1
|
Badura J, Bernardi B, Muno-Bender J, Matti K, Zimmer K, Wendland J. Isolation and characterization of haploid heterothallic beer yeasts. Appl Microbiol Biotechnol 2025; 109:17. [PMID: 39841271 PMCID: PMC11754353 DOI: 10.1007/s00253-024-13397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025]
Abstract
Improving ale or lager yeasts by conventional breeding is a non-trivial task. Domestication of lager yeasts, which are hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus, has led to evolved strains with severely reduced or abolished sexual reproduction capabilities, due to, e.g. postzygotic barriers. On the other hand, S. cerevisiae ale yeasts, particularly Kveik ale yeast strains, were shown to produce abundant viable spores (~ 60%; Dippel et al. Microorganisms 10(10):1922, 2022). This led us to investigate the usefulness of Kveik yeasts for conventional yeast breeding. Surprisingly, we could isolate heterothallic colonies from germinated spores of different Kveik strains. These strains presented stable mating types in confrontation assays with pheromone-sensitive tester strains. Heterothallism was due to inactivating mutations in their HO genes. These led to amino acid exchanges in the Ho protein, revealing a known G223D mutation and also a novel G217R mutation, both of which abolished mating type switching. We generated stable MATa or MATα lines of four different Kveik yeasts, named Odin, Thor, Freya and Vör. Analyses of bud scar positions in these strains revealed both axial and bipolar budding patterns. However, the ability of Freya and Vör to form viable meiotic offspring with haploid tester strains demonstrated that these strains are haploid. Fermentation analyses indicated that all four yeast strains were able to ferment maltose and maltotriose. Odin was found to share not only mutations in the HO gene, but also inactivating mutations in the PAD1 and FDC1 genes with lager yeasts, which makes this strain POF-, i.e. not able to generate phenolic off-flavours, a key feature of lager yeasts. These haploid ale yeast-derived strains may open novel avenues also for generating novel lager yeast strains by breeding or mutation and selection utilizing the power of yeast genetics, thus lifting a block that domestication of lager yeasts has brought about. KEY POINTS: • Haploid Kveik ale yeasts with stable MATa and MATα mating types were isolated. • Heterothallic strains bear mutant HO alleles leading to a novel inactivating G217R amino acid change. • One strain was found to be POF- due to inactivating mutations in the PAD1 and FDC1 gene rendering it negative for phenolic off-flavor production. • These strains are highly accessible for beer yeast improvements by conventional breeding, employing yeast genetics and mutation and selection regimes.
Collapse
Affiliation(s)
- Jennifer Badura
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Beatrice Bernardi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Formo Bio GmbH, Weißmüllerstraße 50 60314, Frankfurt Am Main, Germany
| | - Judith Muno-Bender
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Katrin Matti
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Kerstin Zimmer
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
| |
Collapse
|
2
|
Contreras‐Ruiz A, Minebois R, Alonso‐del‐Real J, Barrio E, Querol A. Differences in metabolism among Saccharomyces species and their hybrids during wine fermentation. Microb Biotechnol 2024; 17:e14476. [PMID: 38801338 PMCID: PMC11129674 DOI: 10.1111/1751-7915.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
This study aimed to investigate how parental genomes contribute to yeast hybrid metabolism using a metabolomic approach. Previous studies have explored central carbon and nitrogen metabolism in Saccharomyces species during wine fermentation, but this study analyses the metabolomes of Saccharomyces hybrids for the first time. We evaluated the oenological performance and intra- and extracellular metabolomes, and we compared the strains according to nutrient consumption and production of the main fermentative by-products. Surprisingly, no common pattern was observed for hybrid genome influence; each strain behaved differently during wine fermentation. However, this study suggests that the genome of the S. cerevisiae species may play a more relevant role in fermentative metabolism. Variations in biomass/nitrogen ratios were also noted, potentially linked to S. kudriavzevii and S. uvarum genome contributions. These results open up possibilities for further research using different "omics" approaches to comprehend better metabolic regulation in hybrid strains with genomes from different species.
Collapse
Affiliation(s)
- Alba Contreras‐Ruiz
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Javier Alonso‐del‐Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
- Departament de GenèticaUniversitat de ValènciaValènciaSpain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| |
Collapse
|
3
|
Bernardi B, Michling F, Muno-Bender J, Matti K, Wendland J. The genome sequence of the Champagne Epernay Geisenheim wine yeast reveals its hybrid nature. FEMS Yeast Res 2023; 23:foad033. [PMID: 37500257 DOI: 10.1093/femsyr/foad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Lager yeasts are hybrids between Saccharomyces cerevisiae and S. eubayanus. Wine yeast biodiversity, however, has only recently been discovered to include besides pure S. cerevisiae strains also hybrids between different Saccharomyces yeasts as well as introgressions from non-Saccharomyces species. Here, we analysed the genome of the Champagne Epernay Geisenheim (CEG) wine yeast. This yeast is an allotetraploid (4n - 1) hybrid of S. cerevisiae harbouring a substantially reduced S. kudriavzevii genome contributing only 1/3 of a full genome equivalent. We identified a novel oligopeptide transporter gene, FOT4, in CEG located on chromosome XVI. FOT genes were originally derived from Torulaspora microellipsoides and FOT4 arose by non-allelic recombination between adjacent FOT1 and FOT2 genes. Fermentations of CEG in Riesling and Müller-Thurgau musts were compared with the S. cerevisiae Geisenheim wine yeast GHM, which does not carry FOT genes. At low temperature (10°C), CEG completed fermentations faster and produced increased levels of higher alcohols (e.g. isoamyl alcohol). At higher temperature (18°C), CEG produced higher amounts of the pineapple-like alkyl esters i-butyric and propionic acid ethyl esters compared to GHM. The hybrid nature of CEG thus provides advantages in grape must fermentations over S. cerevisiae wine yeasts, especially with regard to aroma production.
Collapse
Affiliation(s)
- Beatrice Bernardi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Florian Michling
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Judith Muno-Bender
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Katrin Matti
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| |
Collapse
|
4
|
García-Ríos E, Guillamón JM. Genomic Adaptations of Saccharomyces Genus to Wine Niche. Microorganisms 2022; 10:microorganisms10091811. [PMID: 36144411 PMCID: PMC9500811 DOI: 10.3390/microorganisms10091811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Wine yeast have been exposed to harsh conditions for millennia, which have led to adaptive evolutionary strategies. Thus, wine yeasts from Saccharomyces genus are considered an interesting and highly valuable model to study human-drive domestication processes. The rise of whole-genome sequencing technologies together with new long reads platforms has provided new understanding about the population structure and the evolution of wine yeasts. Population genomics studies have indicated domestication fingerprints in wine yeast, including nucleotide variations, chromosomal rearrangements, horizontal gene transfer or hybridization, among others. These genetic changes contribute to genetically and phenotypically distinct strains. This review will summarize and discuss recent research on evolutionary trajectories of wine yeasts, highlighting the domestication hallmarks identified in this group of yeast.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
- Department of Science, Universidad Internacional de Valencia-VIU, Pintor Sorolla 21, 46002 Valencia, Spain
- Correspondence:
| | - José Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
| |
Collapse
|
5
|
The evolutionary and ecological potential of yeast hybrids. Curr Opin Genet Dev 2022; 76:101958. [PMID: 35834944 DOI: 10.1016/j.gde.2022.101958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023]
Abstract
Recent findings in yeast genetics and genomics have advanced our understanding of the evolutionary potential unlocked by hybridization, especially in the genus Saccharomyces. We now have a clearer picture of the prevalence of yeast hybrids in the environment, their ecological and evolutionary history, and the genetic mechanisms driving (and constraining) their adaptation. Here, we describe how the instability of hybrid genomes determines fitness across large evolutionary scales, highlight new hybrid strain engineering techniques, and review tools for comparative hybrid genome analysis. The recent push to take yeast research back 'into the wild' has resulted in new genomic and ecological resources. These provide an arena for quantitative genetics and allow us to investigate the architecture of complex traits and mechanisms of adaptation to rapidly changing environments. The vast genetic diversity of hybrid populations can yield insights beyond those possible with isogenic lines. Hybrids offer a limitless supply of genetic variation that can be tapped for industrial strain improvement but also, combined with experimental evolution, can be used to predict population responses to future climate change - a fundamental task for biologists.
