1
|
Park H, Hyeon Heo T, Cho J, Young Choi H, Hyeon Lee D, Kyong Lee J. Evaluation and characteristic analysis of SSRs from the transcriptomic sequences of Perilla crop (Perilla frutescens L.). Gene 2025; 933:148938. [PMID: 39278375 DOI: 10.1016/j.gene.2024.148938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Perilla crop is a self-fertilizing annual plant, cultivated and used mainly in East Asia. Perilla frutescens var. frutescens seeds are rich in unsaturated fatty acids, which have health benefits, and Perilla frutescens var. crispa leaves are rich in anthocyanins. However, genomic analysis such as whole genome sequencing or genetic mapping has not been performed on Perilla crop. This current study confirms the abundance and diversity of 15,991 simple sequence repeats (SSRs) classified in previous studies in the Perilla genome, selects and designs 1,538 SSR primer sets, and confirms which SSR primer sets exhibit high polymorphism. Of the 15,991 SSRs classified, there were 9,910 (62%) dinucleotide repeats, 5,652 (35.3%) trinucleotide repeats, and 429 (2.7%) tetranucleotide repeats. Among these, the most identified was (CT)n with a total of 4,817. The 15,991 SSRs had 4 to 26 repeats. Four repeats were the most frequent with 11,084 (69.3%). A total of 1,538 SSR primers were selected and designed to confirm polymorphism, of which 157 showed persistent and clear polymorphism. Among these 157 SSR primer sets, 98 (62.4%) were dinucleotide repeats, 39 (24.8%) were trinucleotide repeats, and 20 (12.7%) were tetranucleotide repeats. Among 549 SSR primers that showed polymorphism, trinucleotide repeats showed persistent polymorphism at a high rate. Therefore, when developing SSR primer sets for Perilla crop in the future, it is recommended that trinucleotide repeats be selected first. These research results will be helpful in future genomic analysis and development of SSR primers in Perilla crop.
Collapse
Affiliation(s)
- Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, South Korea
| | - Tae Hyeon Heo
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, South Korea
| | - Jungeun Cho
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, South Korea
| | - Hyo Young Choi
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Da Hyeon Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
2
|
Panda M, Pradhan S, Mukherjee PK. Transcriptomics reveal useful resources for examining fruit development and variation in fruit size in Coccinia grandis. FRONTIERS IN PLANT SCIENCE 2024; 15:1386041. [PMID: 38863541 PMCID: PMC11165041 DOI: 10.3389/fpls.2024.1386041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Introduction The Cucurbitaceae family comprises many agronomically important members, that bear nutritious fruits and vegetables of great economic importance. Coccinia grandis, commonly known as Ivy gourd, belongs to this family and is widely consumed as a vegetable. Members of this family are known to display an impressive range of variation in fruit morphology. Although there have been studies on flower development in Ivy gourd, fruit development remains unexplored in this crop. Methods In this study, comparative transcriptomics of two Ivy gourd cultivars namely "Arka Neelachal Kunkhi" (larger fruit size) and "Arka Neelachal Sabuja" (smaller fruit size) differing in their average fruit size was performed. A de novo transcriptome assembly for Ivy gourd was developed by collecting fruits at different stages of development (5, 10, 15, and 20 days after anthesis i.e. DAA) from these two varieties. The transcriptome was analyzed to identify differentially expressed genes, transcription factors, and molecular markers. Results The transcriptome of Ivy gourd consisted of 155205 unigenes having an average contig size of 1472bp. Unigenes were annotated on publicly available databases to categorize them into different biological functions. Out of these, 7635 unigenes were classified into 38 transcription factor (TF) families, of which Trihelix TFs were most abundant. A total of 11,165 unigenes were found to be differentially expressed in both the varieties and the in silico expression results were validated through real-time PCR. Also, 98768 simple sequence repeats (SSRs) were identified in the transcriptome of Ivy gourd. Discussion This study has identified a number of genes, including transcription factors, that could play a crucial role in the determination of fruit shape and size in Ivy gourd. The presence of polymorphic SSRs indicated a possibility for marker-assisted selection for crop breeding in Ivy gourd. The information obtained can help select candidate genes that may be implicated in regulating fruit development and size in other fruit crops.
Collapse
Affiliation(s)
- Mitrabinda Panda
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Seema Pradhan
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Pulok K. Mukherjee
- Biotechnology Research Innovation Council-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Imphal, India
| |
Collapse
|
3
|
Rodriguez Gallo MC, Li Q, Talasila M, Uhrig RG. Quantitative Time-Course Analysis of Osmotic and Salt Stress in Arabidopsis thaliana Using Short Gradient Multi-CV FAIMSpro BoxCar DIA. Mol Cell Proteomics 2023; 22:100638. [PMID: 37704098 PMCID: PMC10663867 DOI: 10.1016/j.mcpro.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
A major limitation when undertaking quantitative proteomic time-course experimentation is the tradeoff between depth-of-analysis and speed-of-analysis. In high complexity and high dynamic range sample types, such as plant extracts, balance between resolution and time is especially apparent. To address this, we evaluate multiple compensation voltage (CV) high field asymmetric waveform ion mobility spectrometry (FAIMSpro) settings using the latest label-free single-shot Orbitrap-based DIA acquisition workflows for their ability to deeply quantify the Arabidopsis thaliana seedling proteome. Using a BoxCarDIA acquisition workflow with a -30 -50 -70 CV FAIMSpro setting, we were able to consistently quantify >5000 Arabidopsis seedling proteins over a 21-min gradient, facilitating the analysis of ∼42 samples per day. Utilizing this acquisition approach, we then quantified proteome-level changes occurring in Arabidopsis seedling shoots and roots over 24 h of salt and osmotic stress, to identify early and late stress response proteins and reveal stress response overlaps. Here, we successfully quantify >6400 shoot and >8500 root protein groups, respectively, quantifying nearly ∼9700 unique protein groups in total across the study. Collectively, we pioneer a short gradient, multi-CV FAIMSpro BoxCarDIA acquisition workflow that represents an exciting new analysis approach for undertaking quantitative proteomic time-course experimentation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - M Talasila
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Akash M, Shiyab S, Saleh M, Hasan SM, AbuHussein M, Al-Awaida W. Development and Validation of Gene-Based SSR Markers in the Genus Mesembryanthemum. SCIENTIFICA 2023; 2023:6624354. [PMID: 37937238 PMCID: PMC10627716 DOI: 10.1155/2023/6624354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023]
Abstract
Bioinformatics tools have been employed for the direct development of gene-based simple sequence repeat (SSR) markers. Through the analysis of 28,056 Mesembryanthemum expressed sequence tag (EST) sequences, a total of 5,851 ESTs containing SSRs were identified, amounting to approximately 17.07 Mb. Among these, 938 EST sequences harbored more than one SSR marker, and 788 EST-SSR sequences were found in compound form. The most prevalent types of SSR motifs were mononucleotide repeats (MNRs), accounting for 44%, followed by di-nucleotide repeats (DNRs) at 37%, and trinucleotide repeats (TNRs) at 16%. Notably, TNR or longer SSR motifs primarily consisted of shorter repeat lengths, with only 51 motifs containing 10 or more repeats. The BLASTX analysis successfully assigned functions to 4,623 (79%) of the EST sequences. Among the developed primer sets, 21 primers amplified a total of 65 alleles, with primer PMA79 EST-SSR exhibiting the maximum of six alleles. The polymorphic information content (PIC) values ranged from 0 to 0.76, with a mean of 0.47. The marker index (MI) and discriminating power (D) values reached 0.66 (primer PMA63) and 0.95 (primer PMA20), respectively. Utilizing the unweighted pair group method with arithmetic mean (UPGMA), a dendrogram was constructed, successfully segregating the 24 Mesembryanthemum genotypes into three distinct clusters, with a similarity coefficient ranging from 0.96 to 0.38. In this study, we have developed a total of 83 EST-SSR primer pairs specific to the Mesembryanthemum genus. These newly developed EST-SSRs will serve as valuable tools for researchers, particularly molecular breeders, enabling gene-based identification and trait selection through marker-assisted breeding approaches.
Collapse
Affiliation(s)
- Muhanad Akash
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Safwan Shiyab
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mohammed Saleh
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Shireen M. Hasan
- Hamdi Mango Center for Scientific Research (HMCSR), The University of Jordan, Amman, Jordan
| | | | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| |
Collapse
|
5
|
Weldemichael MY, Gebremedhn HM. Omics technologies towards sesame improvement: a review. Mol Biol Rep 2023; 50:6885-6899. [PMID: 37326753 DOI: 10.1007/s11033-023-08551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Genetic improvement of sesame (Sesamum indicum L.), one of the most important oilseed crops providing edible oil, proteins, minerals, and vitamins, is important to ensure a balanced diet for the growing world population. Increasing yield, seed protein, oil, minerals, and vitamins is urgently needed to meet the global demand. The production and productivity of sesame is very low due to various biotic and abiotic stresses. Therefore, various efforts have been made to combat these constraints and increase the production and productivity of sesame through conventional breeding. However, less attention has been paid to the genetic improvement of the crop through modern biotechnological methods, leaving it lagging behind other oilseed crops. Recently, however, the scenario has changed as sesame research has entered the era of "omics" and has made significant progress. Therefore, the purpose of this paper is to provide an overview of the progress made by omics research in improving sesame. This review presents a number of efforts that have been made over past decade using omics technologies to improve various traits of sesame, including seed composition, yield, and biotic and abiotic resistant varieties. It summarizes the advances in genetic improvement of sesame using omics technologies, such as germplasm development (web-based functional databases and germplasm resources), gene discovery (molecular markers and genetic linkage map construction), proteomics, transcriptomics, and metabolomics that have been carried out in the last decade. In conclusion, this review highlights future directions that may be important for omics-assisted breeding in sesame genetic improvement.
