endophytic and non-endophytic references, to better understand the distribution of these traits in endophytic genomes. To do this, we adopted a comparative whole-genome approach, encompassing BLAST-based searches through the GUI-based tools Mauve and BRIG as well as calculating the core and accessory genomes of three genera of enterobacteria. We outline divergences in metabolic pathways of these endophytes and reference strains, with the aid of the online platform RAST. We present a summary of the major differences that help in the drawing of the boundaries between harmless and harmful bacteria, in the spirit of contributing to a microbiological definition of endophyte.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Campisano
- Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| |
Collapse
|
16
|
Siewert C, Hess WR, Duduk B, Huettel B, Reinhardt R, Büttner C, Kube M. Complete genome determination and analysis of Acholeplasma oculi strain 19L, highlighting the loss of basic genetic features in the Acholeplasmataceae. BMC Genomics 2014; 15:931. [PMID: 25344468 PMCID: PMC4221730 DOI: 10.1186/1471-2164-15-931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background Acholeplasma oculi belongs to the Acholeplasmataceae family, comprising the genera Acholeplasma and ‘Candidatus Phytoplasma’. Acholeplasmas are ubiquitous saprophytic bacteria. Several isolates are derived from plants or animals, whereas phytoplasmas are characterised as intracellular parasitic pathogens of plant phloem and depend on insect vectors for their spread. The complete genome sequences for eight strains of this family have been resolved so far, all of which were determined depending on clone-based sequencing. Results The A. oculi strain 19L chromosome was sequenced using two independent approaches. The first approach comprised sequencing by synthesis (Illumina) in combination with Sanger sequencing, while single molecule real time sequencing (PacBio) was used in the second. The genome was determined to be 1,587,120 bp in size. Sequencing by synthesis resulted in six large genome fragments, while the single molecule real time sequencing approach yielded one circular chromosome sequence. High-quality sequences were obtained by both strategies differing in six positions, which are interpreted as reliable variations present in the culture population. Our genome analysis revealed 1,471 protein-coding genes and highlighted the absence of the F1FO-type Na+ ATPase system and GroEL/ES chaperone. Comparison of the four available Acholeplasma sequences revealed a core-genome encoding 703 proteins and a pan-genome of 2,867 proteins. Conclusions The application of two state-of-the-art sequencing technologies highlights the potential of single molecule real time sequencing for complete genome determination. Comparative genome analyses revealed that the process of losing particular basic genetic features during genome reduction occurs in both genera, as indicated for several phytoplasma strains and at least A. oculi. The loss of the F1FO-type Na+ ATPase system may separate Acholeplasmataceae from other Mollicutes, while the loss of those genes encoding the chaperone GroEL/ES is not a rare exception in this bacterial class. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-931) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Kube
- Humboldt-Universität zu Berlin, Faculty of Life Science, Thaer-Institute, Division Phytomedicine, Lentzeallee 55/57, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N, Kaeppler SM, Buell CR. Insights into the maize pan-genome and pan-transcriptome. THE PLANT CELL 2014; 26:121-35. [PMID: 24488960 PMCID: PMC3963563 DOI: 10.1105/tpc.113.119982] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 05/18/2023]
Abstract
Genomes at the species level are dynamic, with genes present in every individual (core) and genes in a subset of individuals (dispensable) that collectively constitute the pan-genome. Using transcriptome sequencing of seedling RNA from 503 maize (Zea mays) inbred lines to characterize the maize pan-genome, we identified 8681 representative transcript assemblies (RTAs) with 16.4% expressed in all lines and 82.7% expressed in subsets of the lines. Interestingly, with linkage disequilibrium mapping, 76.7% of the RTAs with at least one single nucleotide polymorphism (SNP) could be mapped to a single genetic position, distributed primarily throughout the nonpericentromeric portion of the genome. Stepwise iterative clustering of RTAs suggests, within the context of the genotypes used in this study, that the maize genome is restricted and further sampling of seedling RNA within this germplasm base will result in minimal discovery. Genome-wide association studies based on SNPs and transcript abundance in the pan-genome revealed loci associated with the timing of the juvenile-to-adult vegetative and vegetative-to-reproductive developmental transitions, two traits important for fitness and adaptation. This study revealed the dynamic nature of the maize pan-genome and demonstrated that a substantial portion of variation may lie outside the single reference genome for a species.
Collapse
Affiliation(s)
- Candice N. Hirsch
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | | | - James M. Johnson
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Rajandeep S. Sekhon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706
| | - German Muttoni
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | | | - Erika Lindquist
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Mary Ann Pedraza
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Kerrie Barry
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
18
|
Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J Bacteriol 2013; 195:2786-92. [PMID: 23585535 DOI: 10.1128/jb.02285-12] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple sequencing of genomes belonging to a bacterial species allows one to analyze and compare statistics and dynamics of the gene complements of species, their pan-genomes. Here, we analyzed multiple genomes of Escherichia coli, Shigella spp., and Salmonella enterica. We demonstrate that the distribution of the number of genomes harboring a gene is well approximated by a sum of two power functions, describing frequent genes (present in many strains) and rare genes (present in few strains). The virtual absence of Shigella-specific genes not present in E. coli genomes confirms previous observations that Shigella is not an independent genus. While the pan-genome size is increasing with each new strain, the number of genes present in a fixed fraction of strains stabilizes quickly. For instance, slightly fewer than 4,000 genes are present in at least half of any group of E. coli genomes. Comparison of S. enterica and E. coli pan-genomes revealed the existence of a common periphery, that is, genes present in some but not all strains of both species. Analysis of phylogenetic trees demonstrates that rare genes from the periphery likely evolve under horizontal transfer, whereas frequent periphery genes may have been inherited from the periphery genome of the common ancestor.
Collapse
|
19
|
Kahlke T, Thorvaldsen S. Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core-genome. PLoS One 2012; 7:e51761. [PMID: 23284762 PMCID: PMC3524096 DOI: 10.1371/journal.pone.0051761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 11/06/2012] [Indexed: 11/25/2022] Open
Abstract
Cold-adaptation strategies have been studied in multiple psychrophilic organisms, especially for psychrophilic enzymes. Decreased enzyme activity caused by low temperatures as well as a higher viscosity of the aqueous environment require certain adaptations to the metabolic machinery of the cell. In addition to this, low temperature has deleterious effects on the lipid bilayer of bacterial membranes and therefore might also affect the embedded membrane proteins. Little is known about the adaptation of membrane proteins to stresses of the cold. In this study we investigate a set of 66 membrane proteins from the core genome of the bacterial family Vibrionaceae to identify general characteristics that discern psychrophilic and mesophilic membrane proteins. Bioinformatical and statistical methods were used to analyze the alignments of the three temperature groups mesophilic, intermediate and psychrophilic. Surprisingly, our results show little or no adaptation to low temperature for those parts of the proteins that are predicted to be inside the membrane. However, changes in amino acid composition and hydrophobicity are found for complete sequences and sequence parts outside the lipid bilayer. Among others, the results presented here indicate a preference for helix-breaking and destabilizing amino acids Ile, Asp and Thr and an avoidance of the helix-forming amino acid Ala in the amino acid composition of psychrophilic membrane proteins. Furthermore, we identified a lower overall hydrophobicity of psychrophilic membrane proteins in comparison to their mesophilic homologs. These results support the stability-flexibility hypothesis and link the cold-adaptation strategies of membrane proteins to those of loop regions of psychrophilic enzymes.
Collapse
Affiliation(s)
- Tim Kahlke
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|