Collapse
|
6
|
Romero-Rodríguez R, Durán-Guerrero E, Castro R, Díaz AB, Lasanta C. Evaluation of the Influence of the Microorganisms Involved in the Production of Beers on their Sensory Characteristics. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Hisatomi T, Toyomura K. Isolation, identification, and characterization of wild budding yeasts from rose flowers in Fukuyama city, Hiroshima, Japan, and their application in bread and wine production. MYCOSCIENCE 2021; 62:382-389. [PMID: 37090174 PMCID: PMC9721520 DOI: 10.47371/mycosci.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
In this study, we isolated 741 wild budding yeast strains from the flowers of 45 rose cultivars growing in Fukuyama city, Hiroshima, Japan. Of these 741 strains, 21 were found to have high fermentation abilities in yeast extract-peptone-dextrose (YPD) medium. Four of the 21 strains were able to ferment bread dough to make bread. These yeasts were identified as Saccharomyces cerevisiae, Lachancea fermentati, Lachancea kluyveri, and a Torulaspora sp. based on DNA sequences from the 26S rDNA D1/D2 regions. The CO2 production profiles of the bread dough generated by the rose yeasts were evaluated using a Fermograph. Saccharomyces cerevisiae FRY2915 exhibited the highest fermentation capacity. Furthermore, FRY2915 was able to ferment grape juice to produce wine, yielding an alcohol concentration of more than 12%. The four rose yeasts isolated during this study have the potential to produce various types of unique fermented foods, thus enhancing the value of the microbiota associated with rose flowers.
Collapse
Affiliation(s)
- Taisuke Hisatomi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University
| | - Kousuke Toyomura
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University
| |
Collapse
|
8
|
Bendixsen DP, Peris D, Stelkens R. Patterns of Genomic Instability in Interspecific Yeast Hybrids With Diverse Ancestries. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:742894. [PMID: 37744091 PMCID: PMC10512264 DOI: 10.3389/ffunb.2021.742894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 09/26/2023]
Abstract
The genomes of hybrids often show substantial deviations from the features of the parent genomes, including genomic instabilities characterized by chromosomal rearrangements, gains, and losses. This plastic genomic architecture generates phenotypic diversity, potentially giving hybrids access to new ecological niches. It is however unclear if there are any generalizable patterns and predictability in the type and prevalence of genomic variation and instability across hybrids with different genetic and ecological backgrounds. Here, we analyzed the genomic architecture of 204 interspecific Saccharomyces yeast hybrids isolated from natural, industrial fermentation, clinical, and laboratory environments. Synchronous mapping to all eight putative parental species showed significant variation in read depth indicating frequent aneuploidy, affecting 44% of all hybrid genomes and particularly smaller chromosomes. Early generation hybrids with largely equal genomic content from both parent species were more likely to contain aneuploidies than introgressed genomes with an older hybridization history, which presumably stabilized the genome. Shared k-mer analysis showed that the degree of genomic diversity and variability varied among hybrids with different parent species. Interestingly, more genetically distant crosses produced more similar hybrid genomes, which may be a result of stronger negative epistasis at larger genomic divergence, putting constraints on hybridization outcomes. Mitochondrial genomes were typically inherited from the species also contributing the majority nuclear genome, but there were clear exceptions to this rule. Together, we find reliable genomic predictors of instability in hybrids, but also report interesting cross- and environment-specific idiosyncrasies. Our results are an important step in understanding the factors shaping divergent hybrid genomes and their role in adaptive evolution.
Collapse
Affiliation(s)
- Devin P. Bendixsen
- Population Genetics Division, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University, Valencia, Spain
| | - Rike Stelkens
- Population Genetics Division, Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Abstract
Consumer demands for new sensory experiences have driven the research of unconventional yeasts in beer. While much research exists on the use of various common Saccharomyces cerevisiae strains as well as non-Saccharomyces yeasts, there exists a gap in knowledge regarding other non-cerevisiae Saccharomyces species in the fermentation of beer, in addition to S. pastorianus. Here, five distinct species of Saccharomyces from the UC Davis Phaff Yeast Culture Collection, as well as one interspecies hybrid from Fermentis, were chosen to ferment 40 L pilot-scale beers. S. kudriavzevii, S. mikatae, S. paradoxus, S. bayanus, and S. uvarum yeasts were used to ferment wort in duplicate pairs, with one fermenter in each pair receiving 10 g/L dry-hop during fermentation. Analytical measurements were made each day of fermentation and compared to controls of SafAle™ US-05 and SafLager™ W 34/70 for commercial brewing parameters of interest. Finished beers were also analyzed for aroma, taste, and mouthfeel to determine the flavor of each yeast as it pertains to brewing potential. All beers exhibited spicy characteristics, likely from the presence of phenols; dry-hopping increased fruit notes while also increasing perceived bitterness and astringency. All of the species in this study displayed great brewing potential, and might be an ideal addition to beer depending on a brewery’s desire to experiment with flavor and willingness to bring a new yeast into their production environment.
Collapse
|
10
|
Alsammar H, Delneri D. An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Res 2021; 20:5810663. [PMID: 32196094 PMCID: PMC7150579 DOI: 10.1093/femsyr/foaa013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Saccharomyces cerevisiae is the most extensively studied yeast and, over the last century, provided insights on the physiology, genetics, cellular biology and molecular mechanisms of eukaryotes. More recently, the increase in the discovery of wild strains, species and hybrids of the genus Saccharomyces has shifted the attention towards studies on genome evolution, ecology and biogeography, with the yeast becoming a model system for population genomic studies. The genus currently comprises eight species, some of clear industrial importance, while others are confined to natural environments, such as wild forests devoid from human domestication activities. To date, numerous studies showed that some Saccharomyces species form genetically diverged populations that are structured by geography, ecology or domestication activity and that the yeast species can also hybridize readily both in natural and domesticated environments. Much emphasis is now placed on the evolutionary process that drives phenotypic diversity between species, hybrids and populations to allow adaptation to different niches. Here, we provide an update of the biodiversity, ecology and population structure of the Saccharomyces species, and recapitulate the current knowledge on the natural history of Saccharomyces genus.
Collapse
Affiliation(s)
- Haya Alsammar
- Department of Biological Sciences, Faculty of Science, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
11
|
Marsit S, Hénault M, Charron G, Fijarczyk A, Landry CR. The neutral rate of whole-genome duplication varies among yeast species and their hybrids. Nat Commun 2021; 12:3126. [PMID: 34035259 PMCID: PMC8149824 DOI: 10.1038/s41467-021-23231-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Hybridization and polyploidization are powerful mechanisms of speciation. Hybrid speciation often coincides with whole-genome duplication (WGD) in eukaryotes. This suggests that WGD may allow hybrids to thrive by increasing fitness, restoring fertility and/or increasing access to adaptive mutations. Alternatively, it has been suggested that hybridization itself may trigger WGD. Testing these models requires quantifying the rate of WGD in hybrids without the confounding effect of natural selection. Here we show, by measuring the spontaneous rate of WGD of more than 1300 yeast crosses evolved under relaxed selection, that some genotypes or combinations of genotypes are more prone to WGD, including some hybrids between closely related species. We also find that higher WGD rate correlates with higher genomic instability and that WGD increases fertility and genetic variability. These results provide evidence that hybridization itself can promote WGD, which in turn facilitates the evolution of hybrids.
Collapse
Affiliation(s)
- S Marsit
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada.
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada.
| | - M Hénault
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| | - G Charron
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - A Fijarczyk
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| | - C R Landry
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada.