Collapse
Affiliation(s)
- Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia.
| | - Hailay Mehari Gebremedhn
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia
| |
Collapse
|
6
|
Ahmadi AJ, Ahmadikhah A. Occurrence of simple sequence repeats in cDNA sequences of safflower ( Carthamus tinctorius) reveals the importance of SSR-containing genes for cell biology and dynamic response to environmental cues. FRONTIERS IN PLANT SCIENCE 2022; 13:991107. [PMID: 36466261 PMCID: PMC9714374 DOI: 10.3389/fpls.2022.991107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Safflower (Carthamus tinctorius) is a diploid crop plant belonging to the family Asteraceae and is well known as one of important oilseed crops due to edible oil containing unsaturated fatty acids. In recent years it is gaining increased attention for food, pharmaceutical and industrial uses, and hence the updating its breeding methods is necessary. Genic simple sequence repeats (SSRs) in addition of being desire molecular markers, are supposed to influence gene function and the respective phenotype. This study aimed to identify SSRs in cDNA sequences and further analysis of the functional features of the SSR-containing genes to elucidate their role in biological and cellular processes. We identified 1,841 SSR regions in 1,667 cDNA sequences. Among all types of repeats, trinucleotide repeats were the most abundant (35.7%), followed by hexanucleotide (29.6%) and dinucleotide repeats (22.0%). Thirty five SSR primer pairs were validated by PCR reaction, detected a high rate of polymorphism (>57%) among safflower accessions, physically mapped on safflower genome and could clearly discriminate the cultivated accessions from wild relatives. The cDNA-derived SSR markers are suitable for evaluation of genetic diversity, linkage and association mapping studies and genome-based breeding programmes. Occurrence of SSR repeats in biologically-important classes of proteins such as kinases, transferases and transcription factors was inferred from functional analyses, which along with variability of their repeat copies, can endow the cell and whole organism the flexibility of facing with continuously changing environment, and indicate a structure-based evolution mechanism of the genome which acts as an up-to-dating tool for the cell and whole origanism, which is realized in GO terms such as involvement of most SSR-containing genes in biological, cellular and metabolic processes, especially in response to stimulus, response to stress, interaction to other organisms and defense responses.
Collapse
Affiliation(s)
- Ahmad Jawid Ahmadi
- Agronomy Department, Faculty of Agriculture, Higher Education Institute of Samangan, Samangan, Afghanistan
| | - Assadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Kefale H, Wang L. Discovering favorable genes, QTLs, and genotypes as a genetic resource for sesame ( Sesamum indicum L.) improvement. Front Genet 2022; 13:1002182. [PMID: 36544489 PMCID: PMC9763032 DOI: 10.3389/fgene.2022.1002182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an ancient diploid oilseed crop with high oil content, quality protein, and antioxidant characteristics that is produced in many countries worldwide. The genes, QTLs, and genetic resources of sesame are utilized by sesame researchers and growers. Researchers have identified the many useful traits of this crop, which are available on different platforms. The genes, genotypes, QTLs, and other genetic diversity data of sesame have been collected and stored in more than nine genomic resources, and five sesame crop marker databases are available online. However, data on phenotypic and genotypic variability, which would contribute to sesame improvements, are limited and not yet accessible. The present study comprehensively reviewed more than 110 original published research papers and scientifically incorporated the results. The candidate genes, genotypes, and QTLs of significantly important traits of sesame were identified. Genetic resources related to grain yield and yield component traits, oil content and quality, drought tolerance, salt tolerance, waterlogging resistance, disease resistance, mineral nutrient, capsule shattering resistance, and other agronomic important traits of sesame were studied. Numerous candidate genotypes, genes, QTLs, and alleles associated with those traits were summarized and discovered. The chromosome regions and linkage groups, maps associated with the best traits, and candidate genes were also included. The variability presented in this paper combined with sesame genetic information will help inform further sesame improvement.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China,Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos, Ethiopia,*Correspondence: Habtamu Kefale,
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
8
|
Bejerman N, Debat H. Exploring the tymovirales landscape through metatranscriptomics data. Arch Virol 2022; 167:1785-1803. [PMID: 35708766 DOI: 10.1007/s00705-022-05493-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Abstract
Tymovirales is an order of viruses with positive-sense RNA genomes that mostly infect plants, but also fungi and insects. The number of genome sequences of viruses that could fit this taxon has been growing in the last few years with the extensive use of high-throughput sequencing. Here, we report the discovery of 31 novel viral genome sequences associated with 27 different host plant species, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3,000 plant transcriptomes from the NCBI Sequence Read Archive (SRA) using known tymovirales sequences as queries. Identification, assembly, and curation of raw SRA reads resulted in 29 viral genome sequences with complete coding regions, and two representing partial genomes. Some of the obtained sequences highlight novel genome organizations for members of the order. Phylogenetic analysis showed that six of the novel viruses are related to alphaflexiviruses, 17 to betaflexiviruses, two to deltaflexiviruses, and six to tymovirids. These findings shed new light on the phylogenetic relationships and evolutionary landscape of this group of viruses. Furthermore, this study illustrates the complexity and genome diversity among members of the order and demonstrates that analyzing public SRA data provides an invaluable tool to accelerate virus discovery and refine virus taxonomy.
Collapse
Affiliation(s)
- Nicolás Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina.
| | - Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina
| |
Collapse
|
9
|
Teklu DH, Shimelis H, Tesfaye A, Shayanowako AIT. Analyses of genetic diversity and population structure of sesame (Sesamum indicum L.) germplasm collections through seed oil and fatty acid compositions and SSR markers. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Liu Y, Fang X, Tang T, Wang Y, Wu Y, Luo J, Wu H, Wang Y, Zhang J, Ruan R, Zhou M, Zhang K, Yi Z. Inflorescence Transcriptome Sequencing and Development of New EST-SSR Markers in Common Buckwheat ( Fagopyrum esculentum). PLANTS (BASEL, SWITZERLAND) 2022; 11:742. [PMID: 35336623 PMCID: PMC8950064 DOI: 10.3390/plants11060742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Common buckwheat (Fagopyrum esculentum M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers. In this study, Illumina HiSeq 4000 high-throughput sequencing technology was used to sequence the transcriptome of green-flower common buckwheat (Gr) with coarse pedicels and white-flower Ukrainian daliqiao (UD) with fine pedicels. A total of 118,448 unigenes were obtained, with an average length of 1248 bp and an N50 of 1850 bp. A total of 39,432 differentially expressed genes (DEGs) were identified, and the DEGs of the porphyrins and chlorophyll metabolic pathway had significantly upregulated expression in Gr. Then, a total of 17,579 sequences containing SSR loci were detected, and 20,756 EST-SSR loci were found. The distribution frequency of EST-SSR in the transcriptome was 17.52%, and the average distribution density was 8.21 kb. A total of 224 pairs of primers were randomly selected for synthesis; 35 varieties of common buckwheat and 13 varieties of Tartary buckwheat were verified through these primers. The clustering results well verified the previous conclusion that common buckwheat and Tartary buckwheat had a distant genetic relationship. The EST-SSR markers identified and developed in this study will be helpful to enrich the transcriptome information and marker-assisted selection breeding of buckwheat.
Collapse
Affiliation(s)
- Yang Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Tian Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Yudong Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Yinhuan Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Jinyu Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Haotian Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Yingqian Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Renwu Ruan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| |
Collapse
|
11
|
Genetic Variability and Population Structure of Ethiopian Sesame ( Sesamum indicum L.) Germplasm Assessed through Phenotypic Traits and Simple Sequence Repeats Markers. PLANTS 2021; 10:plants10061129. [PMID: 34199342 PMCID: PMC8226695 DOI: 10.3390/plants10061129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
Ethiopia is one of the centers of genetic diversity of sesame (Sesamum indicum L.). The sesame genetic resources present in the country should be explored for local, regional, and international genetic improvement programs to design high-performing and market-preferred varieties. This study’s objective was to determine the extent of genetic variation among 100 diverse cultivated sesame germplasm collections of Ethiopia using phenotypic traits and simple sequence repeat (SSR) markers to select distinct and complementary genotypes for breeding. One hundred sesame entries were field evaluated at two locations in Ethiopia for agro-morphological traits and seed oil content using a 10 × 10 lattice design with two replications. Test genotypes were profiled using 27 polymorphic SSR markers at the Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences. Analysis of variance revealed significant (p ≤ 0.05) entry by environment interaction for plant height, internode length, number of secondary branches, and grain yield. Genotypes such as Hirhir Kebabo Hairless-9, Setit-3, Orofalc ACC-2, Hirhir Humera Sel-6, ABX = 2-01-2, and Setit-1 recorded grain yield of >0.73 ton ha−1 with excellent performance in yield component such as oil yield per hectare. Grain yield had positive and significant (p < 0.01) associations with oil yield (r = 0.99), useful for simultaneous selection for yield improvement in sesame. The SSR markers revealed gene diversity and polymorphic information content values of 0.30 and 0.25, respectively, showing that the tested sesame accessions were genetically diverse. Cluster analysis resolved the accessions into two groups, while population structure analysis revealed four major heterotic groups, thus enabling selection and subsequent crossing to develop breeding populations for cultivar development. Based on phenotypic and genomic divergence, the following superior and complementary genotypes: Hirhir Humera Sel-6, Setit-3, Hirhir Kebabo Hairless Sel-4, Hirhir Nigara 1st Sel-1, Humera-1 and Hirhir Kebabo Early Sel-1 (from cluster II-a), Hirhir kebabo hairless-9, NN-0029(2), NN0068-2 and Bawnji Fiyel Kolet, (from cluster II-b). The selected genotypes will serve as parents in the local breeding program in Ethiopia.
Collapse
|
12
|
Sheng C, Song S, Zhou R, Li D, Gao Y, Cui X, Tang X, Zhang Y, Tu J, Zhang X, Wang L. QTL-Seq and Transcriptome Analysis Disclose Major QTL and Candidate Genes Controlling Leaf Size in Sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:580846. [PMID: 33719280 PMCID: PMC7943740 DOI: 10.3389/fpls.2021.580846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Leaf size is a crucial component of sesame (Sesamum indicum L.) plant architecture and further influences yield potential. Despite that it is well known that leaf size traits are quantitative traits controlled by large numbers of genes, quantitative trait loci (QTL) and candidate genes for sesame leaf size remain poorly understood. In the present study, we combined the QTL-seq approach and SSR marker mapping to identify the candidate genomic regions harboring QTL controlling leaf size traits in an RIL population derived from a cross between sesame varieties Zhongzhi No. 13 (with big leaves) and ZZM2289 (with small leaves). The QTL mapping revealed 56 QTL with phenotypic variation explained (PVE) from 1.87 to 27.50% for the length and width of leaves at the 1/3 and 1/2 positions of plant height. qLS15-1, a major and environmentally stable pleiotropic locus for both leaf length and width explaining 5.81 to 27.50% phenotypic variation, was located on LG15 within a 408-Kb physical genomic region flanked by the markers ZMM6185 and ZMM6206. In this region, a combination of transcriptome analysis with gene annotations revealed three candidate genes SIN_1004875, SIN_1004882, and SIN_1004883 associated with leaf growth and development in sesame. These findings provided insight into the genetic characteristics and variability for sesame leaf and set up the foundation for future genomic studies on sesame leaves and will serve as gene resources for improvement of sesame plant architecture.
