1
|
Zang Y, Xu C, Yu L, Ma L, Xuan L, Yan S, Zhang Y, Cao Y, Li X, Si Z, Deng J, Zhang T, Hu Y. GHCU, a Molecular Chaperone, Regulates Leaf Curling by Modulating the Distribution of KNGH1 in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402816. [PMID: 38666376 PMCID: PMC11234424 DOI: 10.1002/advs.202402816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Indexed: 07/11/2024]
Abstract
Leaf shape is considered to be one of the most significant agronomic traits in crop breeding. However, the molecular basis underlying leaf morphogenesis in cotton is still largely unknown. In this study, through genetic mapping and molecular investigation using a natural cotton mutant cu with leaves curling upward, the causal gene GHCU is successfully identified as the key regulator of leaf flattening. Knockout of GHCU or its homolog in cotton and tobacco using CRISPR results in abnormal leaf shape. It is further discovered that GHCU facilitates the transport of the HD protein KNOTTED1-like (KNGH1) from the adaxial to the abaxial domain. Loss of GHCU function restricts KNGH1 to the adaxial epidermal region, leading to lower auxin response levels in the adaxial boundary compared to the abaxial. This spatial asymmetry in auxin distribution produces the upward-curled leaf phenotype of the cu mutant. By analysis of single-cell RNA sequencing and spatiotemporal transcriptomic data, auxin biosynthesis genes are confirmed to be expressed asymmetrically in the adaxial-abaxial epidermal cells. Overall, these findings suggest that GHCU plays a crucial role in the regulation of leaf flattening through facilitating cell-to-cell trafficking of KNGH1 and hence influencing the auxin response level.
Collapse
Affiliation(s)
- Yihao Zang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Chenyu Xu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Lishan Yu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Longen Ma
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Yayao Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Xiaoran Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Jieqiong Deng
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| |
Collapse
|
2
|
Khidirov MT, Ernazarova DK, Rafieva FU, Ernazarova ZA, Toshpulatov AK, Umarov RF, Kholova MD, Oripova BB, Kudratova MK, Gapparov BM, Khidirova MM, Komilov DJ, Turaev OS, Udall JA, Yu JZ, Kushanov FN. Genomic and Cytogenetic Analysis of Synthetic Polyploids between Diploid and Tetraploid Cotton ( Gossypium) Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:4184. [PMID: 38140511 PMCID: PMC10748080 DOI: 10.3390/plants12244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber source in the world. The genetic potential of cotton can be successfully and efficiently exploited by identifying and solving the complex fundamental problems of systematics, evolution, and phylogeny, based on interspecific hybridization of cotton. This study describes the results of interspecific hybridization of G. herbaceum L. (A1-genome) and G. mustelinum Miers ex Watt (AD4-genome) species, obtaining fertile hybrids through synthetic polyploidization of otherwise sterile triploid forms with colchicine (C22H25NO6) treatment. The fertile F1C hybrids were produced from five different cross combinations: (1) G. herbaceum subsp. frutescens × G. mustelinum; (2) G. herbaceum subsp. pseudoarboreum × G. mustelinum; (3) G. herbaceum subsp. pseudoarboreum f. harga × G. mustelinum; (4) G. herbaceum subsp. africanum × G. mustelinum; (5) G. herbaceum subsp. euherbaceum (variety A-833) × G. mustelinum. Cytogenetic analysis discovered normal conjugation of bivalent chromosomes in addition to univalent, open, and closed ring-shaped quadrivalent chromosomes at the stage of metaphase I in the F1C and F2C hybrids. The setting of hybrid bolls obtained as a result of these crosses ranged from 13.8-92.2%, the fertility of seeds in hybrid bolls from 9.7-16.3%, and the pollen viability rates from 36.6-63.8%. Two transgressive plants with long fiber of 35.1-37.0 mm and one plant with extra-long fiber of 39.1-41.0 mm were identified in the F2C progeny of G. herbaceum subsp. frutescens × G. mustelinum cross. Phylogenetic analysis with 72 SSR markers that detect genomic changes showed that tetraploid hybrids derived from the G. herbaceum × G. mustelinum were closer to the species G. mustelinum. The G. herbaceum subsp. frutescens was closer to the cultivated form, and its subsp. africanum was closer to the wild form. New knowledge of the interspecific hybridization and synthetic polyploidization was developed for understanding the genetic mechanisms of the evolution of tetraploid cotton during speciation. The synthetic polyploids of cotton obtained in this study would provide beneficial genes for developing new cotton varieties of the G. hirsutum species, with high-quality cotton fiber and strong tolerance to biotic or abiotic stress. In particular, the introduction of these polyploids to conventional and molecular breeding can serve as a bridge of transferring valuable genes related to high-quality fiber and stress tolerance from different cotton species to the new cultivars.