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada.
| |
Collapse
|
12
|
Toyomura K, Hisatomi T. Postzygotic reproductive isolation among three Saccharomyces yeast species. Yeast 2021; 38:326-335. [PMID: 33444464 DOI: 10.1002/yea.3549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
We have previously isolated heterothallic haploid strains from original homothallic diploids of two yeast species in the family Saccharomycetaceae. In this study, heterothallic haploid strains were isolated from an original homothallic diploid of Saccharomyces kudriavzevii type strain, followed by investigation of sexual interactions among these yeast strains, in addition to S. cerevisiae laboratory strains. It has been shown that prezygotic reproductive isolation was observed between Kazachstania naganishii and S. cerevisiae with α-factor mating pheromones representing crossaction with each other beyond the genus boundary. Using heterothallic strains, postzygotic reproductive isolation system was shown to reside in the genus Saccharomyces by mass mating and cell-cell contact experiments. In mass mating experiments, crossaction of α-factor and a-factor mating pheromones and sexual agglutination effectively occurred beyond species boundaries among S. kudriavzevii, S. paradoxus, and S. cerevisiae. When the fates of cell-cell pairs from these Saccharomyces yeast species were systematically chased one by one, interspecific F1 hybrids were effectively produced, while sporulations were partially prohibited, with spore germination perfectly blocked in the hybrids. These results indicated that postzygotic reproductive isolation definitively resides among these Saccharomyces yeast species and that disorder of chromosome organization had to some extent occurred in interspecific F1 hybrids.
Collapse
Affiliation(s)
- Kousuke Toyomura
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Taisuke Hisatomi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
13
|
Lengeler KB, Stovicek V, Fennessy RT, Katz M, Förster J. Never Change a Brewing Yeast? Why Not, There Are Plenty to Choose From. Front Genet 2020; 11:582789. [PMID: 33240329 PMCID: PMC7677575 DOI: 10.3389/fgene.2020.582789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
Fermented foods and particularly beer have accompanied the development of human civilization for thousands of years. Saccharomyces cerevisiae, the dominant yeast in the production of alcoholic beverages, probably co-evolved with human activity. Considering that alcoholic fermentations emerged worldwide, the number of strains used in beer production nowadays is surprisingly low. Thus, the genetic diversity is often limited. This is among others related to the switch from a household brewing style to a more artisan brewing regime during the sixteenth century and latterly the development of single yeast isolation techniques at the Carlsberg Research Laboratory in 1883, resulting in process optimizations in the brewing industry. However, due to fierce competition within the beer market and the increasing demand for novel beer styles, diversification is becoming increasingly important. Moreover, the emergence of craft brewing has influenced big breweries to rediscover yeast as a significant contributor to a beer's aroma profile and realize that there is still room for innovation in the fermentation process. Here, we aim at giving a brief overview on how currently used S. cerevisiae brewing yeasts emerged and comment on the rationale behind replacing them with novel strains. We will present potential sources of yeasts that have not only been used in beer brewing before, including natural sources and sources linked to human activity but also an overlooked source, such as yeast culture collections. We will briefly comment on common yeast isolation techniques and finally touch on additional challenges for the brewing industry in replacing their current brewer's yeasts.
Collapse
Affiliation(s)
| | | | | | | | - Jochen Förster
- Carlsberg Research Laboratory, Carlsberg A/S, Copenhagen, Denmark
| |
Collapse
|
14
|
Molinet J, Cubillos FA. Wild Yeast for the Future: Exploring the Use of Wild Strains for Wine and Beer Fermentation. Front Genet 2020; 11:589350. [PMID: 33240332 PMCID: PMC7667258 DOI: 10.3389/fgene.2020.589350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023] Open
Abstract
The continuous usage of single Saccharomyces cerevisiae strains as starter cultures in fermentation led to the domestication and propagation of highly specialized strains in fermentation, resulting in the standardization of wines and beers. In this way, hundreds of commercial strains have been developed to satisfy producers’ and consumers’ demands, including beverages with high/low ethanol content, nutrient deprivation tolerance, diverse aromatic profiles, and fast fermentations. However, studies in the last 20 years have demonstrated that the genetic and phenotypic diversity in commercial S. cerevisiae strains is low. This lack of diversity limits alternative wines and beers, stressing the need to explore new genetic resources to differentiate each fermentation product. In this sense, wild strains harbor a higher than thought genetic and phenotypic diversity, representing a feasible option to generate new fermentative beverages. Numerous recent studies have identified alleles in wild strains that could favor phenotypes of interest, such as nitrogen consumption, tolerance to cold or high temperatures, and the production of metabolites, such as glycerol and aroma compounds. Here, we review the recent literature on the use of commercial and wild S. cerevisiae strains in wine and beer fermentation, providing molecular evidence of the advantages of using wild strains for the generation of improved genetic stocks for the industry according to the product style.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBIO), Santiago, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBIO), Santiago, Chile
| |
Collapse
|
15
|
Morard M, Ibáñez C, Adam AC, Querol A, Barrio E, Toft C. Genomic instability in an interspecific hybrid of the genus Saccharomyces: a matter of adaptability. Microb Genom 2020; 6:mgen000448. [PMID: 33021926 PMCID: PMC7660253 DOI: 10.1099/mgen.0.000448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022] Open
Abstract
Ancient events of polyploidy have been linked to huge evolutionary leaps in the tree of life, while increasing evidence shows that newly established polyploids have adaptive advantages in certain stress conditions compared to their relatives with a lower ploidy. The genus Saccharomyces is a good model for studying such events, as it contains an ancient whole-genome duplication event and many sequenced Saccharomyces cerevisiae are, evolutionary speaking, newly formed polyploids. Many polyploids have unstable genomes and go through large genome erosions; however, it is still unknown what mechanisms govern this reduction. Here, we sequenced and studied the natural S. cerevisiae × Saccharomyces kudriavzevii hybrid strain, VIN7, which was selected for its commercial use in the wine industry. The most singular observation is that its nuclear genome is highly unstable and drastic genomic alterations were observed in only a few generations, leading to a widening of its phenotypic landscape. To better understand what leads to the loss of certain chromosomes in the VIN7 cell population, we looked for genetic features of the genes, such as physical interactions, complex formation, epistatic interactions and stress responding genes, which could have beneficial or detrimental effects on the cell if their dosage is altered by a chromosomal copy number variation. The three chromosomes lost in our VIN7 population showed different patterns, indicating that multiple factors could explain the mechanisms behind the chromosomal loss. However, one common feature for two out of the three chromosomes is that they are among the smallest ones. We hypothesize that small chromosomes alter their copy numbers more frequently as a low number of genes is affected, meaning that it is a by-product of genome instability, which might be the chief driving force of the adaptability and genome architecture of this hybrid.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Clara Ibáñez
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Ana C. Adam
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Program for Systems Biology of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), UV-CSIC, Valencia, Spain
| |
Collapse
|
16
|
Lairón-Peris M, Pérez-Través L, Muñiz-Calvo S, Guillamón JM, Heras JM, Barrio E, Querol A. Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions. Front Bioeng Biotechnol 2020; 8:129. [PMID: 32195231 PMCID: PMC7062649 DOI: 10.3389/fbioe.2020.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. Genomic sequencing analysis showed that the artificial spore-derivative hybrid is an allotriploid, which is very common among natural hybrids. Its genome contains one genome copy from the S. uvarum parental genome and two heterozygous copies of the S. cerevisiae parental genome, with the exception of a monosomic S. cerevisiae chromosome III, where the sex-determining MAT locus is located. This genome constitution supports that the original hybrid from which the spore was obtained likely originated by a rare-mating event between a mating-competent S. cerevisiae diploid cell and either a diploid or a haploid S. uvarum cell of the opposite mating type. Moreover, a comparative transcriptomic analysis reveals that each spore-derivative hybrid subgenome is regulating different processes during the fermentation, in which each parental species has demonstrated to be more efficient. Therefore, interactions between the two subgenomes in the spore-derivative hybrid improve those differential species-specific adaptations to the wine fermentation environments, already present in the parental species.