Collapse
Affiliation(s)
- Chen Sheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shengnan Song
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xianghua Cui
- Zhumadian Academy of Agricultural Sciences, Zhumadian, China
| | - Xuehui Tang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, China
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
13
|
Andargie M, Vinas M, Rathgeb A, Möller E, Karlovsky P. Lignans of Sesame ( Sesamum indicum L.): A Comprehensive Review. Molecules 2021; 26:883. [PMID: 33562414 PMCID: PMC7914952 DOI: 10.3390/molecules26040883] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.
Collapse
Affiliation(s)
- Mebeaselassie Andargie
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Maria Vinas
- Centro para Investigaciones en Granos y Semillas (CIGRAS), University of Costa Rica, 2060 San Jose, Costa Rica;
| | - Anna Rathgeb
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Evelyn Möller
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| |
Collapse
|
14
|
Biswas MK, Bagchi M, Biswas D, Harikrishna JA, Liu Y, Li C, Sheng O, Mayer C, Yi G, Deng G. Genome-Wide Novel Genic Microsatellite Marker Resource Development and Validation for Genetic Diversity and Population Structure Analysis of Banana. Genes (Basel) 2020; 11:genes11121479. [PMID: 33317074 PMCID: PMC7763637 DOI: 10.3390/genes11121479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Trait tagging through molecular markers is an important molecular breeding tool for crop improvement. SSR markers encoded by functionally relevant parts of a genome are well suited for this task because they may be directly related to traits. However, a limited number of these markers are known for Musa spp. Here, we report 35136 novel functionally relevant SSR markers (FRSMs). Among these, 17,561, 15,373 and 16,286 FRSMs were mapped in-silico to the genomes of Musa acuminata, M. balbisiana and M. schizocarpa, respectively. A set of 273 markers was validated using eight accessions of Musa spp., from which 259 markers (95%) produced a PCR product of the expected size and 203 (74%) were polymorphic. In-silico comparative mapping of FRSMs onto Musa and related species indicated sequence-based orthology and synteny relationships among the chromosomes of Musa and other plant species. Fifteen FRSMs were used to estimate the phylogenetic relationships among 50 banana accessions, and the results revealed that all banana accessions group into two major clusters according to their genomic background. Here, we report the first large-scale development and characterization of functionally relevant Musa SSR markers. We demonstrate their utility for germplasm characterization, genetic diversity studies, and comparative mapping in Musa spp. and other monocot species. The sequences for these novel markers are freely available via a searchable web interface called Musa Marker Database.
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- Correspondence: (M.K.B.); (G.D.)
| | - Mita Bagchi
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- The College of Economics and Managements, South China Agricultural University, Guangzhou 510640, China
| | - Dhiman Biswas
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal 700064, India;
| | - Jennifer Ann Harikrishna
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuxuan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Christoph Mayer
- Forschungsmuseum Alexander Koenig, Bonn, Adenauerallee 160, 53113 Bonn, Germany;
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
- Correspondence: (M.K.B.); (G.D.)
| |
Collapse
|
15
|
Genome-Wide Discovery of InDel Markers in Sesame ( Sesamum indicum L.) Using ddRADSeq. PLANTS 2020; 9:plants9101262. [PMID: 32987937 PMCID: PMC7599716 DOI: 10.3390/plants9101262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023]
Abstract
The development and validation of different types of molecular markers is crucial to conducting marker-assisted sesame breeding. Insertion-deletion (InDel) markers are highly polymorphic and suitable for low-cost gel-based genotyping. From this perspective, this study aimed to discover and develop InDel markers through bioinformatic analysis of double digest restriction site-associated DNA sequencing (ddRADSeq) data from 95 accessions belonging to the Mediterranean sesame core collection. Bioinformatic analysis indicated the presence of 7477 InDel positions genome wide. Deletions accounted for 61% of the InDels and short deletions (1-2 bp) were the most abundant type (94.9%). On average, InDels of at least 2 bp in length had a frequency of 2.99 InDels/Mb. The 86 InDel sites having length ≥8 bp were detected in genome-wide analysis. These regions can be used for the development of InDel markers considering low-cost genotyping with agarose gels. In order to validate these InDels, a total of 38 InDel regions were selected and primers were successfully amplified. About 13% of these InDels were in the coding sequences (CDSs) and in the 3'- and 5'- untranslated regions (UTRs). Furthermore, the efficiencies of these 16 InDel markers were assessed on 32 sesame accessions. The polymorphic information content (PIC) of these 16 markers ranged from 0.06 to 0.62 (average: 0.33). These results demonstrated the success of InDel identification and marker development for sesame with the use of ddRADSeq data. These agarose-resolvable InDel markers are expected to be useful for sesame breeders.
Collapse
|
16
|
Jayaramachandran M, Saravanan S, Motilal A, Prabhu PC, Hepziba SJ, Swain H, Boopathi NM. Genetic improvement of a neglected and underutilised oilseed crop: sesame (Sesamum indicum L.) through mutation breeding. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00329-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Hina F, Yisilam G, Wang S, Li P, Fu C. De novo Transcriptome Assembly, Gene Annotation and SSR Marker Development in the Moon Seed Genus Menispermum (Menispermaceae). Front Genet 2020; 11:380. [PMID: 32457795 PMCID: PMC7227793 DOI: 10.3389/fgene.2020.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
The moonseed genus Menispermum L. (Menispermaceae) is disjunctly distributed in East Asia and eastern North America. Although Menispermum has important medicinal value, genetic and genomic information is scarce, with very few available molecular markers. In the current study, we used Illumina transcriptome sequencing and de novo assembly of the two Menispermum species to obtain in-depth genetic knowledge. From de novo assembly, 53,712 and 78,921 unigenes were generated for M. canadense and M. dauricum, with 37,527 (69.87%) and 55,211 (69.96%) showing significant similarities against the six functional databases, respectively. Moreover, 521 polymorphic EST-SSRs were identified. Of them, 23 polymorphic EST-SSR markers were selected to investigate the population genetic diversity within the genus. The newly developed EST-SSR markers also revealed high transferability among the three examined Menispermaceae species. Overall, we provide the very first transcriptomic analyses of this important medicinal genus. In addition, the novel microsatellite markers developed here will aid future studies on the population genetics and phylogeographic patterns of Menispermum at the intercontinental geographical scale.
Collapse
Affiliation(s)
- Faiza Hina
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Gulbar Yisilam
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shenyi Wang
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Pan Li
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chengxin Fu
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Du H, Zhang H, Wei L, Li C, Duan Y, Wang H. A high-density genetic map constructed using specific length amplified fragment (SLAF) sequencing and QTL mapping of seed-related traits in sesame (Sesamum indicum L.). BMC PLANT BIOLOGY 2019; 19:588. [PMID: 31881840 PMCID: PMC6935206 DOI: 10.1186/s12870-019-2172-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/28/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sesame (Sesamum indicum L., 2n = 2x = 26) is an important oilseed crop with high oil content but small seed size. To reveal the genetic loci of the quantitative seed-related traits, we constructed a high-density single nucleotide polymorphism (SNP) linkage map of an F2 population by using specific length amplified fragment (SLAF) technique and determined the quantitative trait loci (QTLs) of seed-related traits for sesame based on the phenotypes of F3 progeny. RESULTS The genetic map comprised 2159 SNP markers distributed on 13 linkage groups (LGs) and was 2128.51 cM in length, with an average distance of 0.99 cM between adjacent markers. QTL mapping revealed 19 major-effect QTLs with the phenotypic effect (R2) more than 10%, i.e., eight QTLs for seed coat color, nine QTLs for seed size, and two QTLs for 1000-seed weight (TSW), using composite interval mapping method. Particularly, LG04 and LG11 contained collocated QTL regions for the seed coat color and seed size traits, respectively, based on their close or identical locations. In total, 155 candidate genes for seed coat color, 22 for seed size traits, and 54 for TSW were screened and analyzed. CONCLUSIONS This report presents the first QTL mapping of seed-related traits in sesame using an F2 population. The results reveal the location of specific markers associated with seed-related traits in sesame and provide the basis for further seed quality traits research.
