1
|
El-Sabeh A, Mlesnita AM, Munteanu IT, Honceriu I, Kallabi F, Boiangiu RS, Mihasan M. Characterisation of the Paenarthrobacter nicotinovorans ATCC 49919 genome and identification of several strains harbouring a highly syntenic nic-genes cluster. BMC Genomics 2023; 24:536. [PMID: 37697273 PMCID: PMC10494377 DOI: 10.1186/s12864-023-09644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Paenarthrobacter nicotinovorans ATCC 49919 uses the pyridine-pathway to degrade nicotine and could provide a renewable source of precursors from nicotine-containing waste as well as a model for studying the molecular evolution of catabolic pathways and their spread by horizontal gene transfer via soil bacterial plasmids. RESULTS In the present study, the strain was sequenced using the Illumina NovaSeq 6000 and Oxford Nanopore Technology (ONT) MinION platforms. Following hybrid assembly with Unicycler, the complete genome sequence of the strain was obtained and used as reference for whole-genome-based phylogeny analyses. A total of 64 related genomes were analysed; five Arthrobacter strains showed both digital DNA-DNA hybridization and average nucleotide identity values over the species threshold when compared to P. nicotinovorans ATCC 49919. Five plasmids and two contigs belonging to Arthrobacter and Paenarthrobacter strains were shown to be virtually identical with the pAO1 plasmid of Paenarthrobacter nicotinovorans ATCC 49919. Moreover, a highly syntenic nic-genes cluster was identified on five plasmids, one contig and three chromosomes. The nic-genes cluster contains two major locally collinear blocks that appear to form a putative catabolic transposon. Although the origins of the nic-genes cluster and the putative transposon still elude us, we hypothesise here that the ATCC 49919 strain most probably evolved from Paenarthrobacter sp. YJN-D or a very closely related strain by acquiring the pAO1 megaplasmid and the nicotine degradation pathway. CONCLUSIONS The data presented here offers another snapshot into the evolution of plasmids harboured by Arthrobacter and Paenarthrobacter species and their role in the spread of metabolic traits by horizontal gene transfer among related soil bacteria.
Collapse
Affiliation(s)
- Amada El-Sabeh
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | | | | | - Iasmina Honceriu
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Fakhri Kallabi
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Marius Mihasan
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania.
| |
Collapse
|
2
|
Involvement of Versatile Bacteria Belonging to the Genus Arthrobacter in Milk and Dairy Products. Foods 2023; 12:foods12061270. [PMID: 36981196 PMCID: PMC10048301 DOI: 10.3390/foods12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Milk is naturally a rich source of many essential nutrients; therefore, it is quite a suitable medium for bacterial growth and serves as a reservoir for bacterial contamination. The genus Arthrobacter is a food-related bacterial group commonly present as a contaminant in milk and dairy products as primary and secondary microflora. Arthrobacter bacteria frequently demonstrate the nutritional versatility to degrade different compounds even in extreme environments. As a result of their metabolic diversity, Arthrobacter species have long been of interest to scientists for application in various industry and biotechnology sectors. In the dairy industry, strains from the Arthrobacter genus are part of the microflora of raw milk known as an indicator of hygiene quality. Although they cause spoilage, they are also regarded as important strains responsible for producing fermented milk products, especially cheeses. Several Arthrobacter spp. have reported their significance in the development of cheese color and flavor. Furthermore, based on the data obtained from previous studies about its thermostability, and thermoacidophilic and thermoresistant properties, the genus Arthrobacter promisingly provides advantages for use as a potential producer of β-galactosidases to fulfill commercial requirements as its enzymes allow dairy products to be treated under mild conditions. In light of these beneficial aspects derived from Arthrobacter spp. including pigmentation, flavor formation, and enzyme production, this bacterial genus is potentially important for the dairy industry.
Collapse
|
3
|
Nosalova L, Willner J, Fornalczyk A, Saternus M, Sedlakova-Kadukova J, Piknova M, Pristas P. Diversity, heavy metals, and antibiotic resistance in culturable heterotrophic bacteria isolated from former lead–silver–zinc mine heap in Tarnowskie Gory (Silesia, Poland). Arch Microbiol 2023; 205:26. [DOI: 10.1007/s00203-022-03369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
|
4
|
Biodegradation of Crystalline and Nonaqueous Phase Liquid-Dissolved ATRAZINE by Arthrobacter sp. ST11 with Cd2+ Resistance. Catalysts 2022. [DOI: 10.3390/catal12121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A newly isolated cadmium (Cd)-resistant bacterial strain from herbicides-polluted soil in China could use atrazine as the sole carbon, nitrogen, and energy source for growth in a mineral salt medium (MSM). Based on 16S rRNA gene sequence analysis and physiochemical tests, the bacterium was identified as Arthrobacter sp. and named ST11. The biodegradation of atrazine by ST11 was investigated in experiments, with the compound present either as crystals or dissolved in di(2-ethylhexyl) phthalate (DEHP) as a non-aqueous phase liquid (NAPL). After 48 h, ST11 consumed 68% of the crystalline atrazine in MSM. After being dissolved in DEHP, the degradation ratio of atrazine was reduced to 55% under the same conditions. Obviously, the NAPL-dissolved atrazine has lower bioavailability than the crystalline atrazine. Cd2+ at concentrations of 0.05–1.5 mmol/L either had no effect (<0.3 mmol/L), slight effects (0.5–1.0 mmol/L), or significantly (1.5 mmol/L) inhibited the growth of ST11 in Luria-Bertani medium. Correspondingly, in the whole concentration range (0.05–1.5 mmol/L), Cd2+ promoted ST11 to degrade atrazine, whether crystalline or dissolved in DEHP. Refusal to adsorb Cd2+ may be the main mechanism of high Cd resistance in ST11 cells. These results may provide valuable insights for the microbial treatment of arable soil co-polluted by atrazine and Cd.
Collapse
|
5
|
Tan F, Cheng J, Zhang Y, Jiang X, Liu Y. Genomics analysis and degradation characteristics of lignin by Streptomyces thermocarboxydus strain DF3-3. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:78. [PMID: 35831866 PMCID: PMC9277890 DOI: 10.1186/s13068-022-02175-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/01/2022] [Indexed: 11/27/2022]
Abstract
Background Lignocellulose is an important raw material for biomass-to-energy conversion, and it exhibits a complex but inefficient degradation mechanism. Microbial degradation is promising due to its environmental adaptability and biochemical versatility, but the pathways used by microbes for lignin degradation have not been fully studied. Degradation intermediates and complex metabolic pathways require more study. Results A novel actinomycete DF3-3, with the potential for lignin degradation, was screened and isolated. After morphological and molecular identification, DF3-3 was determined to be Streptomyces thermocarboxydus. The degradation of alkali lignin reached 31% within 15 days. Manganese peroxidase and laccase demonstrated their greatest activity levels, 1821.66 UL−1 and 1265.58 UL−1, respectively, on the sixth day. The highest lignin peroxidase activity was 480.33 UL−1 on the fourth day. A total of 19 lignin degradation intermediates were identified by gas chromatography–mass spectrometry (GC–MS), including 9 aromatic compounds. Genome sequencing and annotation identified 107 lignin-degrading enzyme-coding genes containing three core enzymatic systems for lignin depolymerization: laccases, peroxidases and manganese peroxidase. In total, 7 lignin metabolic pathways were predicted. Conclusions Streptomyces thermocarboxydus strain DF3-3 has good lignin degradation ability. Degradation products and genomics analyses of DF3-3 show that it has a relatively complete lignin degradation pathway, including the β-ketoadipate pathway and peripheral reactions, gentisate pathway, anthranilate pathway, homogentisic pathway, and catabolic pathway for resorcinol. Two other pathways, the phenylacetate–CoA pathway and the 2,3-dihydroxyphenylpropionic acid pathway, are predicted based on genome data alone. This study provides the basis for future characterization of potential biotransformation enzyme systems for biomass energy conversion. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02175-1.