Collapse
Affiliation(s)
- María Lairón-Peris
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Laura Pérez-Través
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Sara Muñiz-Calvo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | | | - Eladio Barrio
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| |
Collapse
|
17
|
Morard M, Benavent-Gil Y, Ortiz-Tovar G, Pérez-Través L, Querol A, Toft C, Barrio E. Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity. Microb Genom 2020; 6:e000333. [PMID: 32065577 PMCID: PMC7200066 DOI: 10.1099/mgen.0.000333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 01/03/2023] Open
Abstract
Interspecific hybridization has played an important role in the evolution of eukaryotic organisms by favouring genetic interchange between divergent lineages to generate new phenotypic diversity involved in the adaptation to new environments. This way, hybridization between Saccharomyces species, involving the fusion between their metabolic capabilities, is a recurrent adaptive strategy in industrial environments. In the present study, whole-genome sequences of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii were obtained to unveil the mechanisms involved in the origin and evolution of hybrids, as well as the ecological and geographic contexts in which spontaneous hybridization and hybrid persistence take place. Although Saccharomyces species can mate using different mechanisms, we concluded that rare-mating is the most commonly used, but other mechanisms were also observed in specific hybrids. The preponderance of rare-mating was confirmed by performing artificial hybridization experiments. The mechanism used to mate determines the genomic structure of the hybrid and its final evolutionary outcome. The evolution and adaptability of the hybrids are triggered by genomic instability, resulting in a wide diversity of genomic rearrangements. Some of these rearrangements could be adaptive under the stressful conditions of the industrial environment.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Yaiza Benavent-Gil
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Guadalupe Ortiz-Tovar
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Centro de Estudios Vitivinícolas de Baja California, México, CETYS Universidad, Ensenada, Baja California, Mexico
| | - Laura Pérez-Través
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Institute for Integrative and Systems Biology, Universitat de València and CSIC, Paterna, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| |
Collapse
|
18
|
Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology. BEVERAGES 2020. [DOI: 10.3390/beverages6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beer is a fermented beverage with a history as old as human civilization. Ales and lagers are by far the most common beers; however, diversification is becoming increasingly important in the brewing market and the brewers are continuously interested in improving and extending the range of products, especially in the craft brewery sector. Fermentation is one of the widest spaces for innovation in the brewing process. Besides Saccharomyces cerevisiae ale and Saccharomyces pastorianus lager strains conventionally used in macro-breweries, there is an increasing demand for novel yeast starter cultures tailored for producing beer styles with diversified aroma profiles. Recently, four genetic engineering-free approaches expanded the genetic background and the phenotypic biodiversity of brewing yeasts and allowed novel costumed-designed starter cultures to be developed: (1) the research for new performant S. cerevisiae yeasts from fermented foods alternative to beer; (2) the creation of synthetic hybrids between S. cerevisiae and Saccharomyces non-cerevisiae in order to mimic lager yeasts; (3) the exploitation of evolutionary engineering approaches; (4) the usage of non-Saccharomyces yeasts. Here, we summarized the pro and contra of these approaches and provided an overview on the most recent advances on how brewing yeast genome evolved and domestication took place. The resulting correlation maps between genotypes and relevant brewing phenotypes can assist and further improve the search for novel craft beer starter yeasts, enhancing the portfolio of diversified products offered to the final customer.
Collapse
|
19
|
Gallone B, Steensels J, Mertens S, Dzialo MC, Gordon JL, Wauters R, Theßeling FA, Bellinazzo F, Saels V, Herrera-Malaver B, Prahl T, White C, Hutzler M, Meußdoerffer F, Malcorps P, Souffriau B, Daenen L, Baele G, Maere S, Verstrepen KJ. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat Ecol Evol 2019; 3:1562-1575. [PMID: 31636425 DOI: 10.1038/s41559-019-0997-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.
Collapse
Affiliation(s)
- Brigida Gallone
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jan Steensels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Stijn Mertens
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Maria C Dzialo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Jonathan L Gordon
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Ruben Wauters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Florian A Theßeling
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Francesca Bellinazzo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | | | | | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | - Franz Meußdoerffer
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | | | | | | | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium. .,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium. .,Leuven Institute for Beer Research, Leuven, Belgium.
| |
Collapse
|
20
|
Lancaster SM, Payen C, Smukowski Heil C, Dunham MJ. Fitness benefits of loss of heterozygosity in Saccharomyces hybrids. Genome Res 2019; 29:1685-1692. [PMID: 31548357 PMCID: PMC6771408 DOI: 10.1101/gr.245605.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
With two genomes in the same organism, interspecific hybrids have unique fitness opportunities and costs. In both plants and yeasts, wild, pathogenic, and domesticated hybrids may eliminate portions of one parental genome, a phenomenon known as loss of heterozygosity (LOH). Laboratory evolution of hybrid yeast recapitulates these results, with LOH occurring in just a few hundred generations of propagation. In this study, we systematically looked for alleles that are beneficial when lost in order to determine how prevalent this mode of adaptation may be and to determine candidate loci that might underlie the benefits of larger-scale chromosome rearrangements. These aims were accomplished by mating Saccharomyces uvarum with the S. cerevisiae deletion collection to create hybrids such that each nonessential S. cerevisiae allele is deleted. Competitive fitness assays of these pooled, barcoded, hemizygous strains, and accompanying controls, revealed a large number of loci for which LOH is beneficial. We found that the fitness effects of hemizygosity are dependent on the species context, the selective environment, and the species origin of the deleted allele. Further, we found that hybrids have a wider distribution of fitness consequences versus matched S. cerevisiae hemizygous diploids. Our results suggest that LOH can be a successful strategy for adaptation of hybrids to new environments, and we identify candidate loci that drive the chromosomal rearrangements observed in evolution of yeast hybrids.
Collapse
Affiliation(s)
- Samuel M Lancaster
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
21
|
Braun-Galleani S, Ortiz-Merino RA, Wu Q, Xu Y, Wolfe KH. Zygosaccharomyces pseudobailii, another yeast interspecies hybrid that regained fertility by damaging one of its MAT loci. FEMS Yeast Res 2019; 18:5056719. [PMID: 30052970 PMCID: PMC6093378 DOI: 10.1093/femsyr/foy079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022] Open
Abstract
Interspecies hybridization is an important evolutionary mechanism in yeasts. The genus Zygosaccharomyces in particular contains numerous hybrid strains and/or species. Here, we investigated the genome of Zygosaccharomyces strain MT15, an isolate from Maotai-flavor Chinese liquor fermentation. We found that it is an interspecies hybrid and identified it as Zygosaccharomyces pseudobailii. The Z. bailii species complex consists of three species: Z. bailii, which is not a hybrid and whose 10 Mb genome is designated 'A', and two hybrid species Z. parabailii ('AB' genome, 20 Mb) and Z. pseudobailii ('AC' genome, 20 Mb). The A, B and C subgenomes are all approximately 7%-10% different from one another in nucleotide sequence, and are derived from three different parental species. Despite being hybrids, Z. pseudobailii and Z. parabailii are capable of mating and sporulating. We previously showed that Z. parabailii regained fertility when one copy of its MAT locus became broken into two parts, causing the allodiploid hybrid to behave as a haploid gamete. In Z. pseudobailii, we find that a very similar process occurred after hybridization, when a deletion of 1.5 kb inactivated one of the two copies of its MAT locus. The half-sibling species Z. parabailii and Z. pseudobailii therefore went through remarkably parallel but independent steps to regain fertility after they were formed by separate interspecies hybridizations.