Collapse
Affiliation(s)
- Hua Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Huili Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| |
Collapse
|
19
|
Li H, Dong Z, Ma C, Tian X, Xiang Z, Xia Q, Ma P, Liu W. Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2Mb based on transcriptome sequencing. PLoS One 2019; 14:e0220089. [PMID: 31710598 PMCID: PMC6844473 DOI: 10.1371/journal.pone.0220089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023] Open
Abstract
Powdery mildew is one of the most widespread diseases of wheat. The development and deployment of resistant varieties are one of the most economical and effective methods to manage this disease. Our previous study showed that the gene(s) at 2Mb in Chinese Spring (CS)-Aegilops biuncialis 2Mb disomic addition line TA7733 conferred a high level of resistance to powdery mildew of wheat. In this study, resistance spectrum of TA7733 was assayed by using 15 Blumeria graminis f. sp. tritici (Bgt) isolates prevalent in different regions of China. The result indicated that TA7733 was highly resistant to all tested Bgt isolates and the gene(s) on chromosome 2Mb conferred broad-spectrum resistance to powdery mildew. In order to characterize mechanism of powdery mildew resistance by identifying candidates R-genes derived from Ae. biuncialis chromosome 2Mb and develop 2Mb-specific molecular markers, we performed RNA-seq analysis on TA7733 and CS. In total we identified 7,278 unigenes that showed specific expression in TA7733 pre and post Bgt-infection when compared to CS. Of these 7,278 unigenes, 295 were annotated as putative resistance (R) genes. Comparatively analysis of R-gene sequences from TA7733 and CS and integration CS Ref Seq v1.0 were used to develop R-gene specific primers. Of 295 R-genes we identified 53 R-genes were specific to 2Mb and could be involved in powdery mildew resistance. Functional annotation of majority of the 53 R-genes encoded nucleotide binding leucine rich repeat (NLR) protein. The broad-spectrum resistance to powdery mildew in TA7733 and availability of 2Mb-derived putative candidate R-gene specific molecular markers identified in this study will lay foundations for transferring powdery mildew resistance from 2Mb to common wheat by inducing CS-Ae. biuncialis homoeologous recombination. Our study also provides useful candidates for further isolation and cloning of powdery mildew resistance gene(s) from Ae. biuncialis chromosome 2Mb.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Zhenjie Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Chao Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Xiubin Tian
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Zhiguo Xiang
- Wheat Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Qing Xia
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, Shandong Province, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, China
| |
Collapse
|
20
|
Ding Y, Xue L, Guo RX, Luo GJ, Song YT, Lei JJ. De Novo Assembled Transcriptome Analysis and Identification of Genic SSR Markers in Red-Flowered Strawberry. Biochem Genet 2019; 57:607-622. [PMID: 30825077 DOI: 10.1007/s10528-019-09912-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Red-flowered strawberry is a new ornamental flower derived from intergeneric hybridization (Fragaria × Potentilla). To date, few molecular markers have been reported for this plant. RNA sequencing provides a relatively fast and low-cost approach for large-scale detection of simple sequence repeats (SSRs). In the present study, we profiled the transcriptome of red-flowered strawberry by Illumina HiSeq 2500 to identify SSRs related to petal color. Based on 2 million clean reads of red and white flowers from red-flowered strawberry hybrids, we assembled 91,835 unigenes with an average length of 717 bp. After functional annotation and prediction, there were 47,058 unigenes; of these, 26,861 had a gene ontology annotation, with 14,264 SSR loci. Mononucleotide SSRs were the predominant repeat type (47.20%, n = 6724), followed by di- (32.50%, n = 4641), tri- (19.10%, n = 2729), tetra- (0.90%, n = 132), hexa- (0.2%, n = 21), and penta- (0.10%, n = 16) nucleotide repeats. The most frequent di-, tri-, and tetra-nucleotide repeats were AG/CT, AAG/CTT, and AAAG/CTTT, respectively. PCR amplification with 105 SSR primer pairs yielded four bands specific to red flowers, namely UgRFsr57622, UgRFsr94149, UgRFsr40142, and UgRFsr54608; corresponding 4 trait-specific markers were found to co-segregate with white and red flower color in hybrid population, demonstrating that the genic SSR marker is useful to discriminate between white and red flowers in strawberry. Markers to discriminate flower color in red-flowered strawberry will be useful for early selection of progeny and for breeding management.
Collapse
Affiliation(s)
- Yan Ding
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui-Xue Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Gang-Jun Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu-Tong Song
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jia-Jun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
21
|
Hu C, Yang H, Jiang K, Wang L, Yang B, Hsieh T, Lan S, Huang W. Development of polymorphic microsatellite markers by using de novo transcriptome assembly of Calanthe masuca and C. sinica (Orchidaceae). BMC Genomics 2018; 19:800. [PMID: 30400862 PMCID: PMC6219035 DOI: 10.1186/s12864-018-5161-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Calanthe masuca and C. sinica are two genetically closely related species in Orchidaceae. C. masuca is widely distributed in Asia, whereas C. sinica is restricted to Yunnan and Guangxi Provinces in southwest China. Both play important roles in horticulture and are under the pressure of population decline. Understanding their genetic background can greatly help us develop effective conservation strategies for these species. Simple sequence repeats (SSRs) are useful for genetic diversity analysis, presumably providing key information for the study and preservation of the wild populations of the two species we are interested in. RESULTS In this study, we performed RNA-seq analysis on the leaves of C. masuca and C. sinica, obtaining 40,916 and 71,618 unigenes for each species, respectively. In total, 2,019/3,865 primer pairs were successfully designed from 3,764/7,189 putative SSRs, among which 197 polymorphic SSRs were screened out according to orthologous gene pairs. After mononucleotide exclusion, a subset of 129 SSR primers were analysed, and 13 of them were found to have high polymorphism levels. Further analysis demonstrated that they were feasible and effective against C. masuca and C. sinica as well as transferable to another species in Calanthe. Molecular evolutionary analysis revealed functional pathways commonly enriched in unigenes with similar evolutionary rates in the two species, as well as pathways specific to each species, implicating species-specific adaptation. The divergence time between the two closely related species was tentatively determined to be 3.42 ± 1.86 Mya. CONCLUSIONS We completed and analysed the transcriptomes of C. masuca and C. sinica, assembling large numbers of unigenes and generating effective polymorphic SSR markers. This is the first report of the development of expressed sequence tag (EST)-SSR markers for Calanthe. In addition, our study could enable further genetic diversity analysis and functional and comparative genomic studies on Calanthe.
Collapse
Affiliation(s)
- Chao Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
| | - Kai Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
| | - Ling Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
| | - Boyun Yang
- School of Life Science, Nanchang University, Nanchang, 330031 China
| | - Tungyu Hsieh
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Siren Lan
- College of Landscape, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weichang Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
- College of Landscape, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
22
|
Genome survey on invasive veined rapa whelk (Rapana venosa) and development of microsatellite loci on large scale. J Genet 2018. [DOI: 10.1007/s12041-018-0975-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Sci Rep 2018; 8:7832. [PMID: 29777161 PMCID: PMC5959898 DOI: 10.1038/s41598-018-26275-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
The genus Calotropis (Asclepiadaceae) is comprised of two species, C. gigantea and C. procera, which both show significant economic potential for use of their seed fibers in the textile industry, and of their bioactive compounds as new medicinal resources. The available wild-sourced germplasm contains limited genetic information that restricts further germplasm exploration for the purposes of domestication. We here developed twenty novel EST-SSR markers and applied them to assess genetic diversity, population structure and differentiation within Calotropis. The polymorphic information index of these markers ranged from 0.102 to 0.800; indicating that they are highly informative. Moderate genetic diversity was revealed in both species, with no difference between species in the amount of genetic diversity. Population structure analysis suggested five main genetic groups (K = 5) and relatively high genetic differentiation (FST = 0.528) between the two species. Mantel test analysis showed strong correlation between geographical and genetic distance in C. procera (r = 0.875, p = 0.020) while C. gigantea showed no such correlation (r = 0.390, p = 0.210). This study provides novel insights into the genetic diversity and population structure of Calotropis, which will promote further resource utilization and the development of genetic improvement strategies for Calotropis.
Collapse
|
24
|
Hamid R, Tomar RS, Marashi H, Shafaroudi SM, Golakiya BA, Mohsenpour M. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 2018; 660:80-91. [PMID: 29577977 DOI: 10.1016/j.gene.2018.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 01/02/2023]
Abstract
Cytoplasmic Male Sterility is maternally inherited trait in plants, characterized by failure to produce functional pollen during anther development. Anther development is modulated through the interaction of nuclear and mitochondrial genes. In the present study, differential gene expression of floral buds at the sporogenous stage (SS) and microsporocyte stage (MS) between CGMS and its fertile maintainer line of cotton plants was studied. A total of 320 significantly differentially expressed genes, including 20 down-regulated and 37 up-regulated in CGMS comparing with its maintainer line at the SS stage, as well as and 89 down-regulated and 4 up-regulated in CGMS compared to the fertile line at MS stage. Comparing the two stages in the same line, there were 6 down-regulated differentially expressed genes only induced in CGMS and 9 up-regulated differentially expressed gene only induced in its maintainer. GO analysis revealed essential genes responsible for pollen development, and cytoskeleton category show differential expression between the fertile and CGMS lines. Validation studies by qRT-PCR shows concordance with RNA-seq result. A set of novel SSRs identified in this study can be used in evaluating genetic relationships among cultivars, QTL mapping, and marker-assisted breeding. We reported aberrant expression of genes related to pollen exine formation, and synthesis of pectin lyase, myosine heavy chain, tubulin, actin-beta, heat shock protein and myeloblastosis (MYB) protein as targets for CMS in cotton. The results of this study contribute to basic information for future screening of genes and identification of molecular portraits responsible for CMS as well as to elucidate molecular mechanisms that lead to CMS in cotton.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | | | - Balaji A Golakiya
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | | |
Collapse
|
25
|
Du M, Li N, Niu B, Liu Y, You D, Jiang D, Ruan C, Qin Z, Song T, Wang W. De novo transcriptome analysis of Bagarius yarrelli (Siluriformes: Sisoridae) and the search for potential SSR markers using RNA-Seq. PLoS One 2018; 13:e0190343. [PMID: 29425202 PMCID: PMC5806860 DOI: 10.1371/journal.pone.0190343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/13/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The yellow sisorid catfish (Bagarius yarrelli) is a carnivorous freshwater fish that inhabits the Honghe River, Lanchangjiang River and Nujiang River of southern China and other Southeast Asian countries. However, the publicly available genomic data for B. yarrelli are limited. METHODOLOGY AND PRINCIPAL FINDINGS Illumina Solexa paired-end technology produced 1,706,456 raw reads from muscle, liver and caudal fin tissues of B. yarrelli. Nearly 5 Gb of data were acquired, and de novo assembly generated 14,607 unigenes, with an N50 of 2006 bp. A total of 9093 unigenes showed significant similarities to known proteins in public databases: 4477 and 6391 of B. yarrelli unigenes were mapped to the Gene Ontology (GO) and Clusters of Orthologous Groups (COG) databases, respectively. Moreover, 9635 unigenes were assigned to 242 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In addition, 8568 microsatellites (simple sequence repeats, SSRs) were detected, and 31 pairs of polymorphic primers were characterized using wild populations of B. yarrelli from the Nujiang River, Yunnan Province, China. CONCLUSION/SIGNIFICANCE These sequences enrich the genomic resources for B. yarrelli and will benefit future investigations into the evolutionary and biological processes of this and related Bagarius species. The SSR markers developed in this study will facilitate construction of genetic maps, investigations of genetic structures and germplasm polymorphism assessments in B. yarrelli.