Collapse
|
6
|
Impact of Probiotic Geotrichum candidum QAUGC01 on Health, Productivity, and Gut Microbial Diversity of Dairy Cattle. Curr Microbiol 2022; 79:376. [DOI: 10.1007/s00284-022-03074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
7
|
Simpson BS, Jaunay EL, Ghetia M, Nguyen L, Bade R, White JM, Gerber C. Methcathinone in wastewater: Drug of choice, or artefact? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155696. [PMID: 35525340 DOI: 10.1016/j.scitotenv.2022.155696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Methcathinone is a prevalent Novel Psychoactive Substance (NPS) used illicitly in some countries. Routine analysis of wastewater sampled from catchments in South Australia has shown a consistent low-level presence of the compound, inconsistent with NPS use. This raised the question was the occurrence due to regular use as a drug of choice or was it an artefact being produced from other sources in the sewer system? NPS consumption is generally sporadic and would therefore point to the origin of methcathinone in wastewater being due to in-sewer oxidation of its legal precursor, pseudoephedrine. The present study tested this hypothesis by comparing the levels of pseudoephedrine and methcathinone in wastewater samples collected bimonthly from 8 catchment sites in South Australia. Laboratory experiments exposing pseudoephedrine to common household oxidizing agents (hypochlorite and percarbonate) were also performed and the production of methcathinone was demonstrated and monitored. The results of this study showed that the level of pseudoephedrine and methcathinone measured in wastewater followed a similar pattern. However, there were periods when the levels of each compound diverged. Laboratory experiments showed that when exposed to various oxidizing agents, pseudoephedrine is oxidised to non-stoichiometric quantities of methcathinone. Although the use of methcathinone as a drug of choice remains possible, the results of this study indicate that the low and persistent level of methcathinone found in wastewater may arise in part from the oxidation of pseudoephedrine in the sewer system.
Collapse
Affiliation(s)
- Bradley S Simpson
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5001, South Australia, Australia.
| | - Emma L Jaunay
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5001, South Australia, Australia
| | - Maulik Ghetia
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5001, South Australia, Australia
| | - Lynn Nguyen
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5001, South Australia, Australia
| | - Richard Bade
- University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba 4102, Queensland, Australia
| | - Jason M White
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5001, South Australia, Australia
| | - Cobus Gerber
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5001, South Australia, Australia
| |
Collapse
|
8
|
You Z, Deng J, Liu J, Fu J, Xiong H, Luo W, Xiong J. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer ( Cervus albirostris). PeerJ 2022; 10:e13753. [PMID: 35873913 PMCID: PMC9302429 DOI: 10.7717/peerj.13753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/28/2022] [Indexed: 01/17/2023] Open
Abstract
The gut microbiota has key physiological functions in host adaptation, although little is known about the seasonal changes in the composition and diversity of the gut microbiota in deer. In this study, seasonal variations (grassy and withering season) in the gut microbiota of white-lipped deer (Cervus albirostris), which lives in alpine environments, were explored through 16S rRNA high-throughput sequencing based on sixteen fecal samples collected from Gansu Qilian Mountain National Nature Reserve in China. At the phylum level, Firmicutes, Bacteroidota, and Actinobacteriota dominated the grassy season, while Firmicutes, Proteobacteria, and Actinobacteriota dominated the withering season. At the genus level, Carnobacterium dominated the grassy season, while Arthrobacter and Acinetobacter dominated the withering season. Alpha diversity results (Shannon: P = 0.01, ACE: P = 0.00, Chao1: P = 0.00) indicated that there was a difference in the diversity and richness of the gut microbiota between the two seasons, with higher diversity in the grassy season than in the withering season. Beta diversity results further indicated that there was a significant difference in the community structure between the two seasons (P = 0.001). In summary, the composition, diversity, and community structure of the gut microbiota showed significant seasonal variations, which could be explained by variations in the seasonal food availability, composition, diversity, and nutrition due to phenological alternations. The results of this study indicate that the gut microbiota can adapt to changes in the environment and provide the scientific basis for health assessment of white-lipped deer.
Collapse
Affiliation(s)
- Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Jing Deng
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Jialin Liu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Junhua Fu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Huan Xiong
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Jianli Xiong
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| |
Collapse
|
9
|
Gushgari-Doyle S, Lui LM, Nielsen TN, Wu X, Malana RG, Hendrickson AJ, Carion H, Poole FL, Adams MWW, Arkin AP, Chakraborty R. Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions. ISME COMMUNICATIONS 2022; 2:32. [PMID: 37938300 PMCID: PMC9723602 DOI: 10.1038/s43705-022-00113-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 07/04/2023]
Abstract
Niche environmental conditions influence both the structure and function of microbial communities and the cellular function of individual strains. The terrestrial subsurface is a dynamic and diverse environment that exhibits specific biogeochemical conditions associated with depth, resulting in distinct environmental niches. Here, we present the characterization of seven distinct strains belonging to the genus Arthrobacter isolated from varying depths of a single sediment core and associated groundwater from an adjacent well. We characterized genotype and phenotype of each isolate to connect specific cellular functions and metabolisms to ecotype. Arthrobacter isolates from each ecotype demonstrated functional and genomic capacities specific to their biogeochemical conditions of origin, including laboratory-demonstrated characterization of salinity tolerance and optimal pH, and genes for utilization of carbohydrates and other carbon substrates. Analysis of the Arthrobacter pangenome revealed that it is notably open with a volatile accessory genome compared to previous pangenome studies on other genera, suggesting a high potential for adaptability to environmental niches.
Collapse
Affiliation(s)
| | - Lauren M Lui
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Xiaoqin Wu
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ria G Malana
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Heloise Carion
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California, Berkeley, CA, USA
| | | |
Collapse
|
10
|
Ya H, Jiang B, Xing Y, Zhang T, Lv M, Wang X. Recent advances on ecological effects of microplastics on soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149338. [PMID: 34375233 DOI: 10.1016/j.scitotenv.2021.149338] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
The mass production and wide application of plastics and their derivatives have led to the release of a large number of discarded plastic products into the natural environment, where they continue to accumulate due to their low recycling rate and long durability. These large pieces of plastic will gradually break into microplastics (<5 mm), which are highly persistent organic pollutants and attract worldwide attention due to their small particle size and potential threats to the ecosystem. Compared with the aquatic system, terrestrial systems such as soils, as sinks for microplastics, are more susceptible to plastic pollution. In this article, we comprehensively summarized the occurrence and sources of microplastics in terrestrial soil, and reviewed the eco-toxicological effects of microplastics in soil ecosystems, in terms of physical and chemical properties of soil, soil nutrient cycling, soil flora and fauna. The influence of microplastics on soil microbial community, and particularly the microbial community on the surface of microplastics, were examined in detail. The compound effects of microplastics and other pollutants, e.g., heavy metals and antibiotics, were addressed. Future challenges of research on microplastics include development of new techniques and standardization for the extraction and qualitative and quantitative analysis of microplastics in soils, toxic effects of microplastics at microbial or even molecular levels, the contribution of microplastics to antibiotic resistance genes migration, and unraveling microorganisms for the degradation of microplastics. This work provides as a better understanding of the occurrence, distribution and potential ecological risks of microplastics in terrestrial soil ecosystems.