Collapse
Affiliation(s)
| | - Raúl A Ortiz-Merino
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Qun Wu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kenneth H Wolfe
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
22
|
Aroma production and fermentation performance of S. cerevisiae × S. kudriavzevii natural hybrids under cold oenological conditions. Int J Food Microbiol 2019; 297:51-59. [DOI: 10.1016/j.ijfoodmicro.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/04/2019] [Accepted: 03/10/2019] [Indexed: 12/30/2022]
|
23
|
García-Ríos E, Guillén A, de la Cerda R, Pérez-Través L, Querol A, Guillamón JM. Improving the Cryotolerance of Wine Yeast by Interspecific Hybridization in the Genus Saccharomyces. Front Microbiol 2019; 9:3232. [PMID: 30671041 PMCID: PMC6331415 DOI: 10.3389/fmicb.2018.03232] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/12/2018] [Indexed: 12/02/2022] Open
Abstract
Fermentations carried out at low temperatures (10–15°C) enhance the production and retention of flavor volatiles, but also increase the chances of slowing or arresting the process. Notwithstanding, as Saccharomyces cerevisiae is the main species responsible for alcoholic fermentation, other species of the genus Saccharomyces, such as cryophilic species Saccharomyces eubayanus, Saccharomyces kudriavzevii and Saccharomyces uvarum, are better adapted to low-temperature fermentations during winemaking. In this work, a Saccharomyces cerevisiae × S. uvarum hybrid was constructed to improve the enological features of a wine S. cerevisiae strain at low temperature. Fermentations of white grape musts were performed, and the phenotypic differences between parental and hybrid strains under different temperature conditions were examined. This work demonstrates that hybridization constitutes an effective approach to obtain yeast strains with desirable physiological features, like low-temperature fermentation capacity, which genetically depend on the expression of numerous genes (polygenic character). As this interspecific hybridization approach is not considered a GMO, the genetically improved strains can be quickly transferred to the wine industry.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Alba Guillén
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Roberto de la Cerda
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Laura Pérez-Través
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
24
|
Boonekamp FJ, Dashko S, van den Broek M, Gehrmann T, Daran JM, Daran-Lapujade P. The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Front Genet 2018; 9:504. [PMID: 30505317 PMCID: PMC6250768 DOI: 10.3389/fgene.2018.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/05/2022] Open
Abstract
The ability of the yeast Saccharomyces cerevisiae to convert glucose, even in the presence of oxygen, via glycolysis and the fermentative pathway to ethanol has played an important role in its domestication. Despite the extensive knowledge on these pathways in S. cerevisiae, relatively little is known about their genetic makeup in other industrially relevant Saccharomyces yeast species. In this study we explore the diversity of the glycolytic and fermentative pathways within the Saccharomyces genus using S. cerevisiae, Saccharomyces kudriavzevii, and Saccharomyces eubayanus as paradigms. Sequencing data revealed a highly conserved genetic makeup of the glycolytic and fermentative pathways in the three species in terms of number of paralogous genes. Although promoter regions were less conserved between the three species as compared to coding sequences, binding sites for Rap1, Gcr1 and Abf1, main transcriptional regulators of glycolytic and fermentative genes, were highly conserved. Transcriptome profiling of these three strains grown in aerobic batch cultivation in chemically defined medium with glucose as carbon source, revealed a remarkably similar expression of the glycolytic and fermentative genes across species, and the conserved classification of genes into major and minor paralogs. Furthermore, transplantation of the promoters of major paralogs of S. kudriavzevii and S. eubayanus into S. cerevisiae demonstrated not only the transferability of these promoters, but also the similarity of their strength and response to various environmental stimuli. The relatively low homology of S. kudriavzevii and S. eubayanus promoters to their S. cerevisiae relatives makes them very attractive alternatives for strain construction in S. cerevisiae, thereby expanding the S. cerevisiae molecular toolbox.
Collapse
Affiliation(s)
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
25
|
Lopandic K. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments. Yeast 2018; 35:21-38. [PMID: 29131388 DOI: 10.1002/yea.3294] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ksenija Lopandic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11/3, A-1190, Vienna, Austria
| |
Collapse
|
26
|
Bellon JR, Ford CM, Borneman AR, Chambers PJ. A Novel Approach to Isolating Improved Industrial Interspecific Wine Yeasts Using Chromosomal Mutations as Potential Markers for Increased Fitness. Front Microbiol 2018; 9:1442. [PMID: 30034376 PMCID: PMC6043810 DOI: 10.3389/fmicb.2018.01442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Wine yeast breeding programs utilizing interspecific hybridization deliver cost-effective tools to winemakers looking to differentiate their wines through the development of new wine styles. The addition of a non-Saccharomyces cerevisiae genome to a commercial wine yeast can generate novel phenotypes ranging from wine flavor and aroma diversity to improvements in targeted fermentation traits. In the current study we utilized a novel approach to screen isolates from an evolving population for increased fitness in a S. cerevisiae × S. uvarum interspecific hybrid previously generated to incorporate the targeted phenotype of lower volatile acidity production. Sequential grape-juice fermentations provided a selective environment from which to screen isolates. Chromosomal markers were used in a novel approach to identify isolates with potential increased fitness. A strain with increased fitness relative to its parents was isolated from an early timepoint in the evolving population, thereby minimizing the risk of introducing collateral mutations and potentially undesirable phenotypes. The evolved strain retained the desirable fermentation trait of reduced volatile acidity production, along with other winemaking traits of importance while exhibiting improved fermentation kinetics.
Collapse
Affiliation(s)
- Jennifer R Bellon
- The Australian Wine Research Institute, Adelaide, SA, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher M Ford
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Paul J Chambers
- The Australian Wine Research Institute, Adelaide, SA, Australia
| |
Collapse
|
27
|
Draft Genome Sequence of the Saccharomyces cerevisiae
×
Saccharomyces kudriavzevii HA1836 Interspecies Hybrid Yeast. GENOME ANNOUNCEMENTS 2018; 6:6/20/e00343-18. [PMID: 29773619 PMCID: PMC5958256 DOI: 10.1128/genomea.00343-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae × Saccharomyces kudriavzevii interspecies hybrid yeasts have frequently been isolated from alcoholic fermentation environments. Here, we report the draft genome sequence of the S. cerevisiae × S. kudriavzevii HA1836 strain isolated from grapes from an Austrian vineyard.
Collapse
|
28
|
Ortiz-Tovar G, Pérez-Torrado R, Adam AC, Barrio E, Querol A. A comparison of the performance of natural hybrids Saccharomyces cerevisiae × Saccharomyces kudriavzevii at low temperatures reveals the crucial role of their S. kudriavzevii genomic contribution. Int J Food Microbiol 2018; 274:12-19. [PMID: 29574243 DOI: 10.1016/j.ijfoodmicro.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 11/17/2022]
Abstract
Fermentation performance at low temperature is a common approach to obtain wines with better aroma, and is critical in industrial applications. Natural hybrids S. cerevisiae × S. kudriavzevii, isolated from fermentations in cold-climate European countries, have provided an understanding of the mechanisms of adaptation to grow at low temperature. In this work, we studied the performance of 23 S. cerevisiae × S. kudriavzevii hybrids at low temperature (8, 12 and 24 °C) to characterize their phenotypes. Kinetic parameters and spot tests revealed a different ability to grow at low temperature. Interestingly, the genome content of the S. kudriavzevii in hybrids was moderately correlated with a shorter lag phase, and the genetic origin of hybrids influenced their performance at low temperature (8 °C). The parental expression of cold marker genes (NSR1, GUT2 and GPD1) showed that the relative expression of the S. kudriavzevii alleles was higher than the expression of the S. cerevisiae alleles in hybrids with a better growth at low-temperatures. These results suggest that the genomic contribution of S. kudriavzevii to hybrids is important for improving the fitness of these strains at low temperature.