Collapse
Affiliation(s)
- Mukhammad T. Khidirov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
| | - Feruza U. Rafieva
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Ziraatkhan A. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Abdulqahhor Kh. Toshpulatov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Ramziddin F. Umarov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Madina D. Kholova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Barno B. Oripova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Mukhlisa K. Kudratova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Bunyod M. Gapparov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | | | - Doniyor J. Komilov
- Department of Biology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan;
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
| | - Joshua A. Udall
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA;
| | - John Z. Yu
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA;
| | - Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
- Department of Biology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan;
| |
Collapse
|
3
|
Darmanov MM, Makamov AK, Ayubov MS, Khusenov NN, Buriev ZT, Shermatov SE, Salakhutdinov IB, Ubaydullaeva KA, Norbekov JK, Kholmuradova MM, Narmatov SE, Normamatov IS, Abdurakhmonov IY. Development of Superior Fibre Quality Upland Cotton Cultivar Series 'Ravnaq' Using Marker-Assisted Selection. FRONTIERS IN PLANT SCIENCE 2022; 13:906472. [PMID: 35677232 PMCID: PMC9168987 DOI: 10.3389/fpls.2022.906472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/03/2022] [Indexed: 05/24/2023]
Abstract
Marker-assisted selection (MAS) helps to shorten breeding time as well as reduce breeding resources and efforts. In our MAS program, we have targeted one of previously reported LD-blocks with its simple sequence repeat (SSR) marker(s), putatively associated with, at least, four different fibre quality QTLs such as fibre length, strength, micronaire and uniformity. In order to transfer targeted QTLs from a donor genotype to a cultivar of choice, we selected G. hirsutum donor genotypes L-141 and LN-1, possessing a fibre quality trait-associated LD-block from the chromosome 7/16. We crossed the donor lines with local elite G. hirsutum cultivars 'Andijan-35' and 'Mekhnat' as recipients. As a result, two segregating populations on LD-block of interest containing fibre QTLs were developed through backcrossing (BC) of F1 hybrids with their relative recipients (used as recurrent parents) up to five generations. In each BC and segregating BC1-5F1 populations, a transfer of targeted LD-block/QTLs was monitored using a highly polymorphic SSR marker, BNL1604 genotype. The homozygous cultivar genotypes with superior fibre quality and agronomic traits, bearing a targeted LD-block of interest, were individually selected from self-pollinated BC5F1 (BC5F2-5) population plants using the early-season PCR screening analysis of BNL1604 marker locus and the end-of-season fibre quality parameters. Only improved hybrids with superior fibre quality compared to original recipient parent were used for the next cycle of breeding. We successfully developed two novel MAS-derived cotton cultivars (named as 'Ravnaq-1' and 'Ravnaq-2') of BC5F5 generations. Both novel MAS cultivars possessed stronger and longer fibre as well as improved fibre uniformity and micronaire compared to the original recurrent parents, 'Andijan-35' and 'Mekhnat'. Our efforts demonstrated a precise transfer of the same LD-block with, at least, four superior fibre QTLs in the two independent MAS breeding experiments exploiting different parental genotypes. Results exemplify the feasibility of MAS in cotton breeding.
Collapse
|
4
|
Si Z, Jin S, Chen J, Wang S, Fang L, Zhu X, Zhang T, Hu Y. Construction of a high-density genetic map and identification of QTLs related to agronomic and physiological traits in an interspecific (Gossypium hirsutum × Gossypium barbadense) F2 population. BMC Genomics 2022; 23:307. [PMID: 35428176 PMCID: PMC9013169 DOI: 10.1186/s12864-022-08528-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Advances in genome sequencing technology, particularly restriction-site associated DNA sequence (RAD-seq) and whole-genome resequencing, have greatly aided the construction of cotton interspecific genetic maps based on single nucleotide polymorphism (SNPs), Indels, and other types of markers. High-density genetic maps can improve accuracy of quantitative trait locus (QTL) mapping, narrow down location intervals, and facilitate identification of the candidate genes.
Result
In this study, 249 individuals from an interspecific F2 population (TM-1 and Hai7124) were re-sequenced, yielding 6303 high-confidence bin markers spanning 5057.13 cM across 26 cotton chromosomes. A total of 3380 recombination hot regions RHRs were identified which unevenly distributed on the 26 chromosomes. Based on this map, 112 QTLs relating to agronomic and physiological traits from seedling to boll opening stage were identified, including 15 loci associated with 14 traits that contained genes harboring nonsynonymous SNPs. We analyzed the sequence and expression of these ten candidate genes and discovered that GhRHD3 (GH_D10G0500) may affect fiber yield while GhGPAT6 (GH_D04G1426) may affect photosynthesis efficiency.