Collapse
Affiliation(s)
- Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
11
|
Panikov NS. Genome-Scale Reconstruction of Microbial Dynamic Phenotype: Successes and Challenges. Microorganisms 2021; 9:2352. [PMID: 34835477 PMCID: PMC8621822 DOI: 10.3390/microorganisms9112352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
This review is a part of the SI 'Genome-Scale Modeling of Microorganisms in the Real World'. The goal of GEM is the accurate prediction of the phenotype from its respective genotype under specified environmental conditions. This review focuses on the dynamic phenotype; prediction of the real-life behaviors of microorganisms, such as cell proliferation, dormancy, and mortality; balanced and unbalanced growth; steady-state and transient processes; primary and secondary metabolism; stress responses; etc. Constraint-based metabolic reconstructions were successfully started two decades ago as FBA, followed by more advanced models, but this review starts from the earlier nongenomic predecessors to show that some GEMs inherited the outdated biokinetic frameworks compromising their performances. The most essential deficiencies are: (i) an inadequate account of environmental conditions, such as various degrees of nutrients limitation and other factors shaping phenotypes; (ii) a failure to simulate the adaptive changes of MMCC (MacroMolecular Cell Composition) in response to the fluctuating environment; (iii) the misinterpretation of the SGR (Specific Growth Rate) as either a fixed constant parameter of the model or independent factor affecting the conditional expression of macromolecules; (iv) neglecting stress resistance as an important objective function; and (v) inefficient experimental verification of GEM against simple growth (constant MMCC and SGR) data. Finally, we propose several ways to improve GEMs, such as replacing the outdated Monod equation with the SCM (Synthetic Chemostat Model) that establishes the quantitative relationships between primary and secondary metabolism, growth rate and stress resistance, process kinetics, and cell composition.
Collapse
Affiliation(s)
- Nicolai S Panikov
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
12
|
Singh A, Kumar Pandey A, Kumar Dubey S. Biodegradation of isoprene by Arthrobacter sp. strain BHU FT2: Genomics-proteomics enabled novel insights. BIORESOURCE TECHNOLOGY 2021; 340:125634. [PMID: 34325393 DOI: 10.1016/j.biortech.2021.125634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The bacterial degradation of isoprene is important for maintaining its atmospheric concentration in unpolluted environment. It may be possible to use natural isoprene degrading bacteria in engineered systems to eliminate or limit isoprene emissions from various sources. Biodegradation of isoprene by Arthrobacter sp. strain BHU FT2 was investigated. The genome was found to contain 4151545 bp long chromosome having 3747 coding genes, and coded potential isoprene degrading enzymes. The molecular docking of monooxygenases with isoprene displayed a higher binding energy (-4.59 kcal/mol) for WP_015938387.1 monooxygenase. Analysis of the identified monooxygenases with the known isoprene monooxygenases revealed 67% sequence identity of WP_015938387.1 (Locus tag JHV56_10705) monooxygenase of the considered strain with the OPX16961.1 monooxygenase of Gordonia sp. i37 isoprene degrading starin. These results provided a strong evidence for the high isoprene degrading potential of the Arthrobacter sp. BHU FT2 which could be efficiently exploited for isoprene degradation in large scale bio-filtration units.
Collapse
Affiliation(s)
- Abhishek Singh
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Manganese-Oxidizing Antarctic Bacteria (Mn-Oxb) Release Reactive Oxygen Species (ROS) as Secondary Mn(II) Oxidation Mechanisms to Avoid Toxicity. BIOLOGY 2021; 10:biology10101004. [PMID: 34681103 PMCID: PMC8533519 DOI: 10.3390/biology10101004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Manganese (Mn) oxidation is performed through oxidative Mn-oxidizing bacteria (MnOxb) as the main bio-weathering mechanism for Mn(III/IV) deposits during soil formation. However, with an increase in temperature, the respiration rate also increases, producing Reactive Oxygen Species (ROS) as by-products, which are harmful to microbial cells. We hypothesize that bacterial ROS oxidize Mn(II) to Mn(III/IV) as a secondary non-enzymatic temperature-dependent mechanism for cell protection. Fourteen MnOxb were isolated from Antarctic soils under the global warming effect, and peroxidase (PO) activity, ROS, and Mn(III/IV) production were evaluated for 120 h of incubation at 4 °C, 15 °C, and 30 °C. ROS contributions to Mn oxidation were evaluated in Arthrobacter oxydans under antioxidant (Trolox) and ROS-stimulated (menadione) conditions. The Mn(III/IV) concentration increased with temperature and positively correlated with ROS production. ROS scavenging with Trolox depleted the Mn oxidation, and ROS-stimulant increased the Mn precipitation in A. oxydans. Increasing the Mn(II) concentration caused a reduction in the membrane potential and bacterial viability, which resulted in Mn precipitation on the bacteria surface. In conclusion, bacterial ROS production serves as a complementary non-enzymatic temperature-dependent mechanism for Mn(II) oxidation as a response in warming environments.
Collapse
|
14
|
Zargar AN, Kumar A, Sinha A, Kumar M, Skiadas I, Mishra S, Srivastava P. Asphaltene biotransformation for heavy oil upgradation. AMB Express 2021; 11:127. [PMID: 34491455 PMCID: PMC8423941 DOI: 10.1186/s13568-021-01285-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Globally, the reserves of heavy crude oil are seven times more abundant than that of light crude, and yet, they are underutilized because of their high viscosity and density, which is largely due to the presence of large amounts of asphaltenes. Biotransformation of heavy oil asphaltenes into smaller metabolites can be used for reducing their viscosity. Several microorganisms capable of asphaltene biodegradation have been reported but only few have been characterized for its biotransformation. In the present study, a 9-membered microbial consortium was isolated from an oil contaminated soil. About 72% and 75% asphaltene biotransformation was achieved by growing cells at shake flask level and in a 1.5 l bioreactor, respectively. A representative structure of asphaltene was constructed based on LC–MS, 1H-NMR, 13C-NMR, FT-IR, ICPMS and elemental analysis (CHNS) of n-heptane purified asphaltene from Maya crude oil. Biotransformation of asphaltene, as analyzed by performing 1H-NMR, FT-IR and elemental analysis, resulted in 80% decrease in S and N when compared to the control along with incorporation of oxygen in the structure of asphaltene. About 91% decrease in the viscosity of the Maya crude oil was observed after two weeks when oil: aqueous phase ratio was 1:9. The results suggest that the isolated microbial consortium can be used for biological upgradation of heavy crude oil. To our knowledge, this is the first report where a microbial consortium resulted in such high asphaltene biotransformation.
Collapse
|
15
|
Tsagogiannis E, Vandera E, Primikyri A, Asimakoula S, Tzakos AG, Gerothanassis IP, Koukkou AI. Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and In Situ Reaction Monitoring in the NMR Tube. Int J Mol Sci 2021; 22:9647. [PMID: 34502555 PMCID: PMC8431788 DOI: 10.3390/ijms22179647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis-Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg-1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Elpiniki Vandera
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Alexandra Primikyri
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Andreas G. Tzakos
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| |
Collapse
|
16
|
Chuang S, Yang H, Wang X, Xue C, Jiang J, Hong Q. Potential effects of Rhodococcus qingshengii strain djl-6 on the bioremediation of carbendazim-contaminated soil and the assembly of its microbiome. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125496. [PMID: 33667802 DOI: 10.1016/j.jhazmat.2021.125496] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
As a widely used fungicide, the environmental fate of carbendazim and its residues in agricultural products have caused great concern. However, its effects on soil microbial communities are largely unknown. Herein, we used high-throughput sequencing to reveal the effects of high and low dose of carbendazim and its degrading strain, Rhodococcus qingshengii strain djl-6, on the composition, diversity, and interrelationship of soil bacterial and fungal communities in short- and medium-term under laboratory conditions. The results showed that carbendazim exhibited an increased negative impact on bacterial communities and reduced the proportion of dominant fungal phylum Ascomycota during a 14-day incubation period. Only the impacts of low-dose carbendazim (2 mg·kg-1 dry soil) on fungal community were weakened. Network analysis showed that carbendazim increased the connectivity and modularity of microbial co-occurrence networks. Strain djl-6 exhibited good potential for bioremediation of carbendazim-contaminated soils. Moreover, it driven the assembly of potential carbendazim-degrading consortia from indigenous microbial communities; and members of the genera Arthrobacter, Bacillus, Brevundimonas, Lysinibacillus, Massilia, Mycobacterium, Paenibacillus, and Pseudarthrobacter might be participated in the degradation of carbendazim. Taken together, our study provides a relatively comprehensive understanding of the effects of carbendazim and its degrading strain djl-6 on soil microbial communities.