Collapse
Affiliation(s)
- Min Du
- Key Lab for Quality, Efficient Cultivation and Security Control of Crops in Colleges and University of Yunnan Province, Honghe University, Mengzi, Yunnan Province, P.R. China
- * E-mail: (YL); (MD)
| | - Na Li
- Key Lab for Quality, Efficient Cultivation and Security Control of Crops in Colleges and University of Yunnan Province, Honghe University, Mengzi, Yunnan Province, P.R. China
| | - Baozhen Niu
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan Province, P.R. China
| | - Yanhong Liu
- Key Lab for Quality, Efficient Cultivation and Security Control of Crops in Colleges and University of Yunnan Province, Honghe University, Mengzi, Yunnan Province, P.R. China
- * E-mail: (YL); (MD)
| | - Dongjing You
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan Province, P.R. China
| | - Defu Jiang
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan Province, P.R. China
| | - Congquan Ruan
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan Province, P.R. China
| | - Zhengquan Qin
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan Province, P.R. China
| | - Taowen Song
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan Province, P.R. China
| | - Wentao Wang
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan Province, P.R. China
| |
Collapse
|
26
|
Chen J, Li R, Xia Y, Bai G, Guo P, Wang Z, Zhang H, Siddique KHM. Development of EST-SSR markers in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) based on de novo transcriptomic assemblies. PLoS One 2017; 12:e0184736. [PMID: 28902884 PMCID: PMC5597223 DOI: 10.1371/journal.pone.0184736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022] Open
Abstract
Flowering Chinese cabbage is one of the most important vegetable crops in southern China. Genetic improvement of various agronomic traits in this crop is underway to meet high market demand in the region, but the progress is hampered by limited number of molecular markers available in this crop. This study aimed to develop EST-SSR markers from transcriptome sequences generated by next-generation sequencing. RNA-seq of eight cabbage samples identified 48,975 unigenes. Of these unigenes, 23,267 were annotated in 56 gene ontology (GO) categories, 6,033 were mapped to 131 KEGG pathways, and 7,825 were assigned to clusters of orthologous groups (COGs). From the unigenes, 8,165 EST-SSR loci were identified and 98.57% of them were 1-3 nucleotide repeats with 14.32%, 41.08% and 43.17% of mono-, di- and tri-nucleotide repeats, respectively. Fifty-eight types of motifs were identified with A/T, AG/CT, AT/AT, AC/GT, AAG/CTT and AGG/CCT the most abundant. The lengths of repeated nucleotide sequences in all SSR loci ranged from 12 to 60 bp, with most (88.51%) under 20 bp. Among 170 primer pairs were randomly selected from a total of 4,912 SSR primers we designed, 48 yielded unambiguously polymorphic bands with high reproducibility. Cluster analysis using 48 SSRs classified 34 flowering Chinese cabbage cultivars into three groups. A large number of EST-SSR markers identified in this study will facilitate marker-assisted selection in the breeding programs of flowering Chinese cabbage.
Collapse
Affiliation(s)
- Jingfang Chen
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture–Agricultural Research Service, Manhattan, Kansas, United States of America
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
- * E-mail:
| | - Zhiliang Wang
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hua Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth WA, Australia
| |
Collapse
|
27
|
Dossa K, Yu J, Liao B, Cisse N, Zhang X. Development of Highly Informative Genome-Wide Single Sequence Repeat Markers for Breeding Applications in Sesame and Construction of a Web Resource: SisatBase. FRONTIERS IN PLANT SCIENCE 2017; 8:1470. [PMID: 28878802 PMCID: PMC5572293 DOI: 10.3389/fpls.2017.01470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/08/2017] [Indexed: 05/21/2023]
Abstract
The sequencing of the full nuclear genome of sesame (Sesamum indicum L.) provides the platform for functional analyses of genome components and their application in breeding programs. Although the importance of microsatellites markers or simple sequence repeats (SSR) in crop genotyping, genetics, and breeding applications is well established, only a little information exist concerning SSRs at the whole genome level in sesame. In addition, SSRs represent a suitable marker type for sesame molecular breeding in developing countries where it is mainly grown. In this study, we identified 138,194 genome-wide SSRs of which 76.5% were physically mapped onto the 13 pseudo-chromosomes. Among these SSRs, up to three primers pairs were supplied for 101,930 SSRs and used to in silico amplify the reference genome together with two newly sequenced sesame accessions. A total of 79,957 SSRs (78%) were polymorphic between the three genomes thereby suggesting their promising use in different genomics-assisted breeding applications. From these polymorphic SSRs, 23 were selected and validated to have high polymorphic potential in 48 sesame accessions from different growing areas of Africa. Furthermore, we have developed an online user-friendly database, SisatBase (http://www.sesame-bioinfo.org/SisatBase/), which provides free access to SSRs data as well as an integrated platform for functional analyses. Altogether, the reference SSR and SisatBase would serve as useful resources for genetic assessment, genomic studies, and breeding advancement in sesame, especially in developing countries.
Collapse
Affiliation(s)
- Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la SécheresseThiès, Senegal
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Ndiaga Cisse
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la SécheresseThiès, Senegal
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| |
Collapse
|
28
|
Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Sci Rep 2017; 7:8349. [PMID: 28827730 PMCID: PMC5566338 DOI: 10.1038/s41598-017-08858-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Sesame is prized for its oil. Genetic improvement of sesame can be enhanced through marker-assisted breeding. However, few simple sequence repeat (SSR) markers and SSR-based genetic maps were available in sesame. In this study, 7,357 SSR markers were developed from the sesame genome and transcriptomes, and a genetic map was constructed by generating 424 novel polymorphic markers and using a cross population with 548 recombinant inbred lines (RIL). The genetic map had 13 linkage groups, equalling the number of sesame chromosomes. The linkage groups ranged in size from 113.6 to 179.9 centimorgans (cM), with a mean value of 143.8 cM over a total length of 1869.8 cM. Fourteen quantitative trait loci (QTL) for sesame charcoal rot disease resistance were detected, with contribution rates of 3–14.16% in four field environments; ~60% of the QTL were located within 5 cM at 95% confidence interval. The QTL with the highest phenotype contribution rate (qCRR12.2) and those detected in different environments (qCRR8.2 and qCRR8.3) were used to predict candidate disease response genes. The new SSR-based genetic map and 14 novel QTLs for charcoal rot disease resistance will facilitate the mapping of agronomic traits and marker-assisted selection breeding in sesame.
Collapse
|
29
|
Dossa K, Diouf D, Wang L, Wei X, Zhang Y, Niang M, Fonceka D, Yu J, Mmadi MA, Yehouessi LW, Liao B, Zhang X, Cisse N. The Emerging Oilseed Crop Sesamum indicum Enters the "Omics" Era. FRONTIERS IN PLANT SCIENCE 2017; 8:1154. [PMID: 28713412 PMCID: PMC5492763 DOI: 10.3389/fpls.2017.01154] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/15/2017] [Indexed: 05/18/2023]
Abstract
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments and constitutes an alternative cash crop for smallholders in developing countries. Despite its economic and nutritional importance, sesame is considered as an orphan crop because it has received very little attention from science. As a consequence, it lags behind the other major oil crops as far as genetic improvement is concerned. In recent years, the scenario has considerably changed with the decoding of the sesame nuclear genome leading to the development of various genomic resources including molecular markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-based functional databases and diverse daft genome sequences. The availability of these tools in association with the discovery of candidate genes and quantitative trait locis for key agronomic traits including high oil content and quality, waterlogging and drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the way to the development of some new strategies for sesame genetic improvement. As a result, sesame has graduated from an "orphan crop" to a "genomic resource-rich crop." With the limited research teams working on sesame worldwide, more synergic efforts are needed to integrate these resources in sesame breeding for productivity upsurge, ensuring food security and improved livelihood in developing countries. This review retraces the evolution of sesame research by highlighting the recent advances in the "Omics" area and also critically discusses the future prospects for a further genetic improvement and a better expansion of this crop.
Collapse
Affiliation(s)
- Komivi Dossa
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Xin Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Mareme Niang
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
| | - Daniel Fonceka
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR AGAPMontpellier, France
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Marie A. Mmadi
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Louis W. Yehouessi
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Ndiaga Cisse
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
| |
Collapse
|
30
|
Wei X, Gong H, Yu J, Liu P, Wang L, Zhang Y, Zhang X. SesameFG: an integrated database for the functional genomics of sesame. Sci Rep 2017; 7:2342. [PMID: 28539606 PMCID: PMC5443765 DOI: 10.1038/s41598-017-02586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
Sesame (Sesamum indicum L.) has high oil content, a small diploid genome and a short growth period, making it an attractive species for genetic studies on oilseed crops. With the advancement of next-generation sequencing technology, genomics and functional genomics research of sesame has developed quickly in the last few years, and large amounts of data have been generated. However, these results are distributed in many different publications, and there is a lack of integration. To promote functional genomics research of sesame, we collected genetic information combined with comprehensive phenotypic information and integrated them in the web-based database named SesameFG. The current version of SesameFG contains phenotypic information on agronomic traits of 705 sesame accessions, de novo assembled genomes of three sesame varieties, massive numbers of identified SNPs, gene expression profiles of five tissues, gene families, candidate genes for the important agronomic traits and genomic-SSR markers. All phenotypic and genotypic information in SesameFG is available for online queries and can be downloaded freely. SesameFG provides useful search functions and data mining tools, including Genome Browser and local BLAST services. SesameFG is freely accessible at http://ncgr.ac.cn/SesameFG/. SesameFG provides valuable resources and tools for functional genomics research and the molecular breeding of sesame.
Collapse
Affiliation(s)
- Xin Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hao Gong
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Pan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
31
|
Ali Al-Somain BH, Migdadi HM, Al-Faifi SA, Alghamdi SS, Muharram AA, Mohammed NA, Refay YA. Assessment of genetic diversity of sesame accessions collected from different ecological regions using sequence-related amplified polymorphism markers. 3 Biotech 2017; 7:82. [PMID: 28500406 DOI: 10.1007/s13205-017-0680-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/27/2017] [Indexed: 11/30/2022] Open
Abstract
Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity among a collection of 52 sesame accessions representing different geographical environments, including eight Saudi landraces. A combination of seventeen primers generated a high number of alleles (365) with 100% polymorphism. The polymorphic information content (PIC) and primer discrimination power (DP) recorded overall means of 0.88 and 5.88, respectively. Genetic similarity values based on Jaccard coefficients ranged from 0.12 to 0.49, with an average similarity value of 0.30, indicating both high genetic distance and a wide genetic basis of the investigated accessions. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram grouped 48 of 52 accessions into seven main clusters, and five accessions failed to form clusters and were separated individually. However, subclusters separated the accessions and, considering the relatedness of accessions and their geographical origin, formed distinct diversity among groups. Saudi landraces showed the widest genetic basis compared with other introduced accessions that were distributed throughout the dendrogram, indicating that agro-ecological zones were indistinguishable by cluster analysis. SRAP analysis revealed a high degree of genetic polymorphism in sesame accessions investigated and showed weak association between geographical origin and SRAP patterns. This wide genetic variability should be considered for sesame breeding programs.