Collapse
Affiliation(s)
- Guadalupe Ortiz-Tovar
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980 Paterna, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980 Paterna, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| | - Ana Cris Adam
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980 Paterna, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980 Paterna, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980 Paterna, Spain.
| |
Collapse
|
29
|
Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A. On the origins and industrial applications ofSaccharomyces cerevisiae×Saccharomyces kudriavzeviihybrids. Yeast 2017; 35:51-69. [DOI: 10.1002/yea.3283] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
| | - Eladio Barrio
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
- Department of Genetics; University of Valencia; Valencia Spain
| | - Amparo Querol
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| |
Collapse
|
30
|
Mechanism for Restoration of Fertility in Hybrid Zygosaccharomyces rouxii Generated by Interspecies Hybridization. Appl Environ Microbiol 2017; 83:AEM.01187-17. [PMID: 28842546 DOI: 10.1128/aem.01187-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022] Open
Abstract
The mechanism of whole-genome duplication (WGD) in yeast has been intensively studied because it has a large impact on yeast evolution. WGD has shaped the genomic architecture of modern Saccharomyces cerevisiae; however, the mechanism for restoring fertility after interspecies hybridization, which would be involved in the process of WGD, has not been thoroughly elucidated. In this study, we obtained a draft genome sequence of the salt-tolerant yeast Zygosaccharomyces rouxii NBRC110957 and revealed that it is a hybrid lineage of Z. rouxii (allodiploid) with two subgenomes equivalent to NBRC1876. Because this allodiploid yeast can mate with other allodiploid strains and form spores, it can be a good model of restoring fertility after interspecies hybridization. We observed that NBRC110957 and NBRC1876 contain six mating-type-like (MTL) loci. There are no large deletions or deleterious mutations in MTL loci, except for several-base-pair deletions in the X region in certain MTL loci. We also assigned only one mating-type (MAT) locus that exclusively determines mating types from six MTL loci. These results suggest that it is possible to recover mating competence regardless of whether cells lose one MAT locus through random gene loss by mitotically dividing after interspecies hybridization. Moreover, we propose that perturbation of gene expression and substantial breakdown of MAT heterozygosity caused by chromosomal rearrangement at MTL loci play roles in restoring the mating competence of allodiploids. This scenario can provide a mechanism for restoring fertility after interspecies hybridization that is compatible with random gene loss models and suggests genomic plasticity during WGD in yeast.IMPORTANCE A whole-genome duplication occurred in an ancestor of the baker's yeast Saccharomyces cerevisiae The origins of this complex and multifaceted process, which requires intra- or interspecies hybridization followed by dysfunction of one mating-type (MAT) locus to regain mating competence, has not been thoroughly elucidated. In this study, we provide a mechanism for regaining fertility in an interspecies hybrid, Zygosaccharomyces rouxii The draft genome sequence analysis and mating test showed that the Z. rouxii strain used in this study is an intact interspecies hybrid, suggesting that it is possible to recover fertility regardless of whether cells lose one MAT locus.
Collapse
|
31
|
Origone A, del Mónaco S, Ávila J, González Flores M, Rodríguez M, Lopes C. Tolerance to winemaking stress conditions of Patagonian strains ofSaccharomyces eubayanusandSaccharomyces uvarum. J Appl Microbiol 2017; 123:450-463. [DOI: 10.1111/jam.13495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023]
Affiliation(s)
- A.C. Origone
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos; Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue); Neuquén Argentina
| | - S.M. del Mónaco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos; Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue); Neuquén Argentina
- Facultad de Ciencias Médicas; Universidad Nacional del Comahue; Cipolletti Río Negro Argentina
| | - J.R. Ávila
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos; Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue); Neuquén Argentina
| | - M. González Flores
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos; Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue); Neuquén Argentina
| | - M.E. Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos; Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue); Neuquén Argentina
- Facultad de Ciencias Médicas; Universidad Nacional del Comahue; Cipolletti Río Negro Argentina
| | - C.A. Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos; Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue); Neuquén Argentina
- Facultad de Ciencias Agrarias; Universidad Nacional del Comahue; Cinco Saltos Río Negro Argentina
| |
Collapse
|
32
|
Pérez-Torrado R, Barrio E, Querol A. Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids. Crit Rev Food Sci Nutr 2017; 58:1780-1790. [DOI: 10.1080/10408398.2017.1285751] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| |
Collapse
|
33
|
Tronchoni J, García-Ríos E, Guillamón JM, Querol A, Pérez-Torrado R. Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyceskudriavzevii hybrids during low temperature winemaking. F1000Res 2017; 6:679. [PMID: 29067162 PMCID: PMC5635440 DOI: 10.12688/f1000research.11550.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Although Saccharomyces cerevisiae is the most frequently isolated species in wine fermentation, and the most studied species, other species and interspecific hybrids have greatly attracted the interest of researchers in this field in the last few years, given their potential to solve new winemaking industry challenges. S. cerevisiae x S. kudriavzevii hybrids exhibit good fermentative capabilities at low temperatures, and produce wines with smaller alcohol quantities and larger glycerol quantities, which can be very useful to solve challenges in the winemaking industry such as the necessity to enhance the aroma profile. METHODS In this study, we performed a transcriptomic study of S. cerevisiae x S. kudriavzevii hybrids in low temperature winemaking conditions. RESULTS The results revealed that the hybrids have acquired both fermentative abilities and cold adaptation abilities, attributed to S. cerevisiae and S. kudriavzevii parental species, respectively, showcasing their industrially relevant characteristics. For several key genes, we also studied the contribution to gene expression of each of the alleles of S. cerevisiae and S. kudriavzevii in the S. cerevisiae x S. kudriavzevii hybrids. From the results, it is not clear how important the differential expression of the specific parental alleles is to the phenotype of the hybrids. CONCLUSIONS This study shows that the fermentative abilities of S. cerevisiae x S. kudriavzevii hybrids at low temperatures do not seem to result from differential expression of specific parental alleles of the key genes involved in this phenotype.
Collapse
Affiliation(s)
- Jordi Tronchoni
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja-CSIC-Universidad de La Rioja, Logroño, La Rioja, Spain
| | - Estéfani García-Ríos
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Jose Manuel Guillamón
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Amparo Querol
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Roberto Pérez-Torrado
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| |
Collapse
|
34
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
35
|
Karanyicz E, Antunovics Z, Kallai Z, Sipiczki M. Non-introgressive genome chimerisation by malsegregation in autodiploidised allotetraploids during meiosis of Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids. Appl Microbiol Biotechnol 2017; 101:4617-4633. [PMID: 28396924 DOI: 10.1007/s00253-017-8274-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
Saccharomyces strains with chimerical genomes consisting of mosaics of the genomes of different species ("natural hybrids") occur quite frequently among industrial and wine strains. The most widely endorsed hypothesis is that the mosaics are introgressions acquired via hybridisation and repeated backcrosses of the hybrids with one of the parental species. However, the interspecies hybrids are sterile, unable to mate with their parents. Here, we show by analysing synthetic Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids that mosaic (chimeric) genomes can arise without introgressive backcrosses. These species are biologically separated by a double sterility barrier (sterility of allodiploids and F1 sterility of allotetraploids). F1 sterility is due to the diploidisation of the tetraploid meiosis resulting in MAT a /MAT α heterozygosity which suppresses mating in the spores. This barrier can occasionally be broken down by malsegregation of autosyndetically paired chromosomes carrying the MAT loci (loss of MAT heterozygosity). Subsequent malsegregation of additional autosyndetically paired chromosomes and occasional allosyndetic interactions chimerise the hybrid genome. Chromosomes are preferentially lost from the S. kudriavzevii subgenome. The uniparental transmission of the mitochondrial DNA to the hybrids indicates that nucleo-mitochondrial interactions might affect the direction of the genomic changes. We propose the name GARMe (Genome AutoReduction in Meiosis) for this process of genome reduction and chimerisation which involves no introgressive backcrossings. It opens a way to transfer genetic information between species and thus to get one step ahead after hybridisation in the production of yeast strains with beneficial combinations of properties of different species.