Collapse
Affiliation(s)
- Shaochuang Chuang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxing Yang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Xiang Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Chao Xue
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Hong
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Shen L, Liu Y, Allen MA, Xu B, Wang N, Williams TJ, Wang F, Zhou Y, Liu Q, Cavicchioli R. Linking genomic and physiological characteristics of psychrophilic Arthrobacter to metagenomic data to explain global environmental distribution. MICROBIOME 2021; 9:136. [PMID: 34118971 PMCID: PMC8196931 DOI: 10.1186/s40168-021-01084-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microorganisms drive critical global biogeochemical cycles and dominate the biomass in Earth's expansive cold biosphere. Determining the genomic traits that enable psychrophiles to grow in cold environments informs about their physiology and adaptive responses. However, defining important genomic traits of psychrophiles has proven difficult, with the ability to extrapolate genomic knowledge to environmental relevance proving even more difficult. RESULTS Here we examined the bacterial genus Arthrobacter and, assisted by genome sequences of new Tibetan Plateau isolates, defined a new clade, Group C, that represents isolates from polar and alpine environments. Group C had a superior ability to grow at -1°C and possessed genome G+C content, amino acid composition, predicted protein stability, and functional capacities (e.g., sulfur metabolism and mycothiol biosynthesis) that distinguished it from non-polar or alpine Group A Arthrobacter. Interrogation of nearly 1000 metagenomes identified an over-representation of Group C in Canadian permafrost communities from a simulated spring-thaw experiment, indicative of niche adaptation, and an under-representation of Group A in all polar and alpine samples, indicative of a general response to environmental temperature. CONCLUSION The findings illustrate a capacity to define genomic markers of specific taxa that potentially have value for environmental monitoring of cold environments, including environmental change arising from anthropogenic impact. More broadly, the study illustrates the challenges involved in extrapolating from genomic and physiological data to an environmental setting. Video Abstract.
Collapse
Affiliation(s)
- Liang Shen
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Baiqing Xu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ninglian Wang
- College of Urban and Environmental Science, Northwest University, Xian, 710069, China
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
18
|
Han SR, Kim B, Jang JH, Park H, Oh TJ. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation. BMC Genomics 2021; 22:403. [PMID: 34078272 PMCID: PMC8171050 DOI: 10.1186/s12864-021-07734-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Arthrobacter group is a known set of bacteria from cold regions, the species of which are highly likely to play diverse roles at low temperatures. However, their survival mechanisms in cold regions such as Antarctica are not yet fully understood. In this study, we compared the genomes of 16 strains within the Arthrobacter group, including strain PAMC25564, to identify genomic features that help it to survive in the cold environment. RESULTS Using 16 S rRNA sequence analysis, we found and identified a species of Arthrobacter isolated from cryoconite. We designated it as strain PAMC25564 and elucidated its complete genome sequence. The genome of PAMC25564 is composed of a circular chromosome of 4,170,970 bp with a GC content of 66.74 % and is predicted to include 3,829 genes of which 3,613 are protein coding, 147 are pseudogenes, 15 are rRNA coding, and 51 are tRNA coding. In addition, we provide insight into the redundancy of the genes using comparative genomics and suggest that PAMC25564 has glycogen and trehalose metabolism pathways (biosynthesis and degradation) associated with carbohydrate active enzyme (CAZymes). We also explain how the PAMC26654 produces energy in an extreme environment, wherein it utilizes polysaccharide or carbohydrate degradation as a source of energy. The genetic pattern analysis of CAZymes in cold-adapted bacteria can help to determine how they adapt and survive in such environments. CONCLUSIONS We have characterized the complete Arthrobacter sp. PAMC25564 genome and used comparative analysis to provide insight into the redundancy of its CAZymes for potential cold adaptation. This provides a foundation to understanding how the Arthrobacter strain produces energy in an extreme environment, which is by way of CAZymes, consistent with reports on the use of these specialized enzymes in cold environments. Knowledge of glycogen metabolism and cold adaptation mechanisms in Arthrobacter species may promote in-depth research and subsequent application in low-temperature biotechnology.
Collapse
Affiliation(s)
- So-Ra Han
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, 31460, Asan-si, Chungnam, Republic of Korea
| | - Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, 31460, Asan-si, Chungnam, Republic of Korea
| | - Jong Hwa Jang
- Department of Dental Hygiene, College of Health Science, Dankook University, 119 Dandae-ro, Dongnam-gu, 31116, Cheonan-si, Chungnam, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, 02841, Seoul, Republic of Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, 31460, Asan-si, Chungnam, Republic of Korea. .,Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, 31460, Asan-si, Chungnam, Republic of Korea. .,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, 31460, Asan-si, Chungnam, Republic of Korea.
| |
Collapse
|
19
|
Chauhan PS. Role of various bacterial enzymes in complete depolymerization of lignin: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101498] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Povedano-Priego C, Jroundi F, Lopez-Fernandez M, Sánchez-Castro I, Martin-Sánchez I, Huertas FJ, Merroun ML. Shifts in bentonite bacterial community and mineralogy in response to uranium and glycerol-2-phosphate exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:219-232. [PMID: 31349163 DOI: 10.1016/j.scitotenv.2019.07.228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The multi-barrier deep geological repository system is currently considered as one of the safest option for the disposal of high-level radioactive wastes. Indigenous microorganisms of bentonites may affect the structure and stability of these clays through Fe-containing minerals biotransformation and radionuclides mobilization. The present work aimed to investigate the behavior of bentonite and its bacterial community in the case of a uranium leakage from the waste containers. Hence, bentonite microcosms were amended with uranyl nitrate (U) and glycerol-2-phosphate (G2P) and incubated aerobically for 6 months. Next generation 16S rRNA gene sequencing revealed that the bacterial populations of all treated microcosms were dominated by Actinobacteria and Proteobacteria, accounting for >50% of the community. Additionally, G2P and nitrate had a remarkable effect on the bacterial diversity of bentonites by the enrichment of bacteria involved in the nitrogen and carbon biogeochemical cycles (e.g. Azotobacter). A significant presence of sulfate-reducing bacteria such as Desulfonauticus and Desulfomicrobium were detected in the U-treated microcosms. The actinobacteria Amycolatopsis was enriched in G2P‑uranium amended bentonites. High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy analyses showed the capacity of Amycolatopsis and a bentonite consortium formed by Bradyrhizobium-Rhizobium and Pseudomonas to precipitate U as U phosphate mineral phases, probably due to the phosphatase activity. The different amendments did not affect the mineralogy of the bentonite pointing to a high structural stability. These results would help to predict the impact of microbial processes on the biogeochemical cycles of elements (N and U) within the bentonite barrier under repository relevant conditions and to determine the changes in the microbial community induced by a uranium release.