Conclusion
Our research illustrates the efficiency of constructing a genetic map using binmap and QTL mapping on the basis of a certain size of the early-generation population. High-density genetic map features high recombination exchanges in number and distribution. The QTLs and the candidate genes identified based on this high-density genetic map may provide important gene resources for the genetic improvement of cotton.
Collapse
|
5
|
Niu H, Ge Q, Shang H, Yuan Y. Inheritance, QTLs, and Candidate Genes of Lint Percentage in Upland Cotton. Front Genet 2022; 13:855574. [PMID: 35450216 PMCID: PMC9016478 DOI: 10.3389/fgene.2022.855574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cotton (Gossypium spp.) is an important natural fiber plant. Lint percentage (LP) is one of the most important determinants of cotton yield and is a typical quantitative trait with high variation and heritability. Many cotton LP genetic linkages and association maps have been reported. This work summarizes the inheritance, quantitative trait loci (QTLs), and candidate genes of LP to facilitate LP genetic study and molecular breeding. More than 1439 QTLs controlling LP have been reported. Excluding replicate QTLs, 417 unique QTLs have been identified on 26 chromosomes, including 243 QTLs identified at LOD >3. More than 60 are stable, major effective QTLs that can be used in marker-assisted selection (MAS). More than 90 candidate genes for LP have been reported. These genes encode MYB, HOX, NET, and other proteins, and most are preferentially expressed during fiber initiation and elongation. A putative molecular regulatory model of LP was constructed and provides the foundation for the genetic study and molecular breeding of LP.
Collapse
Affiliation(s)
- Hao Niu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Haihong Shang, ; Youlu Yuan,
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Haihong Shang, ; Youlu Yuan,
| |
Collapse
|
6
|
Zhao J, Li H, Xu Y, Yin Y, Huang T, Zhang B, Wang Y, Li Y, Cao Y, An W. A consensus and saturated genetic map provides insight into genome anchoring, synteny of Solanaceae and leaf- and fruit-related QTLs in wolfberry (Lycium Linn.). BMC PLANT BIOLOGY 2021; 21:350. [PMID: 34303361 PMCID: PMC8306383 DOI: 10.1186/s12870-021-03115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/22/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Lycium Linn. (Solanaceae) is a genus of economically important plants producing fruits and leaves with high nutritional value and medicinal benefits. However, genetic analysis of this plant and molecular breeding for quality improvement are limited by the lack of sufficient molecular markers. RESULTS In this study, two parental strains, 'Ningqi No. 1' (Lycium barbarum L.) and 'Yunnan Gouqi' (Lycium yunnanense Kuang et A.M. Lu), and 200 F1 hybrid individuals were resequenced for genetic analysis. In total, 8,507 well-selected SNPs were developed, and a high-density genetic map (NY map) was constructed with a total genetic distance of 2,122.24 cM. A consensus genetic map was established by integrating the NY map and a previously published genetic map (NC map) containing 15,240 SNPs, with a total genetic distance of 3,058.19 cM and an average map distance of 0.21 cM. The 12 pseudochromosomes of the Lycium reference genome were anchored using this consensus genetic map, with an anchoring rate of 64.3%. Moreover, weak collinearities between the consensus map and the pepper, potato, and tomato genomes were observed. Twenty-five stable QTLs were identified for leaf- and fruit-related phenotypes, including fruit weight, fruit longitude, leaf length, the fruit index, and the leaf index; these stable QTLs were mapped to four different linkage groups, with LOD scores ranging from 2.51 to 19.37 and amounts of phenotypic variance explained from 6.2% to 51.9%. Finally, 82 out of 188 predicted genes underlying stable QTLs for fruit-related traits were differentially expressed according to RNA-seq analysis. CONCLUSIONS A chromosome-level assembly can provide a foundation for further functional genomics research for wolfberry. The genomic regions of these stably expressed QTLs could be used as targets for further fine mapping and development of molecular markers for marker-assisted selection (MAS). The present study provided valuable information on saturated SNP markers and reliable QTLs for map-based cloning of functional genes related to yield and morphological traits in Lycium spp.