Collapse
Affiliation(s)
- Edina Karanyicz
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Antunovics
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Z Kallai
- Research Institute for Viticulture and Oenology, Tokaj, Hungary
| | - M Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
36
|
Peris D, Moriarty RV, Alexander WG, Baker E, Sylvester K, Sardi M, Langdon QK, Libkind D, Wang QM, Bai FY, Leducq JB, Charron G, Landry CR, Sampaio JP, Gonçalves P, Hyma KE, Fay JC, Sato TK, Hittinger CT. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:78. [PMID: 28360936 PMCID: PMC5369230 DOI: 10.1186/s13068-017-0763-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/18/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. RESULTS To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. CONCLUSIONS This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Ryan V. Moriarty
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - William G. Alexander
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - EmilyClare Baker
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Kayla Sylvester
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Maria Sardi
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC (CONICET-UNComahue), Centro Regional Universitario Bariloche, Bariloche, Río Negro Argentina
| | - Qi-Ming Wang
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC Canada
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - Guillaume Charron
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - Christian R. Landry
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Katie E. Hyma
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Justin C. Fay
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
37
|
Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species. Mol Phylogenet Evol 2017; 108:49-60. [PMID: 28189617 DOI: 10.1016/j.ympev.2017.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 11/23/2022]
Abstract
Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments.
Collapse
|
38
|
Alonso-Del-Real J, Lairón-Peris M, Barrio E, Querol A. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition. Front Microbiol 2017; 8:150. [PMID: 28223968 PMCID: PMC5293751 DOI: 10.3389/fmicb.2017.00150] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation performance improvements and the final wines contained less ethanol and higher amounts of glycerol. Finally, it is interesting to note that in co-inoculated fermentations, wine strains of S. cerevisiae and S. uvarum performed better than non-wine strains of the same species.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC Valencia, Spain
| | - María Lairón-Peris
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSICValencia, Spain; Departament de Genètica, Universitat de ValènciaValència, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSICValencia, Spain; Departament de Genètica, Universitat de ValènciaValència, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC Valencia, Spain
| |
Collapse
|
39
|
Goold HD, Kroukamp H, Williams TC, Paulsen IT, Varela C, Pretorius IS. Yeast's balancing act between ethanol and glycerol production in low-alcohol wines. Microb Biotechnol 2017; 10:264-278. [PMID: 28083938 PMCID: PMC5328816 DOI: 10.1111/1751-7915.12488] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
Alcohol is fundamental to the character of wine, yet too much can put a wine off‐balance. A wine is regarded to be well balanced if its alcoholic strength, acidity, sweetness, fruitiness and tannin structure complement each other so that no single component dominates on the palate. Balancing a wine's positive fruit flavours with the optimal absolute and relative concentration of alcohol can be surprisingly difficult. Over the past three decades, consumers have increasingly demanded wine with richer and riper fruit flavour profiles. In response, grape and wine producers have extended harvest times to increase grape maturity and enhance the degree of fruit flavours and colour intensity. However, a higher degree of grape maturity results in increased grape sugar concentration, which in turn results in wines with elevated alcohol concentration. On average, the alcohol strength of red wines from many warm wine‐producing regions globally rose by about 2% (v/v) during this period. Notwithstanding that many of these ‘full‐bodied, fruit‐forward’ wines are well balanced and sought after, there is also a significant consumer market segment that seeks lighter styles with less ethanol‐derived ‘hotness’ on the palate. Consumer‐focussed wine producers are developing and implementing several strategies in the vineyard and winery to reduce the alcohol concentration in wines produced from well‐ripened grapes. In this context, Saccharomyces cerevisiae wine yeasts have proven to be a pivotal strategy to reduce ethanol formation during the fermentation of grape musts with high sugar content (> 240 g l−1). One of the approaches has been to develop ‘low‐alcohol’ yeast strains which work by redirecting their carbon metabolism away from ethanol production to other metabolites, such as glycerol. This article reviews the current challenges of producing glycerol at the expense of ethanol. It also casts new light on yeast strain development programmes which, bolstered by synthetic genomics, could potentially overcome these challenges.
Collapse
Affiliation(s)
- Hugh D Goold
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,New South Wales Department of Primary Industries, Locked Bag 21, Orange, NSW, 2800, Australia
| | - Heinrich Kroukamp
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas C Williams
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Adelaide, SA, 5064, Australia
| | - Isak S Pretorius
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
40
|
Lopandic K, Pfliegler WP, Tiefenbrunner W, Gangl H, Sipiczki M, Sterflinger K. Genotypic and phenotypic evolution of yeast interspecies hybrids during high-sugar fermentation. Appl Microbiol Biotechnol 2016; 100:6331-6343. [PMID: 27075738 DOI: 10.1007/s00253-016-7481-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 01/22/2023]
Abstract
The yeasts of the Saccharomyces genus exhibit a low pre-zygotic barrier and readily form interspecies hybrids. Following the hybridization event, the parental genomes undergo gross chromosomal rearrangements and genome modifications that may markedly influence the metabolic activity of descendants. In the present study, two artificially constructed hybrid yeasts (Saccharomyces cerevisiae x Saccharomyces uvarum and S. cerevisiae x Saccharomyces kudriavzevii) were used in order to evaluate the influence of high-sugar wine fermentation on the evolution of their genotypic and phenotypic properties. It was demonstrated that the extent of genomic modifications differs among the hybrids and their progeny, but that stress should not always be a generator of large genomic disturbances. The major genome changes were observed after meiosis in the F1 segregants in the form of the loss of different non-S. cerevisiae chromosomes. Under fermentation condition, each spore clone from a tetrad developed a mixed population characterized by different genotypic and phenotypic properties. The S. cerevisiae x S. uvarum spore clones revealed large modifications at the sequence level of the S. cerevisiae sub-genome, and some of the clones lost a few additional S. cerevisiae and S. uvarum chromosomes. The S. cerevisiae x S. kudriavzevii segregants were subjected to consecutive loss of the S. kudriavzevii markers and chromosomes. Both the hybrid types showed increased ethanol and glycerol production as well as better sugar consumption than their parental strains. The hybrid segregants responded differently to stress and a correlation was found between the observed genotypes and fermentation performances.
Collapse
Affiliation(s)
- Ksenija Lopandic
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, A-1190, Vienna, Austria.
| | - Walter P Pfliegler
- Department of Biotechnology and Microbiology, University of Debrecen & Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences (MTA), Egyetem tér 1, Debrecen, H-4032, Hungary
| | | | - Helmut Gangl
- Bundesamt für Weinbau, Gölbeszeile 1, A-7000, Eisenstadt, Austria
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Katja Sterflinger
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, A-1190, Vienna, Austria
| |
Collapse
|
41
|
Genomics and the making of yeast biodiversity. Curr Opin Genet Dev 2015; 35:100-9. [PMID: 26649756 DOI: 10.1016/j.gde.2015.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies.
Collapse
|
42
|
Alexander WG, Peris D, Pfannenstiel BT, Opulente DA, Kuang M, Hittinger CT. Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces. Fungal Genet Biol 2015; 89:10-17. [PMID: 26555931 DOI: 10.1016/j.fgb.2015.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 01/19/2023]
Abstract
Saccharomyces interspecies hybrids are critical biocatalysts in the fermented beverage industry, including in the production of lager beers, Belgian ales, ciders, and cold-fermented wines. Current methods for making synthetic interspecies hybrids are cumbersome and/or require genome modifications. We have developed a simple, robust, and efficient method for generating allotetraploid strains of prototrophic Saccharomyces without sporulation or nuclear genome manipulation. S. cerevisiae×S. eubayanus, S. cerevisiae×S. kudriavzevii, and S. cerevisiae×S. uvarum designer hybrid strains were created as synthetic lager, Belgian, and cider strains, respectively. The ploidy and hybrid nature of the strains were confirmed using flow cytometry and PCR-RFLP analysis, respectively. This method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids to be used for basic research in evolutionary genetics and genome stability.