Collapse
Affiliation(s)
- Bazel H Ali Al-Somain
- Department of Plant Production, College of food and agricultural sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Hussein M Migdadi
- Department of Plant Production, College of food and agricultural sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Sulieman A Al-Faifi
- Department of Plant Production, College of food and agricultural sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Salem S Alghamdi
- Department of Plant Production, College of food and agricultural sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Abdulmalek A Muharram
- Department of Plant Production, College of food and agricultural sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Nabil A Mohammed
- Department of Plant Production, College of food and agricultural sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Yahya A Refay
- Department of Plant Production, College of food and agricultural sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
32
|
Cui C, Mei H, Liu Y, Zhang H, Zheng Y. Genetic Diversity, Population Structure, and Linkage Disequilibrium of an Association-Mapping Panel Revealed by Genome-Wide SNP Markers in Sesame. FRONTIERS IN PLANT SCIENCE 2017; 8:1189. [PMID: 28729877 PMCID: PMC5498554 DOI: 10.3389/fpls.2017.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/22/2017] [Indexed: 05/11/2023]
Abstract
The characterization of genetic diversity and population structure can be used in tandem to detect reliable phenotype-genotype associations. In the present study, we genotyped a set of 366 sesame germplasm accessions by using 89,924 single-nucleotide polymorphisms (SNPs). The number of SNPs on each chromosome was consistent with the physical length of the respective chromosome, and the average marker density was approximately 2.67 kb/SNP. The genetic diversity analysis showed that the average nucleotide diversity of the panel was 1.1 × 10-3, with averages of 1.0 × 10-4, 2.7 × 10-4, and 3.6 × 10-4 obtained, respectively for three identified subgroups of the panel: Pop 1, Pop 2, and the Mixed. The genetic structure analysis revealed that these sesame germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in the panel. The genome-wide linkage disequilibrium (LD) analysis showed that an average LD extended up to ∼99 kb. The genetic diversity and population structure revealed in this study should provide guidance to the future design of association studies and the systematic utilization of the genetic variation characterizing the sesame panel.
Collapse
Affiliation(s)
- Chengqi Cui
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural UniversityNanjing, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural SciencesZhengzhou, China
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of AgricultureZhengzhou, China
- Henan Provincial Key Laboratory for Oil Crops ImprovementZhengzhou, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural SciencesZhengzhou, China
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of AgricultureZhengzhou, China
- Henan Provincial Key Laboratory for Oil Crops ImprovementZhengzhou, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural SciencesZhengzhou, China
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of AgricultureZhengzhou, China
- Henan Provincial Key Laboratory for Oil Crops ImprovementZhengzhou, China
- *Correspondence: Haiyang Zhang, Yongzhan Zheng,
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural SciencesZhengzhou, China
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of AgricultureZhengzhou, China
- Henan Provincial Key Laboratory for Oil Crops ImprovementZhengzhou, China
- *Correspondence: Haiyang Zhang, Yongzhan Zheng,
| |
Collapse
|
33
|
Zhang H, Miao H, Li C, Wei L, Duan Y, Ma Q, Kong J, Xu F, Chang S. Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L. Sci Rep 2016; 6:31556. [PMID: 27527492 PMCID: PMC4985745 DOI: 10.1038/srep31556] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an important oilseed crop and has an indeterminate growth habit. Here we resequenced the genomes of the parents and 120 progeny of an F2 population derived from crossing Yuzhi 11 (indeterminate, Dt) and Yuzhi DS899 (determinate, dt1), and constructed an ultra-dense SNP map for sesame comprised of 3,041 bins including 30,193 SNPs in 13 linkage groups (LGs) with an average marker density of 0.10 cM. Results indicated that the same recessive gene controls the determinacy trait in dt1 and a second determinate line, dt2 (08TP092). The QDt1 locus for the determinacy trait was located in the 18.0 cM-19.2 cM interval of LG8. The target SNP, SiDt27-1, and the determinacy gene, DS899s00170.023 (named here as SiDt), were identified in Scaffold 00170 of the Yuzhi 11 reference genome, based on genetic mapping and genomic association analysis. Unlike the G397A SNP change in the dt1 genotype, the SiDt allele in dt2 line was lost from the genome. This example of map-based gene cloning in sesame provides proof-of-concept of the utility of ultra-dense SNP maps for accurate genome research in sesame.
Collapse
Affiliation(s)
- Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Qin Ma
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Jingjing Kong
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Fangfang Xu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Shuxian Chang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| |
Collapse
|
34
|
Zhou X, Dong Y, Zhao J, Huang L, Ren X, Chen Y, Huang S, Liao B, Lei Y, Yan L, Jiang H. Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.). BMC Genomics 2016; 17:420. [PMID: 27251557 PMCID: PMC4888616 DOI: 10.1186/s12864-016-2743-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single-locus markers have many advantages compared with multi-locus markers in genetic and breeding studies because their alleles can be assigned to particular genomic loci in diversity analyses. However, there is little research on single-locus SSR markers in peanut. Through the de novo assembly of DNA sequencing reads of A. hypogaea, we developed single-locus SSR markers in a genomic survey for better application in genetic and breeding studies of peanut. RESULTS In this study, DNA libraries with four different insert sizes were used for sequencing with 150 bp paired-end reads. Approximately 237 gigabases of clean data containing 1,675,631,984 reads were obtained after filtering. These reads were assembled into 2,102,446 contigs with an N50 length of 1,782 bp, and the contigs were further assembled into 1,176,527 scaffolds with an N50 of 3,920 bp. The total length of the assembled scaffold sequences was 2.0 Gbp, and 134,652 single-locus SSRs were identified from 375,180 SSRs. Among these developed single-locus SSRs, trinucleotide motifs were the most abundant, followed by tetra-, di-, mono-, penta- and hexanucleotide motifs. The most common motif repeats for the various types of single-locus SSRs have a tendency to be A/T rich. A total of 1,790 developed in silico single-locus SSR markers were chosen and used in PCR experiments to confirm amplification patterns. Of them, 1,637 markers that produced single amplicons in twelve inbred lines were considered putative single-locus markers, and 290 (17.7 %) showed polymorphisms. A further F2 population study showed that the segregation ratios of the 97 developed SSR markers, which showed polymorphisms between the parents, were consistent with the Mendelian inheritance law for single loci (1:2:1). Finally, 89 markers were assigned to an A. hypogaea linkage map. A subset of 100 single-locus SSR markers was shown to be highly stable and universal in a collection of 96 peanut accessions. A neighbor-joining tree of this natural population showed that genotypes have obviously correlation with botanical varieties. CONCLUSIONS We have shown that the detection of single-locus SSR markers from a de novo genomic assembly of a combination of different-insert-size libraries is highly efficient. This is the first report of the development of genome-wide single-locus markers for A. hypogaea, and the markers developed in this study will be useful for gene tagging, sequence scaffold assignment, linkage map construction, diversity analysis, variety identification and association mapping in peanut.
Collapse
Affiliation(s)
- Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yang Dong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Jiaojiao Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Shunmou Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.,Databridge Technologies Corporation, Wuhan, 430062, Hubei, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| |
Collapse
|
35
|
Zhou T, Li ZH, Bai GQ, Feng L, Chen C, Wei Y, Chang YX, Zhao GF. Transcriptome Sequencing and Development of Genic SSR Markers of an Endangered Chinese Endemic Genus Dipteronia Oliver (Aceraceae). Molecules 2016; 21:166. [PMID: 26907245 PMCID: PMC6272838 DOI: 10.3390/molecules21030166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/16/2022] Open
Abstract
Dipteronia Oliver (Aceraceae) is an endangered Chinese endemic genus consisting of two living species, Dipteronia sinensis and Dipteronia dyeriana. However, studies on the population genetics and evolutionary analyses of Dipteronia have been hindered by limited genomic resources and genetic markers. Here, the generation, de novo assembly and annotation of transcriptome datasets, and a large set of microsatellite or simple sequence repeat (SSR) markers derived from Dipteronia have been described. After Illumina pair-end sequencing, approximately 93.2 million reads were generated and assembled to yield a total of 99,358 unigenes. A majority of these unigenes (53%, 52,789) had at least one blast hit against the public protein databases. Further, 12,377 SSR loci were detected and 4179 primer pairs were designed for experimental validation. Of these 4179 primer pairs, 435 primer pairs were randomly selected to test polymorphism. Our results show that products from 132 primer pairs were polymorphic, in which 97 polymorphic SSR markers were further selected to analyze the genetic diversity of 10 natural populations of Dipteronia. The identification of SSR markers during our research will provide the much valuable data for population genetic analyses and evolutionary studies in Dipteronia.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Guo-Qing Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
- Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China.