Collapse
Affiliation(s)
- Cristina Povedano-Priego
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Fadwa Jroundi
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Margarita Lopez-Fernandez
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Iván Sánchez-Castro
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Inés Martin-Sánchez
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - F Javier Huertas
- Instituto Andaluz de Ciencias de la Tierra, CSIC - University of Granada, 18100 Granada, Spain.
| | - Mohamed L Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
21
|
Defining lower limits of biodegradation: atrazine degradation regulated by mass transfer and maintenance demand in Arthrobacter aurescens TC1. ISME JOURNAL 2019; 13:2236-2251. [PMID: 31073212 PMCID: PMC6776027 DOI: 10.1038/s41396-019-0430-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
Abstract
Exploring adaptive strategies by which microorganisms function and survive in low-energy natural environments remains a grand goal of microbiology, and may help address a prime challenge of the 21st century: degradation of man-made chemicals at low concentrations (“micropollutants”). Here we explore physiological adaptation and maintenance energy requirements of a herbicide (atrazine)-degrading microorganism (Arthrobacter aurescens TC1) while concomitantly observing mass transfer limitations directly by compound-specific isotope fractionation analysis. Chemostat-based growth triggered the onset of mass transfer limitation at residual concentrations of 30 μg L−1 of atrazine with a bacterial population doubling time (td) of 14 days, whereas exacerbated energy limitation was induced by retentostat-based near-zero growth (td = 265 days) at 12 ± 3 μg L−1 residual concentration. Retentostat cultivation resulted in (i) complete mass transfer limitation evidenced by the disappearance of isotope fractionation (ε13C = −0.45‰ ± 0.36‰) and (ii) a twofold decrease in maintenance energy requirement compared with chemostat cultivation. Proteomics revealed that retentostat and chemostat cultivation under mass transfer limitation share low protein turnover and expression of stress-related proteins. Mass transfer limitation effectuated slow-down of metabolism in retentostats and a transition from growth phase to maintenance phase indicating a limit of ≈10 μg L−1 for long-term atrazine degradation. Further studies on other ecosystem-relevant microorganisms will substantiate the general applicability of our finding that mass transfer limitation serves as a trigger for physiological adaptation, which subsequently defines a lower limit of biodegradation.
Collapse
|
22
|
Guo X, Xie C, Wang L, Li Q, Wang Y. Biodegradation of persistent environmental pollutants by Arthrobacter sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8429-8443. [PMID: 30706270 DOI: 10.1007/s11356-019-04358-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/23/2019] [Indexed: 05/17/2023]
Abstract
Persistent environmental pollutants are a growing problem around the world. The effective control of the pollutants is of great significance for human health. Some microbes, especially Arthrobacter, can degrade pollutants into nontoxic substances in various ways. Here, we review the biological properties of Arthrobacter adapting to a variety of environmental stresses, including starvation, hypertonic and hypotonic condition, oxidative stress, heavy metal stress, and low-temperature stress. Furthermore, we categorized the Arthrobacter species that can degrade triazines, organophosphorus, alkaloids, benzene, and its derivatives. Metabolic pathways behind the various biodegradation processes are further discussed. This review will be a helpful reference for comprehensive utilization of Arthrobacter species to tackle environmental pollutants.
Collapse
Affiliation(s)
- Xiaohong Guo
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Chengyun Xie
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lijuan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Learman DR, Ahmad Z, Brookshier A, Henson MW, Hewitt V, Lis A, Morrison C, Robinson A, Todaro E, Wologo E, Wynne S, Alm EW, Kourtev PS. Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics. PeerJ 2019; 6:e6258. [PMID: 30671291 PMCID: PMC6336093 DOI: 10.7717/peerj.6258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 11/20/2022] Open
Abstract
A total of 16 different strains of Microbacterium spp. were isolated from contaminated soil and enriched on the carcinogen, hexavalent chromium [Cr(VI)]. The majority of the isolates (11 of the 16) were able to tolerate concentrations (0.1 mM) of cobalt, cadmium, and nickel, in addition to Cr(VI) (0.5–20 mM). Interestingly, these bacteria were also able to tolerate three different antibiotics (ranges: ampicillin 0–16 μg ml−1, chloramphenicol 0–24 μg ml−1, and vancomycin 0–24 μg ml−1). To gain genetic insight into these tolerance pathways, the genomes of these isolates were assembled and annotated. The genomes of these isolates not only have some shared genes (core genome) but also have a large amount of variability. The genomes also contained an annotated Cr(VI) reductase (chrR) that could be related to Cr(VI) reduction. Further, various heavy metal tolerance (e.g., Co/Zn/Cd efflux system) and antibiotic resistance genes were identified, which provide insight into the isolates’ ability to tolerate metals and antibiotics. Overall, these isolates showed a wide range of tolerances to heavy metals and antibiotics and genetic diversity, which was likely required of this population to thrive in a contaminated environment.
Collapse
Affiliation(s)
- Deric R Learman
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Zahra Ahmad
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Allison Brookshier
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Michael W Henson
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Victoria Hewitt
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Amanda Lis
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Cody Morrison
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Autumn Robinson
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Emily Todaro
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Ethan Wologo
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Sydney Wynne
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Elizabeth W Alm
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Peter S Kourtev
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
24
|
Romaniuk K, Golec P, Dziewit L. Insight Into the Diversity and Possible Role of Plasmids in the Adaptation of Psychrotolerant and Metalotolerant Arthrobacter spp. to Extreme Antarctic Environments. Front Microbiol 2018; 9:3144. [PMID: 30619210 PMCID: PMC6305408 DOI: 10.3389/fmicb.2018.03144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Arthrobacter spp. are coryneform Gram-positive aerobic bacteria, belonging to the class Actinobacteria. Representatives of this genus have mainly been isolated from soil, mud, sludge or sewage, and are usually mesophiles. In recent years, the presence of Arthrobacter spp. was also confirmed in various extreme, including permanently cold, environments. In this study, 36 psychrotolerant and metalotolerant Arthrobacter strains isolated from petroleum-contaminated soil from the King George Island (Antarctica), were screened for the presence of plasmids. The identified replicons were thoroughly characterized in order to assess their diversity and role in the adaptation of Arthrobacter spp. to harsh Antarctic conditions. The screening process identified 11 different plasmids, ranging in size from 8.4 to 90.6 kb. A thorough genomic analysis of these replicons detected the presence of numerous genes encoding proteins that potentially perform roles in adaptive processes such as (i) protection against ultraviolet (UV) radiation, (ii) resistance to heavy metals, (iii) transport and metabolism of organic compounds, (iv) sulfur metabolism, and (v) protection against exogenous DNA. Moreover, 10 of the plasmids carry genetic modules enabling conjugal transfer, which may facilitate their spread among bacteria in Antarctic soil. In addition, transposable elements were identified within the analyzed plasmids. Some of these elements carry passenger genes, which suggests that these replicons may be actively changing, and novel genetic modules of adaptive value could be acquired by transposition events. A comparative genomic analysis of plasmids identified in this study and other available Arthrobacter plasmids was performed. This showed only limited similarities between plasmids of Antarctic Arthrobacter strains and replicons of other, mostly mesophilic, isolates. This indicates that the plasmids identified in this study are novel and unique replicons. In addition, a thorough meta-analysis of 247 plasmids of psychrotolerant bacteria was performed, revealing the important role of these replicons in the adaptation of their hosts to extreme environments.
Collapse
Affiliation(s)
- Krzysztof Romaniuk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Tuo X, Gu J, Wang X, Sun Y, Duan M, Sun W, Yin Y, Guo A, Zhang L. Prevalence of quinolone resistance genes, copper resistance genes, and the bacterial communities in a soil-ryegrass system co-polluted with copper and ciprofloxacin. CHEMOSPHERE 2018; 197:643-650. [PMID: 29407828 DOI: 10.1016/j.chemosphere.2018.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
The presence of high concentrations of residual antibiotics and antibiotic resistance genes (ARGs) in soil may pose potential health and environmental risks. This study investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) genes, copper resistance genes (CRGs), and the bacterial communities in a soil-ryegrass pot system co-polluted with copper and ciprofloxacin (CIP; 0, 20, or 80 mg kg-1 dry soil). Compared with the samples on day 0, the total relative abundances of the PMQR genes and mobile genetic elements (MGEs) were reduced significantly by 80-89% in the ryegrass and soil by the cutting stage (after 75 days). The abundances of PMQR genes and MGEs were reduced by 63-81% in soil treated with 20 mg kg-1 CIP compared with the other treatments, but the abundances of CRGs increased by 18-42%. The presence of 80 mg kg-1 CIP affected the microbial community structure in the soil by increasing the abundances of Acidobacteria and Thaumarchaeota, but decreasing those of Firmicutes. Redundancy analysis indicated that the pH and microbial composition were the main factors that affected the variations in PMQR genes, MGEs, and CRGs, where they could explain 42.2% and 33.3% of the variation, respectively. Furthermore, intI2 may play an important role in the transfer of ARGs. We found that 80 mg kg-1 CIP could increase the abundances of ARGs and CRGs in a soil-ryegrass pot system.