Collapse
Affiliation(s)
- William G Alexander
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brandon T Pfannenstiel
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Meihua Kuang
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, United States; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, United States; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
43
|
Gamero A, Belloch C, Querol A. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions. Microb Cell Fact 2015; 14:128. [PMID: 26336982 PMCID: PMC4558966 DOI: 10.1186/s12934-015-0314-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/10/2015] [Indexed: 11/12/2022] Open
Abstract
Background Aroma is one of the most important attributes defining wine quality in which yeasts play a crucial role, synthesizing aromatic compounds or releasing odourless conjugates. A present-day trend in winemaking consists of lowering fermentation temperature to achieve higher aroma production and retention. S.cerevisiae × S.kudriavzevii hybrids seem to have inherited beneficial traits from their parental species, like fermenting efficiently at low temperature or producing higher amounts of certain aromatic compounds. In this study, allelic composition and gene expression of the genes related to aroma synthesis in two genetically and phenotypically different S.cerevisiae × S.kudriavzevii hybrids, Lalvin W27 and VIN7, were compared and related to aroma production in microvinifications at 12 and 28 °C. In addition, the contribution of the allele coming from each parental to the overall expression was explored by RT-PCR. Results The results indicated large differences in allele composition, gene expression and the contribution of each parental to the overall expression at the fermentation temperatures tested. Results obtained by RT-PCR showed that in ARO1 and ATF2 genes the S.kudriavzevii allele was more expressed than that of S.cerevisiae particularly at 12 °C. Conclusions This study revealed high differences regarding allele composition and gene expression in two S.cerevisiae × S.kudriavzevii hybrids, which may have led to different aroma profiles in winemaking conditions. The contribution of the alleles coming from each parental to the overall expression has proved to differently influence aroma synthesis. Besides, the quantitative contribution to the overall gene expression of the alleles coming from one parental strain or the other was clearly determined by the fermentation temperature for some genes.
Collapse
Affiliation(s)
- Amparo Gamero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Avda/Agustín Escardino Benlloch, 7, 46980, Paterna, Valencia, Spain.
| | - Carmela Belloch
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Avda/Agustín Escardino Benlloch, 7, 46980, Paterna, Valencia, Spain.
| | - Amparo Querol
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Avda/Agustín Escardino Benlloch, 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
44
|
Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, Adams M, Libkind D, Hittinger CT. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts. Mol Biol Evol 2015; 32:2818-31. [PMID: 26269586 PMCID: PMC4651232 DOI: 10.1093/molbev/msv168] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.
Collapse
Affiliation(s)
- EmilyClare Baker
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison
| | - Bing Wang
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison
| | - Nicolas Bellora
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| | - David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison
| | | | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison
| |
Collapse
|
45
|
Peris D, Pérez-Través L, Belloch C, Querol A. Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiae × S. kudriavzevii hybrids. Food Microbiol 2015; 53:31-40. [PMID: 26678127 DOI: 10.1016/j.fm.2015.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022]
Abstract
Wine fermentation and innovation have focused mostly on Saccharomyces cerevisiae strains. However, recent studies have shown that other Saccharomyces species can also be involved in wine fermentation or are useful for wine bouquet, such as Saccharomyces uvarum and Saccharomyces paradoxus. Many interspecies hybrids have also been isolated from wine fermentation, such as S. cerevisiae × Saccharomyces kudriavzevii hybrids. In this study, we explored the genetic diversity and fermentation performance of Spanish S. kudriavzevii strains, which we compared to other S. kudriavzevii strains. Fermentations of red and white grape musts were performed, and the phenotypic differences between Spanish S. kudriavzevii strains under different temperature conditions were examined. An ANOVA analysis suggested striking similarity between strains for glycerol and ethanol production, although a high diversity of aromatic profiles among fermentations was found. The sources of these phenotypic differences are not well understood and require further investigation. Although the Spanish S. kudriavzevii strains showed desirable properties, particularly must fermentations, the quality of their wines was no better than those produced with a commercial S. cerevisiae. We suggest hybridization or directed evolution as methods to improve and innovate wine.
Collapse
Affiliation(s)
- D Peris
- Biodiversity and Evolution of Eukaryotic Microorganisms, "Cavanilles" Institute of Biodiversity and Evolution, University of Valencia, Valencia, Spain; Current address: Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - L Pérez-Través
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - C Belloch
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - A Querol
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
46
|
Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid. Int J Food Microbiol 2015; 204:101-10. [DOI: 10.1016/j.ijfoodmicro.2015.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/10/2015] [Indexed: 11/22/2022]
|
47
|
Pérez-Través L, Lopes CA, González R, Barrio E, Querol A. Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity. Int J Food Microbiol 2015; 205:30-40. [DOI: 10.1016/j.ijfoodmicro.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/14/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
|
48
|
da Silva T, Albertin W, Dillmann C, Bely M, la Guerche S, Giraud C, Huet S, Sicard D, Masneuf-Pomarede I, de Vienne D, Marullo P. Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions. PLoS One 2015; 10:e0123834. [PMID: 25946464 PMCID: PMC4422614 DOI: 10.1371/journal.pone.0123834] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/21/2015] [Indexed: 11/18/2022] Open
Abstract
Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait--kinetics parameters, life-history traits, enological parameters and aromas -, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making.
Collapse
Affiliation(s)
- Telma da Silva
- INRA, UMR 0320 / UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Warren Albertin
- ENSCBP—Bordeaux INP, Pessac, France
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Villenave d'Ornon, France
| | - Christine Dillmann
- Université Paris-Sud, UMR 0320 / UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Marina Bely
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Villenave d'Ornon, France
| | | | | | | | - Delphine Sicard
- Université Paris-Sud, UMR 0320 / UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Isabelle Masneuf-Pomarede
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Villenave d'Ornon, France
- Bordeaux Sciences Agro, Gradignan, France
| | - Dominique de Vienne
- Université Paris-Sud, UMR 0320 / UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Philippe Marullo
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Villenave d'Ornon, France
- Biolaffort, Bordeaux, France
- * E-mail:
| |
Collapse
|
49
|
High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces. Genetics 2014; 198:859-66. [PMID: 25209147 DOI: 10.1534/genetics.114.170118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus.
Collapse
|
50
|
Tronchoni J, Medina V, Guillamón JM, Querol A, Pérez-Torrado R. Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations. BMC Genomics 2014; 15:432. [PMID: 24898014 PMCID: PMC4058008 DOI: 10.1186/1471-2164-15-432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/27/2014] [Indexed: 11/24/2022] Open
Abstract
Background Comparative transcriptomics and functional studies of different Saccharomyces species have opened up the possibility of studying and understanding new yeast abilities. This is the case of yeast adaptation to stress, in particular the cold stress response, which is especially relevant for the food industry. Since the species Saccharomyces kudriavzevii is adapted to grow at low temperatures, it has been suggested that it contains physiological adaptations that allow it to rapidly and efficiently acclimatise after cold shock. Results In this work, we aimed to provide new insights into the molecular basis determining this better cold adaptation of S. kudriavzevii strains. To this end, we have compared S. cerevisiae and S. kudriavzevii transcriptome after yeast adapted to cold shock. The results showed that both yeast mainly activated the genes related to translation machinery by comparing 12°C with 28°C, but the S. kudriavzevii response was stronger, showing an increased expression of dozens of genes involved in protein synthesis. This suggested enhanced translation efficiency at low temperatures, which was confirmed when we observed increased resistance to translation inhibitor paromomycin. Finally, 35S-methionine incorporation assays confirmed the increased S. kudriavzevii translation rate after cold shock. Conclusions This work confirms that S. kudriavzevii is able to grow at low temperatures, an interesting ability for different industrial applications. We propose that this adaptation is based on its enhanced ability to initiate a quick, efficient translation of crucial genes in cold adaptation among others, a mechanism that has been suggested for other microorganisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-432) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Pérez-Torrado
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Burjassot, P,O, Box 73E-46100 Valencia, Spain.
| |
Collapse
|