| | - Li Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Chen Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Yue Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Yong-Xia Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Gui-Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
36
|
Deng T, Pang C, Lu X, Zhu P, Duan A, Tan Z, Huang J, Li H, Chen M, Liang X. De Novo Transcriptome Assembly of the Chinese Swamp Buffalo by RNA Sequencing and SSR Marker Discovery. PLoS One 2016; 11:e0147132. [PMID: 26766209 PMCID: PMC4713091 DOI: 10.1371/journal.pone.0147132] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/29/2015] [Indexed: 01/11/2023] Open
Abstract
The Chinese swamp buffalo (Bubalis bubalis) is vital to the lives of small farmers and has tremendous economic importance. However, a lack of genomic information has hampered research on augmenting marker assisted breeding programs in this species. Thus, a high-throughput transcriptomic sequencing of B. bubalis was conducted to generate transcriptomic sequence dataset for gene discovery and molecular marker development. Illumina paired-end sequencing generated a total of 54,109,173 raw reads. After trimming, de novo assembly was performed, which yielded 86,017 unigenes, with an average length of 972.41 bp, an N50 of 1,505 bp, and an average GC content of 49.92%. A total of 62,337 unigenes were successfully annotated. Among the annotated unigenes, 27,025 (43.35%) and 23,232 (37.27%) unigenes showed significant similarity to known proteins in NCBI non-redundant protein and Swiss-Prot databases (E-value < 1.0E-5), respectively. Of these annotated unigenes, 14,439 and 15,813 unigenes were assigned to the Gene Ontology (GO) categories and EuKaryotic Ortholog Group (KOG) cluster, respectively. In addition, a total of 14,167 unigenes were assigned to 331 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, 17,401 simple sequence repeats (SSRs) were identified as potential molecular markers. One hundred and fifteen primer pairs were randomly selected for amplification to detect polymorphisms. The results revealed that 110 primer pairs (95.65%) yielded PCR amplicons and 69 primer pairs (60.00%) presented polymorphisms in 35 individual buffaloes. A phylogenetic analysis showed that the five swamp buffalo populations were clustered together, whereas two river buffalo breeds clustered separately. In the present study, the Illumina RNA-seq technology was utilized to perform transcriptome analysis and SSR marker discovery in the swamp buffalo without using a reference genome. Our findings will enrich the current SSR markers resources and help spearhead molecular genetic research studies on the swamp buffalo.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Chunying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Xingrong Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Peng Zhu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Anqin Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Zhengzhun Tan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Jian Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Hui Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Mingtan Chen
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
- * E-mail:
| |
Collapse
|
37
|
Gul A, Ahad A, Akhtar S, Ahmad Z, Rashid B, Husnain T. Microarray: gateway to unravel the mystery of abiotic stresses in plants. Biotechnol Lett 2015; 38:527-43. [PMID: 26667130 DOI: 10.1007/s10529-015-2010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Environmental factors, such as drought, salinity, extreme temperature, ozone poisoning, metal toxicity etc., significantly affect crops. To study these factors and to design a possible remedy, biological experimental data concerning these crops requires the quantification of gene expression and comparative analyses at high throughput level. Development of microarrays is the platform to study the differential expression profiling of the targeted genes. This technology can be applied to gene expression studies, ranging from individual genes to whole genome level. It is now possible to perform the quantification of the differential expression of genes on a glass slide in a single experiment. This review documents recently published reports on the use of microarrays for the identification of genes in different plant species playing their role in different cellular networks under abiotic stresses. The regulation pattern of differentially-expressed genes, individually or in group form, may help us to study different pathways and functions at the cellular and molecular level. These studies can provide us with a lot of useful information to unravel the mystery of abiotic stresses in important crop plants.
Collapse
Affiliation(s)
- Ambreen Gul
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Ammara Ahad
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Sidra Akhtar
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Zarnab Ahmad
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Bushra Rashid
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan.
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| |
Collapse
|
38
|
Development of Polymorphic Genic SSR Markers by Transcriptome Sequencing in the Welsh Onion (Allium fistulosum L.). APPLIED SCIENCES-BASEL 2015. [DOI: 10.3390/app5041050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Abstract
BACKGROUND With the advent of high-throughput sequencing technologies large-scale identification of microsatellites became affordable and was especially directed to non-model species. By contrast, few efforts have been published toward the automatic identification of polymorphic microsatellites by exploiting sequence redundancy. Few tools for genotyping microsatellite repeats have been implemented so far that are able to manage huge amount of sequence data and handle the SAM/BAM file format. Most of them have been developed for and tested on human or model organisms with high quality reference genomes. RESULTS In this note we describe polymorphic SSR retrieval (PSR), a read counter and simple sequence repeat (SSR) length polymorphism detection tool. It is written in Perl and was developed to identify length polymorphisms in perfect microsatellites exploiting next generation sequencing (NGS) data. PSR has been developed bearing in mind plant non-model species for which de novo transcriptome assembly is generally the first sequence resource available to be used for SSR-mining. PSR is divided into two modules: the read-counting module (PSR_read_retrieval) identifies all the reads that cover the full-length of perfect microsatellites; the comparative module (PSR_poly_finder) detects both heterozygous and homozygous alleles at each microsatellite locus across all genotypes under investigation. Two threshold values to call a length polymorphism and reduce the number of false positives can be defined by the user: the minimum number of reads overlapping the repetitive stretch and the minimum read depth. The first parameter determines if the microsatellite-containing sequence must be processed or not, while the second one is decisive for the identification of minor alleles. PSR was tested on two different case studies. The first study aims at the identification of polymorphic SSRs in a set of de novo assembled transcripts defined by RNA-sequencing of two different plant genotypes. The second research activity aims to investigate sequence variations within a collection of newly sequenced chloroplast genomes. In both the cases PSR results are in agreement with those obtained by capillary gel separation. CONCLUSION PSR has been specifically developed from the need to automate the gene-based and genome-wide identification of polymorphic microsatellites from NGS data. It overcomes the limits related to the existing and time-consuming efforts based on tools developed in the pre-NGS era.
Collapse
Affiliation(s)
- Concita Cantarella
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca per l'orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano Faiano, Italy.
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca per l'orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano Faiano, Italy.
| |
Collapse
|
40
|
Pandey SK, Das A, Rai P, Dasgupta T. Morphological and genetic diversity assessment of sesame (Sesamum indicum L.) accessions differing in origin. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:519-29. [PMID: 26600678 PMCID: PMC4646868 DOI: 10.1007/s12298-015-0322-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/13/2015] [Accepted: 09/21/2015] [Indexed: 05/22/2023]
Abstract
Sesame is an important ancient oilseed crop of high medicinal value. In the present study, 37 characters including both quantitative and qualitative traits of sixty genotypes were characterized following IPGRI morphological descriptors for sesame. Multivariate analysis was computed to distinguish the varieties into different groups. Though thirty six microsatellite markers including genomic and Est-SSR markers were initially selected, but, finally, the accessions were genotyped by eight polymorphic primers. Altogether, 27 alleles were detected among the 60 genotypes, with an average of 3.37 alleles per locus. The number of alleles ranged from 2 to 6 alleles. From data of microsatellite markers, dissimilarity coefficients between varieties were computed following Jaccard's coefficient method. Principal co-ordinate analysis was used to represent the varieties in bi-directional space. Dendrogram was constructed using NJ method based on dissimilarity matrix. Cluster analysis based on morphological and molecular marker classified sesame genotypes into two major groups. Mantel test showed an insignificant correlation between phenotypic and molecular marker information. The genotypes belonging to the same geographical area did not always occupy the same cluster. The results confirmed that both genetic and phenotypic diversity in a combined way could efficiently evaluate the variation present in different sesame accessions in any breeding program.
Collapse
Affiliation(s)
- Sarita K. Pandey
- />Department of Genetics and Plant Breeding, Institute of Agricultural Science, Calcutta University, Kolkata, India
- />International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana India
| | - Arna Das
- />Department of Genetics and Plant Breeding, Institute of Agricultural Science, Calcutta University, Kolkata, India
| | - Pooja Rai
- />Department of Genetics and Plant Breeding, Institute of Agricultural Science, Calcutta University, Kolkata, India
| | - Tapash Dasgupta
- />Department of Genetics and Plant Breeding, Institute of Agricultural Science, Calcutta University, Kolkata, India
| |
Collapse
|
41
|
Kim HJ, Jung J, Kim MS, Lee JM, Choi D, Yeam I. Molecular marker development and genetic diversity exploration by RNA-seq in Platycodon grandiflorum. Genome 2015; 58:441-51. [PMID: 26501479 DOI: 10.1139/gen-2015-0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platycodon grandiflorum, generally known as the bellflower or balloon flower, is the only species in the genus Platycodon of the family Campanulaceae. Platycodon plants have been traditionally used as a medicinal crop in East Asia for their antiphlogistic, antitussive, and expectorant properties. Despite these practical uses, marker-assisted selection and molecular breeding in platycodons have lagged due to the lack of genetic information on this genus. In this study, we performed RNA-seq analysis of three platycodon accessions to develop molecular markers and explore genetic diversity. First, genic simple sequence repeats (SSRs) were retrieved and compared; dinucleotide motifs were the most abundant repeats (39%-40%) followed by trinucleotide (25%-31%), tetranucleotide (1.5%-1.9%), and pentanucleotide (0.3%-1.0%) repeats. The result of in silico SSR analysis, three SSR markers were detected and showed possibility to distinguish three platycodon accessions. After several filtering procedures, 180 single nucleotide polymorphisms (SNPs) were used to design 40 cleaved amplified polymorphic sequence (CAPS) markers. Twelve of these PCR-based markers were validated as highly polymorphic and utilized to investigate genetic diversity in 21 platycodon accessions collected from various regions of South Korea. Collectively, the 12 markers yielded 35 alleles, with an average of 3 alleles per locus. Polymorphism information content (PIC) values ranged from 0.087 to 0.693, averaging 0.373 per locus. Since platycodon genetics have not been actively studied, the sequence information and the DNA markers generated from our research have the potential to contribute to further genetic improvements, genomic studies, and gene discovery in this genus.
Collapse
Affiliation(s)
- Hyun Jung Kim
- a Department of Horticulture and Breeding, Andong National University, Andong, Gyeongsangbukdo, 760-749, Republic of Korea.,b Department of Eco-Friendly Horticulture, Cheonan Yonam College, Cheonan, Chungcheongnamdo, 331-709, Republic of Korea
| | - Jungsu Jung
- a Department of Horticulture and Breeding, Andong National University, Andong, Gyeongsangbukdo, 760-749, Republic of Korea
| | - Myung-Shin Kim
- c Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je Min Lee
- d Department of Horticultural Science, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Doil Choi
- c Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inhwa Yeam
- a Department of Horticulture and Breeding, Andong National University, Andong, Gyeongsangbukdo, 760-749, Republic of Korea.,e Institute of Agricultural Science and Technology, Andong National University, Andongsi, Gyeongsangbukdo, 760-749, Republic of Korea
| |
Collapse
|
42
|
Wu G, Zhang L, Yin Y, Wu J, Yu L, Zhou Y, Li M. Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome. FRONTIERS IN PLANT SCIENCE 2015; 6:198. [PMID: 26029219 PMCID: PMC4428447 DOI: 10.3389/fpls.2015.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/12/2015] [Indexed: 05/29/2023]
Abstract
Raphanus sativus is an important Brassicaceae plant and also an edible vegetable with great economic value. However, currently there is not enough transcriptome information of R. sativus tissues, which impedes further functional genomics research on R. sativus. In this study, RNA-seq technology was employed to characterize the transcriptome of leaf tissues. Approximately 70 million clean pair-end reads were obtained and used for de novo assembly by Trinity program, which generated 68,086 unigenes with an average length of 576 bp. All the unigenes were annotated against GO and KEGG databases. In the meanwhile, we merged leaf sequencing data with existing root sequencing data and obtained better de novo assembly of R. sativus using Oases program. Accordingly, potential simple sequence repeats (SSRs), transcription factors (TFs) and enzyme codes were identified in R. sativus. Additionally, we detected a total of 3563 significantly differentially expressed genes (DEGs, P = 0.05) and tissue-specific biological processes between leaf and root tissues. Furthermore, a TFs-based regulation network was constructed using Cytoscape software. Taken together, these results not only provide a comprehensive genomic resource of R. sativus but also shed light on functional genomic and proteomic research on R. sativus in the future.