Collapse
Affiliation(s)
- Xiaxia Tuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - YiXin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aiyun Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
26
|
Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation. Genomics 2018; 111:356-366. [PMID: 29474825 DOI: 10.1016/j.ygeno.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/16/2018] [Indexed: 11/22/2022]
Abstract
A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3 Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.
Collapse
|
27
|
Dibutyl phthalate alters the metabolic pathways of microbes in black soils. Sci Rep 2018; 8:2605. [PMID: 29422490 PMCID: PMC5805725 DOI: 10.1038/s41598-018-21030-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
Dibutyl phthalate (DBP) is well known as a high-priority pollutant. This study explored the impacts of DBP on the metabolic pathways of microbes in black soils in the short term (20 days). The results showed that the microbial communities were changed in black soils with DBP. In nitrogen cycling, the abundances of the genes were elevated by DBP. DBP contamination facilitated 3'-phosphoadenosine-5'-phosphosulfate (PAPS) formation, and the gene flux of sulfate metabolism was increased. The total abundances of ABC transporters and the gene abundances of the monosaccharide-transporting ATPases MalK and MsmK were increased by DBP. The total abundance of two-component system (TCS) genes and the gene abundances of malate dehydrogenase, histidine kinase and citryl-CoA lyase were increased after DBP contamination. The total abundance of phosphotransferase system (PTS) genes and the gene abundances of phosphotransferase, Crr and BglF were raised by DBP. The increased gene abundances of ABC transporters, TCS and PTS could be the reasons for the acceleration of nitrogen, carbon and sulfate metabolism. The degrading-genes of DBP were increased markedly in soil exposed to DBP. In summary, DBP contamination altered the microbial community and enhanced the gene abundances of the carbon, nitrogen and sulfur metabolism in black soils in the short term.
Collapse
|
28
|
Zhang L, Yue Q, Yang K, Zhao P, Gao B. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: Investigation on pollutants removal and degradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:705-714. [PMID: 28917199 DOI: 10.1016/j.jhazmat.2017.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/02/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
A modified biological aerated filter (BAF) system configured Fe-C micro electrolysis was applied to enhance phosphorus and ciprofloxacin (CIP) removal. A novel sludge ceramic and sintering ferric-carbon ceramic (SFC) were separately packed into a lab-scale BAF and Fe-C micro electrolysis reactor. The BAF and Fe-C micro electrolysis coupled system was operated about 230days. The enhancement of phosphorus and ciprofloxacin removals by Fe-C micro electrolysis, the degradation mechanisms of CIP and the variations of microbial population were investigated. The removal efficiencies of chemical oxygen demand (CODcr), ammonia (NH4-N), total phosphorus (TP) and CIP reached about 95%, 95%, 80% and 85% in the combined process, respectively. Configuring Fe-C micro electrolysis significantly enhanced phosphorus and CIP removal, whereas had no promotion on N removal. Four main degradation pathways were proposed according to the LC-MS analysis. More than 12 degradation products were detected through the treatment of Fe-C micro electrolysis and only 3 biodegraded products with low concentration were identified in BAF effluent. The high-throughput sequencing analysis showed that the microbial community changed a lot under CIP pressure. The relative abundance of Sphingomonadaceae, Xanthomonadaceae, Bradyrhizobium, Helicobacter and Pseudomonas increased with CIP influent. This study provides a promising process in CIP wastewater treatment.
Collapse
Affiliation(s)
- Longlong Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| | - Kunlun Yang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Pin Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
29
|
Qu Y, Ma Q, Liu Z, Wang W, Tang H, Zhou J, Xu P. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain. Mol Microbiol 2017; 106:905-918. [PMID: 28963777 DOI: 10.1111/mmi.13852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 01/13/2023]
Abstract
Indole, an important signaling molecule as well as a typical N-heterocyclic aromatic pollutant, is widespread in nature. However, the biotransformation mechanisms of indole are still poorly studied. Here, we sought to unlock the genetic determinants of indole biotransformation in strain Cupriavidus sp. SHE based on genomics, proteomics and functional studies. A total of 177 proteins were notably altered (118 up- and 59 downregulated) in cells grown in indole mineral salt medium when compared with that in sodium citrate medium. RT-qPCR and gene knockout assays demonstrated that an indole oxygenase gene cluster was responsible for the indole upstream metabolism. A functional indole oxygenase, termed IndA, was identified in the cluster, and its catalytic efficiency was higher than those of previously reported indole oxidation enzymes. Furthermore, the indole downstream metabolism was found to proceed via the atypical CoA-thioester pathway rather than conventional gentisate and salicylate pathways. This unusual pathway was catalyzed by a conserved 2-aminobenzoyl-CoA gene cluster, among which the 2-aminobenzoyl-CoA ligase initiated anthranilate transformation. This study unveils the genetic determinants of indole biotransformation and will provide new insights into our understanding of indole biodegradation in natural environments and its functional studies.
Collapse
Affiliation(s)
- Yuanyuan Qu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Qiao Ma
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ziyan Liu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jiti Zhou
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
30
|
New Genome Sequence of an Echinaceapurpurea Endophyte, Arthrobacter sp. Strain EpSL27, Able To Inhibit Human-Opportunistic Pathogens. GENOME ANNOUNCEMENTS 2017. [PMID: 28642378 PMCID: PMC5481584 DOI: 10.1128/genomea.00565-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules.
Collapse
|
31
|
Kaliniene L, Šimoliūnas E, Truncaitė L, Zajančkauskaitė A, Nainys J, Kaupinis A, Valius M, Meškys R. Molecular Analysis of Arthrobacter Myovirus vB_ArtM-ArV1: We Blame It on the Tail. J Virol 2017; 91:e00023-17. [PMID: 28122988 PMCID: PMC5375659 DOI: 10.1128/jvi.00023-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 11/20/2022] Open
Abstract
This is the first report on a myophage that infects Arthrobacter A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order CaudoviralesIMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such "chimeric" myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus Arthrobacter.
Collapse
Affiliation(s)
- Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Aurelija Zajančkauskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Juozas Nainys
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
32
|
Kanyó I, Molnár LV. Procaryotic species and subspecies delineation using average nucleotide identity and gene order conservation. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Insights into microbial diversity in wastewater treatment systems: How far have we come? Biotechnol Adv 2016; 34:790-802. [DOI: 10.1016/j.biotechadv.2016.04.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/15/2016] [Accepted: 04/07/2016] [Indexed: 11/16/2022]
|
34
|
Abstract
The omnipresence of Arthrobacter species in polluted and toxic soils indicates their great potential in environmental biotechnologies, but practical applications of these bacteria are scarce mainly due to the availability of useful genetic engineering tools. Although many fully sequenced Arthrobacter genomes have been deposited in GenBank, little is known about the biology of their plasmids, especially the core functions: replication and partition. In this study the available Arthrobacter plasmid sequences were analyzed in order to identify their putative replication origin. At least the oris from the cryptic plasmids pXZ10142, pCG1, and pBL1 appear to work in this genus. Based on ParA homolog sequences, the Arthrobacter specific plasmids were classified into 4 clades. Iteron-like sequences were identified on most of the plasmids, indicating the position of the putative Arthrobacter specific oris. Although attempts were made to identify the core gene set required for plasmid replication in this genus, it was not possible. The plasmid proteomes showed a rather low similarity.