Collapse
Affiliation(s)
- Gang Wu
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Libin Zhang
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yongtai Yin
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jiangsheng Wu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Longjiang Yu
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yanhong Zhou
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
43
|
Long Y, Wang Y, Wu S, Wang J, Tian X, Pei X. De novo assembly of transcriptome sequencing in Caragana korshinskii Kom. and characterization of EST-SSR markers. PLoS One 2015; 10:e0115805. [PMID: 25629164 PMCID: PMC4309406 DOI: 10.1371/journal.pone.0115805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/27/2014] [Indexed: 01/05/2023] Open
Abstract
Caragana korshinskii Kom. is widely distributed in various habitats, including gravel desert, clay desert, fixed and semi-fixed sand, and saline land in the Asian and African deserts. To date, no previous genomic information or EST-SSR marker has been reported in Caragana Fabr. genus. In this study, more than two billion bases of high-quality sequence of C. korshinskii were generated by using illumina sequencing technology and demonstrated the de novo assembly and annotation of genes without prior genome information. These reads were assembled into 86,265 unigenes (mean length = 709 bp). The similarity search indicated that 33,955 and 21,978 unigenes showed significant similarities to known proteins from NCBI non-redundant and Swissprot protein databases, respectively. Among these annotated unigenes, 26,232 a unigenes were separately assigned to Gene Ontology (GO) database. When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database, 5,598 unigenes were assigned to 5 main categories including 32 KEGG pathways. Among the main KEGG categories, metabolism was the biggest category (2,862, 43.7%), suggesting the active metabolic processes in the desert tree. In addition, a total of 19,150 EST-SSRs were identified from 15,484 unigenes, and the characterizations of EST-SSRs were further compared with other four species in Fabraceae. 126 potential marker sites were randomly selected to validate the assembly quality and develop EST-SSR markers. Among the 9 germplasms in Caranaga Fabr. genus, PCR success rate were 93.7% and the phylogenic tree was constructed based on the genotypic data. This research generated a substantial fraction of transcriptome sequences, which were very useful resources for gene annotation and discovery, molecular markers development, genome assembly and annotation. The EST-SSR markers identified and developed in this study will facilitate marker-assisted selection breeding.
Collapse
Affiliation(s)
- Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanyan Wang
- College of Plant science and technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shanshan Wu
- College of Plant science and technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiao Wang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinjie Tian
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- * E-mail:
| |
Collapse
|
44
|
Kim SK, Nair RM, Lee J, Lee SH. Genomic resources in mungbean for future breeding programs. FRONTIERS IN PLANT SCIENCE 2015; 6:626. [PMID: 26322067 PMCID: PMC4530597 DOI: 10.3389/fpls.2015.00626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/28/2015] [Indexed: 05/03/2023]
Abstract
Among the legume family, mungbean (Vigna radiata) has become one of the important crops in Asia, showing a steady increase in global production. It provides a good source of protein and contains most notably folate and iron. Beyond the nutritional value of mungbean, certain features make it a well-suited model organism among legume plants because of its small genome size, short life-cycle, self-pollinating, and close genetic relationship to other legumes. In the past, there have been several efforts to develop molecular markers and linkage maps associated with agronomic traits for the genetic improvement of mungbean and, ultimately, breeding for cultivar development to increase the average yields of mungbean. The recent release of a reference genome of the cultivated mungbean (V. radiata var. radiata VC1973A) and an additional de novo sequencing of a wild relative mungbean (V. radiata var. sublobata) has provided a framework for mungbean genetic and genome research, that can further be used for genome-wide association and functional studies to identify genes related to specific agronomic traits. Moreover, the diverse gene pool of wild mungbean comprises valuable genetic resources of beneficial genes that may be helpful in widening the genetic diversity of cultivated mungbean. This review paper covers the research progress on molecular and genomics approaches and the current status of breeding programs that have developed to move toward the ultimate goal of mungbean improvement.
Collapse
Affiliation(s)
- Sue K. Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | | | - Jayern Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
- *Correspondence: Suk-Ha Lee, Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea,
| |
Collapse
|
45
|
Wang L, Yu J, Li D, Zhang X. Sinbase: An Integrated Database to Study Genomics, Genetics and Comparative Genomics in Sesamum indicum. ACTA ACUST UNITED AC 2014; 56:e2. [DOI: 10.1093/pcp/pcu175] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Wu K, Liu H, Yang M, Tao Y, Ma H, Wu W, Zuo Y, Zhao Y. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC PLANT BIOLOGY 2014; 14:274. [PMID: 25300176 PMCID: PMC4200128 DOI: 10.1186/s12870-014-0274-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/03/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sesame (Sesamum indicum L., 2n = 26) is an important oilseed crop with an estimated genome size of 369 Mb. The genetic basis, including the number and locations of quantitative trait loci (QTLs) of sesame grain yield and quality remain poorly understood, due in part to the lack of reliable markers and genetic maps. Here we report on the construction of a hitherto most high-density genetic map of sesame using the restriction-site associated DNA sequencing (RAD-seq) combined with 89 PCR markers, and the identification of grain yield-related QTLs using a recombinant inbred line (RIL) population. RESULT In total, 3,769 single-nucleotide polymorphism (SNP) markers were identified from RAD-seq, and 89 polymorphic PCR markers were identified including 44 expressed sequence tag-simple sequence repeats (EST-SSRs), 10 genomic-SSRs and 35 Insertion-Deletion markers (InDels). The final map included 1,230 markers distributed on 14 linkage groups (LGs) and was 844.46 cM in length with an average of 0.69 cM between adjacent markers. Using this map and RIL population, we detected 13 QTLs on 7 LGs and 17 QTLs on 10 LGs for seven grain yield-related traits by the multiple interval mapping (MIM) and the mixed linear composite interval mapping (MCIM), respectively. Three major QTLs had been identified using MIM with R2 > 10.0% or MCIM with ha 2 > 5.0%. Two co-localized QTL groups were identified that partially explained the correlations among five yield-related traits. CONCLUSION Three thousand eight hundred and four pairs of new DNA markers including SNPs and InDels were developed by RAD-seq, and a so far most high-density genetic map was constructed based on these markers in combination with SSR markers. Several grain yield-related QTLs had been identified using this population and genetic map. We report here the first QTL mapping of yield-related traits with a high-density genetic map using a RIL population in sesame. Results of this study solidified the basis for studying important agricultural traits and implementing marker-assisted selection (MAS) toward genetic improvement in sesame.
Collapse
Affiliation(s)
- Kun Wu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Hongyan Liu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Minmin Yang
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Ye Tao
- />Shanghai Major Biological Medicine Technology Co., Ltd., Shanghai, 201203 China
| | - Huihui Ma
- />Fuyang Academy of Agricultural Sciences, Fuyang, Anhui 236065 China
| | - Wenxiong Wu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Yang Zuo
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Yingzhong Zhao
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| |
Collapse
|
47
|
Li C, Miao H, Wei L, Zhang T, Han X, Zhang H. Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS One 2014; 9:e105757. [PMID: 25153139 PMCID: PMC4143287 DOI: 10.1371/journal.pone.0105757] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Sesame is an important oil crop for the high oil content and quality. The seed oil and protein contents are two important traits in sesame. To identify the molecular markers associated with the seed oil and protein contents in sesame, we systematically performed the association mapping among 369 worldwide germplasm accessions under 5 environments using 112 polymorphic SSR markers. The general linear model (GLM) was applied with the criteria of logP≥3.0 and high stability under all 5 environments. Among the 369 sesame accessions, the oil content ranged from 27.89%–58.73% and the protein content ranged from 16.72%–27.79%. A significant negative correlation of the oil content with the protein content was found in the population. A total of 19 markers for oil content were detected with a R2 value range from 4% to 29%; 24 markers for protein content were detected with a R2 value range from 3% to 29%, of which 19 markers were associated with both traits. Moreover, partial markers were confirmed using mixed linear model (MLM) method, which suggested that the oil and protein contents are controlled mostly by major genes. Allele effect analysis showed that the allele associated with high oil content was always associated with low protein content, and vice versa. Of the 19 markers associated with oil content, 17 presented near the locations of the plant lipid pathway genes and 2 were located just next to a fatty acid elongation gene and a gene encoding Stearoyl-ACP Desaturase, respectively. The findings provided a valuable foundation for oil synthesis gene identification and molecular marker assistant selection (MAS) breeding in sesame.
Collapse
Affiliation(s)
- Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Tide Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xiuhua Han
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
- * E-mail:
| |
Collapse
|
48
|
Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014; 10:e1004487. [PMID: 25032823 PMCID: PMC4102449 DOI: 10.1371/journal.pgen.1004487] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 05/20/2014] [Indexed: 02/06/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant–microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages. Symbiotic associations between eukaryotes and microbes play essential roles in the nutrition, health and behavior of both partners. It is well accepted that hosts control and shape their associated microbiome. In this study, we provide evidence that symbiotic microbes also participate in the evolution of host genomes. In particular, we show that the independent loss of a symbiosis in several plant lineages results in a convergent modification of non-host genomes. Interestingly, a significant fraction of genes lost in non-hosts play an important role in this symbiosis, supporting the use of comparative genomics as a powerful approach to identify undiscovered gene networks.
Collapse
|
49
|
Delaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané JM. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014. [PMID: 25032823 DOI: 10.1371/journal.pgen.100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant-microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kranthi Varala
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Patrick P Edger
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - J Chris Pires
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
50
|
Gong L, Chen X, Liu C, Jin F, Hu Q. Gene expression profile of Bombyx mori hemocyte under the stress of destruxin A. PLoS One 2014; 9:e96170. [PMID: 24801594 PMCID: PMC4011735 DOI: 10.1371/journal.pone.0096170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/04/2014] [Indexed: 01/10/2023] Open
Abstract
Destruxin A (DA) is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE) profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO) terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR). Our studies provide insights into the toxic effect of this microbial insecticide on silkworm's hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.
Collapse
Affiliation(s)
- Liang Gong
- College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
| | - Xiurun Chen
- College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
| | - Chenglan Liu
- College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
| | - Qiongbo Hu
- College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|