Collapse
|
35
|
Lin H, Jin D, Freitag TE, Sun W, Yu Q, Fu J, Ma J. A compositional shift in the soil microbiome induced by tetracycline, sulfamonomethoxine and ciprofloxacin entering a plant-soil system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:440-448. [PMID: 26952272 DOI: 10.1016/j.envpol.2016.02.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Antibiotics entering the soil likely disturb the complex regulatory network of the soil microbiome, which is closely associated with soil quality and ecological function. This study investigated the effects of tetracycline (TC), sulfamonomethoxine (SMM), ciprofloxacin (CIP) and their combination (AM) on the bacterial community in a soil-microbe-plant system and identified the main bacterial responders. Antibiotic effects on the soil microbiome depended on antibiotic type and exposure time. TC resulted in an acute but more rapidly declining effect on soil microbiome while CIP and SMM led to a delayed antibiotic effect. The soil exposed to AM presented a highly similar bacterial structure to that exposed to TC rather than to SMM and CIP. TC, SMM and CIP had their own predominantly impacted taxonomic groups that include both resistance and sensitive bacteria. The antibiotic sensitive responders predominantly distributed within the phylum Proteobacteria. The potential bacteria resistant to each antibiotic exhibited phyla preference to some extent, particularly those resistant to TC. CIP and SMM resistance in soil was increased with exposure time while TC resistance gave the opposite result. Overall, the work extended the understanding of antibiotic effects on soil microbiome after introduced into the soil during greenhouse vegetable cultivation.
Collapse
Affiliation(s)
- Hui Lin
- The Institute of Environmental Resource and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Danfeng Jin
- The Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, PR China
| | - Thomas E Freitag
- The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland, United Kingdom
| | - Wanchun Sun
- The Institute of Environmental Resource and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Qiaogang Yu
- The Institute of Environmental Resource and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jianrong Fu
- The Institute of Environmental Resource and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Junwei Ma
- The Institute of Environmental Resource and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| |
Collapse
|
36
|
Complete Genome Sequence of Arthrobacter sp. ATCC 21022, a Host for Bacteriophage Discovery. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00168-16. [PMID: 27013048 PMCID: PMC4807237 DOI: 10.1128/genomea.00168-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the complete genome sequence of Arthrobacter sp. ATCC 21022, a strain maintained by ATCC and a commonly used host for bacteriophage isolation and genomic analysis. The strain is prophage-free and CRISPR-free but codes for two predicted restriction-modification systems.
Collapse
|
37
|
Abstract
The survival capacity of microorganisms in a contaminated environment is limited by the concentration and/or toxicity of the pollutant. Through evolutionary processes, some bacteria have developed or acquired mechanisms to cope with the deleterious effects of toxic compounds, a phenomenon known as tolerance. Common mechanisms of tolerance include the extrusion of contaminants to the outer media and, when concentrations of pollutants are low, the degradation of the toxic compound. For both of these approaches, plasmids that encode genes for the degradation of contaminants such as toluene, naphthalene, phenol, nitrobenzene, and triazine or are involved in tolerance toward organic solvents and heavy metals, play an important role in the evolution and dissemination of these catabolic pathways and efflux pumps. Environmental plasmids are often conjugative and can transfer their genes between different strains; furthermore, many catabolic or efflux pump genes are often associated with transposable elements, making them one of the major players in bacterial evolution. In this review, we will briefly describe catabolic and tolerance plasmids and advances in the knowledge and biotechnological applications of these plasmids.
Collapse
|
38
|
Wang W, Cao J, Yang F, Wang X, Zheng S, Sharshov K, Li L. High-throughput sequencing reveals the core gut microbiome of Bar-headed goose (Anser indicus) in different wintering areas in Tibet. Microbiologyopen 2016; 5:287-95. [PMID: 26842811 PMCID: PMC4831473 DOI: 10.1002/mbo3.327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Elucidating the spatial dynamic and core gut microbiome related to wild bar‐headed goose is of crucial importance for probiotics development that may meet the demands of bar‐headed goose artificial breeding industries and accelerate the domestication of this species. However, the core microbial communities in the wild bar‐headed geese remain totally unknown. Here, for the first time, we present a comprehensive survey of bar‐headed geese gut microbial communities by Illumina high‐throughput sequencing technology using nine individuals from three distinct wintering locations in Tibet. A total of 236,676 sequences were analyzed, and 607 OTUs were identified. We show that the gut microbial communities of bar‐headed geese have representatives of 14 phyla and are dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The additive abundance of these four most dominant phyla was above 96% across all the samples. At the genus level, the sequences represented 150 genera. A set of 19 genera were present in all samples and considered as core gut microbiome. The top seven most abundant core genera were distributed in that four dominant phyla. Among them, four genera (Lactococcus, Bacillus, Solibacillus, and Streptococcus) belonged to Firmicutes, while for other three phyla, each containing one genus, such as Proteobacteria (genus Pseudomonas), Actinobacteria (genus Arthrobacter), and Bacteroidetes (genus Bacteroides). This broad survey represents the most in‐depth assessment, to date, of the gut microbes that associated with bar‐headed geese. These data create a baseline for future bar‐headed goose microbiology research, and make an original contribution to probiotics development for bar‐headed goose artificial breeding industries.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610000, China
| | - Jian Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,University of the Chinese Academy of Sciences, Beijing, 100101,, China
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| | - Xuelian Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| | - Sisi Zheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,University of the Chinese Academy of Sciences, Beijing, 100101,, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| | - Laixing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| |
Collapse
|
39
|
Kameshwar AKS, Qin W. Recent Developments in Using Advanced Sequencing Technologies for the Genomic Studies of Lignin and Cellulose Degrading Microorganisms. Int J Biol Sci 2016; 12:156-71. [PMID: 26884714 PMCID: PMC4737673 DOI: 10.7150/ijbs.13537] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/03/2015] [Indexed: 01/23/2023] Open
Abstract
Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, α-proteobacteria and β-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation.
Collapse
Affiliation(s)
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
40
|
Henson MW, Santo Domingo JW, Kourtev PS, Jensen RV, Dunn JA, Learman DR. Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment. PeerJ 2015; 3:e1395. [PMID: 26587353 PMCID: PMC4647564 DOI: 10.7717/peerj.1395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/19/2015] [Indexed: 01/04/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] is a soluble carcinogen that has caused widespread contamination of soil and water in many industrial nations. Bacteria have the potential to aid remediation as certain strains can catalyze the reduction of Cr(VI) to insoluble and less toxic Cr(III). Here, we examine Cr(VI) reducing Microbacterium spp. (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) isolated from contaminated sediment (Seymore, Indiana) and show varying chromate responses despite the isolates' phylogenetic similarity (i.e., identical 16S rRNA gene sequences). Detailed analysis identified differences based on genomic metabolic potential, growth and general metabolic capabilities, and capacity to resist and reduce Cr(VI). Taken together, the discrepancies between the isolates demonstrate the complexity inter-strain variation can have on microbial physiology and related biogeochemical processes.
Collapse
Affiliation(s)
- Michael W Henson
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Jorge W Santo Domingo
- National Risk Management Research Laboratory, Environmental Protection Agency , Cincinnati, OH , USA
| | - Peter S Kourtev
- Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech) , Blacksburg, VA , United States
| | - James A Dunn
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Deric R Learman
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| |
Collapse
|
41
|
Sagarkar S, Bhardwaj P, Storck V, Devers-Lamrani M, Martin-Laurent F, Kapley A. s-triazine degrading bacterial isolate Arthrobacter sp. AK-YN10, a candidate for bioaugmentation of atrazine contaminated soil. Appl Microbiol Biotechnol 2015; 100:903-13. [PMID: 26403923 DOI: 10.1007/s00253-015-6975-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/20/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
The Arthrobacter sp. strain AK-YN10 is an s-triazine pesticide degrading bacterium isolated from a sugarcane field in Central India with history of repeated atrazine use. AK-YN10 was shown to degrade 99 % of atrazine in 30 h from media supplemented with 1000 mg L(-1) of the herbicide. Draft genome sequencing revealed similarity to pAO1, TC1, and TC2 catabolic plasmids of the Arthrobacter taxon. Plasmid profiling analyses revealed the presence of four catabolic plasmids. The trzN, atzB, and atzC atrazine-degrading genes were located on a plasmid of approximately 113 kb.The flagellar operon found in the AK-YN10 draft genome suggests motility, an interesting trait for a bioremediation agent, and was homologous to that of Arthrobacter chlorophenolicus. The multiple s-triazines degradation property of this isolate makes it a good candidate for bioremediation of soils contaminated by s-triazine pesticides.
Collapse
Affiliation(s)
- Sneha Sagarkar
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Pooja Bhardwaj
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Veronika Storck
- INRA, UMR 1347 Agroécologie, 17 rue Sully, B.P. 86510, 21065, Dijon Cedex, France
| | | | | | - Atya Kapley
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
42
|
Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation. Appl Environ Microbiol 2015; 81:7720-9. [PMID: 26319870 DOI: 10.1128/aem.02145-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/22/2015] [Indexed: 01/25/2023] Open
Abstract
Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases.
Collapse
|
43
|
Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Sci Rep 2015; 5:8642. [PMID: 25721465 PMCID: PMC4342571 DOI: 10.1038/srep08642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/23/2015] [Indexed: 01/06/2023] Open
Abstract
Arthrobacter is one of the most prevalent genera of nicotine-degrading bacteria; however, studies of nicotine degradation in Arthrobacter species remain at the plasmid level (plasmid pAO1). Here, we report the bioinformatic analysis of a nicotine-degrading Arthrobacter aurescens M2012083, and show that the moeB and mogA genes that are essential for nicotine degradation in Arthrobacter are absent from plasmid pAO1. Homologues of all the nicotine degradation-related genes of plasmid pAO1 were found to be located on a 68,622-bp DNA segment (nic segment-1) in the M2012083 genome, showing 98.1% nucleotide acid sequence identity to the 69,252-bp nic segment of plasmid pAO1. However, the rest sequence of plasmid pAO1 other than the nic segment shows no significant similarity to the genome sequence of strain M2012083. Taken together, our data suggest that the nicotine degradation-related genes of strain M2012083 are located on the chromosome or a plasmid other than pAO1. Based on the genomic sequence comparison of strain M2012083 and six other Arthrobacter strains, we have identified 17 σ(70) transcription factors reported to be involved in stress responses and 109 genes involved in environmental adaptability of strain M2012083. These results reveal the molecular basis of nicotine degradation and survival capacities of Arthrobacter species.
Collapse
|
44
|
Degradation of residual lincomycin in fermentation dregs by yeast strain S9 identified as Galactomyces geotrichum. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0971-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43. Appl Environ Microbiol 2014; 80:7266-74. [PMID: 25239889 DOI: 10.1128/aem.02342-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/11/2014] [Indexed: 11/20/2022] Open
Abstract
A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule.
Collapse
|
46
|
Crystal structure analysis of EstA from Arthrobacter sp. Rue61a--an insight into catalytic promiscuity. FEBS Lett 2014; 588:1154-60. [PMID: 24613918 DOI: 10.1016/j.febslet.2014.02.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/11/2014] [Accepted: 02/15/2014] [Indexed: 12/22/2022]
Abstract
In this article we analyze the reasons for catalytic promiscuity of a type VIII esterase with β-lactamase fold and the ability to cleave β-lactams. We compared the structure of this enzyme to those of an esterase of the same type without any lactamase ability, an esterase with moderate lactamase ability, and a class C β-lactamase with similar fold. Our results show that for these enzymes, the difference in the substrate specificity is sterically driven.
Collapse
|
47
|
Thierbach S, Bui N, Zapp J, Chhabra SR, Kappl R, Fetzner S. Substrate-assisted O2 activation in a cofactor-independent dioxygenase. ACTA ACUST UNITED AC 2014; 21:217-25. [PMID: 24388758 DOI: 10.1016/j.chembiol.2013.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
In contrast to the majority of O2-activating enzymes, which depend on an organic cofactor or a metal ion for catalysis, a particular group of structurally unrelated oxygenases is functional without any cofactor. In this study, we characterized the mechanism of O2 activation in the reaction pathway of a cofactor-independent dioxygenase with an α/β-hydrolase fold, which catalyzes the oxygenolytic cleavage of 2-alkyl-3-hydroxy-4(1H)-quinolones. Chemical analysis and electron paramagnetic resonance spectroscopic data revealed that O2 activation in the enzyme's active site is substrate-assisted, relying on single electron transfer from the bound substrate anion to O2 to form a radical pair, which recombines to a C2-peroxide intermediate. Thus, an oxygenase can function without a cofactor, if the organic substrate itself, after activation to a (carb)anion by an active-site base, is intrinsically reactive toward molecular oxygen.
Collapse
Affiliation(s)
- Sven Thierbach
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Nguyen Bui
- Department of Biophysics, School of Medicine, Saarland University, Clinical Center, Building 76, 66421 Homburg, Germany
| | - Josef Zapp
- Pharmaceutical Biology, Saarland University, Campus, Building C2, 66123 Saarbrücken, Germany
| | - Siri Ram Chhabra
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Reinhard Kappl
- Department of Biophysics, School of Medicine, Saarland University, Clinical Center, Building 76, 66421 Homburg, Germany
| | - Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany.
| |
Collapse
|
48
|
Genome Sequence of the Polyphosphate-Accumulating Organism Arthrobacter sp. Strain PAO19 Isolated from Maize Rhizosphere Soil. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00566-13. [PMID: 23908294 PMCID: PMC3731848 DOI: 10.1128/genomea.00566-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arthrobacter sp. strain PAO19 is a polyphosphate-accumulating organism isolated from maize rhizosphere soil. Here we report its genome sequence, which may shed light on its role in phosphate removal from water bodies. To our knowledge, this is the first genome announcement of a polyphosphate-accumulating strain of the genus Arthrobacter.
Collapse
|
49
|
The PaaX-type repressor MeqR2 of Arthrobacter sp. strain Rue61a, involved in the regulation of quinaldine catabolism, binds to its own promoter and to catabolic promoters and specifically responds to anthraniloyl coenzyme A. J Bacteriol 2012; 195:1068-80. [PMID: 23275246 DOI: 10.1128/jb.01547-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genes coding for quinaldine catabolism in Arthrobacter sp. strain Rue61a are clustered on the linear plasmid pAL1 in two upper pathway operons (meqABC and meqDEF) coding for quinaldine conversion to anthranilate and a lower pathway operon encoding anthranilate degradation via coenzyme A (CoA) thioester intermediates. The meqR2 gene, located immediately downstream of the catabolic genes, codes for a PaaX-type transcriptional repressor. MeqR2, purified as recombinant fusion protein, forms a dimer in solution and shows specific and cooperative binding to promoter DNA in vitro. DNA fragments recognized by MeqR2 contained a highly conserved palindromic motif, 5'-TGACGNNCGTcA-3', which is located at positions -35 to -24 of the two promoters that control the upper pathway operons, at positions +4 to +15 of the promoter of the lower pathway genes and at positions +53 to +64 of the meqR2 promoter. Disruption of the palindrome abolished MeqR2 binding. The dissociation constants (K(D)) of MeqR2-DNA complexes as deduced from electrophoretic mobility shift assays were very similar for the four promoters tested (23 nM to 28 nM). Anthraniloyl-CoA was identified as the specific effector of MeqR2, which impairs MeqR2-DNA complex formation in vitro. A binding stoichiometry of one effector molecule per MeqR2 monomer and a K(D) of 22 nM were determined for the effector-protein complex by isothermal titration calorimetry (ITC). Quantitative reverse transcriptase PCR analyses suggested that MeqR2 is a potent regulator of the meqDEF operon; however, additional regulatory systems have a major impact on transcriptional control of the catabolic operons and of meqR2.
Collapse
|