Collapse
Affiliation(s)
- Jianhua Zhao
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd, Urumchi, 830022 China
| | - Yue Yin
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Ting Huang
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Bo Zhang
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Yajun Wang
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Yanlong Li
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Youlong Cao
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Wei An
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| |
Collapse
|
7
|
Feng L, Zhou C, Su Q, Xu M, Yue H, Zhang S, Zhou B. Fine-mapping and candidate gene analysis of qFS-Chr. D02, a QTL for fibre strength introgressed from a semi-wild cotton into Gossypium hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110524. [PMID: 32563462 DOI: 10.1016/j.plantsci.2020.110524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Fibre strength (FS) is an important quality attribute in the modern textile industry, which is genetically controlled by quantitative trait loci (QTLs). Fine-mapping stable QTLs for FS to identify candidate genes would be valuable for uncovering the genetic basis of fibre quality traits in cotton. Here, a single segment introgression line, IL-D2-2, from the cross of (TM-1×TX-1046) reported in our previous studies, was found to have significantly improved FS compared with the recurrent parent TM-1. To fine-map the QTLs of the FS, we further crossed IL-D2-2 with its recurrent parent TM-1 to produce F2 and F2:3 populations. QTL analysis and substitution mapping showed qFS-Chr. D02 was anchored into a 550.66 kb-interval between two markers, INTR1027 and JESPR-231. This interval contained 67 genes, among which 27 genes related to cell-wall synthesis were selected to conduct qRT-PCR. The results revealed seven genes were expressed significantly differently during the fibre secondary-wall-thickening stage (10-25 days post-anthesis), three being upregulated and four downregulated in IL-D2-2. Both GH_D02G2269 (UDP-glucosyl transferase 84B1) and GH_D02G2289 (unknown function (DUF869)) with nonsynonymous SNPs in IL-D2-2 had significantly downregulated expression, suggesting they were candidates for qFS-Chr. D02. This research provides information about marker-assisted selection for cotton fibre strength improvement.
Collapse
Affiliation(s)
- Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiao Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Min Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shuwen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China; Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Yang Z, Li X, Liao H, Hu L, Peng C, Wang S, Huang X, Bao Z. A Molecular Cytogenetic Map of Scallop (Patinopecten yessoensis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:731-742. [PMID: 31473865 DOI: 10.1007/s10126-019-09918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
To consolidate the genetic, physical, and cytogenetic maps of scallop (Patinopecten yessoensis), we constructed a molecular cytogenetic map by localizing 84 fosmid clones that contain different SNP markers from 19 linkage groups (LGs) using fluorescence in situ hybridization (FISH). Among these 84 SNP-anchored clones, 56 clones produced specific and stable signals on one pair of chromosomes. Dual-color FISH assigned 19 LGs to their corresponding chromosomes with 38 SNP-anchored clones as probes. Among these 19 LGs, 17 LGs were assigned to their corresponding one pair of chromosomes, while two clones containing SNPs from LG10 and LG19 were located on two different pairs of chromosomes separately. The orientation of 7 LGs was corrected according to the chromosome location of SNPs within the same LG. In addition, a probe panel of SNP-anchored clones was developed to identify each chromosome of P. yessoensis. The molecular cytogenetic map will facilitate molecular breeding in scallop and enable comparative studies on chromosome evolution of bivalve mollusk.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, China
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Yantai Fisheries Research Institute, Yantai, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Salih H, Odongo MR, Gong W, He S, Du X. Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development. BMC PLANT BIOLOGY 2019; 19:400. [PMID: 31510939 PMCID: PMC6739942 DOI: 10.1186/s12870-019-2003-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/30/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND C2H2-zinc finger protein family is commonly found in the plant, and it is known as the key actors in the regulation of transcription and vital component of chromatin structure. A large number of the C2H2-zinc finger gene members have not been well characterized based on their functions and structure in cotton. However, in other plants, only a few C2H2-zinc finger genes have been studied. RESULTS In this work, we performed a comprehensive analysis and identified 386, 196 and 195 C2H2-zinc finger genes in Gossypium hirsutum (upland cotton), Gossypium arboreum and Gossypium raimondii, respectively. Phylogenetic tree analysis of the C2H2-zinc finger proteins encoding the C2H2-zinc finger genes were classified into seven (7) subgroups. Moreover, the C2H2-zinc finger gene members were distributed in all cotton chromosomes though with asymmetrical distribution patterns. All the orthologous genes were detected between tetraploid and the diploid cotton, with 154 orthologous genes pair detected between upland cotton and Gossypium arboreum while 165 orthologous genes were found between upland cotton and Gossypium raimondii. Synonymous (Ks) and non-synonymous (Ka) nucleotide substitution rates (Ka/Ks) analysis indicated that the cotton C2H2-zinc finger genes were highly influenced mainly by negative selection, which maintained their protein levels after the duplication events. RNA-seq data and RT-qPCR validation of the RNA seq result revealed differential expression pattern of some the C2H2-zinc finger genes at different stages of cotton fiber development, an indication that the C2H2-zinc finger genes play an important role in initiating and regulating fiber development in cotton. CONCLUSIONS This study provides a strong foundation for future practical genome research on C2H2-zinc finger genes in upland cotton. The expression levels of C2H2-zinc finger genes family is a pointer of their involvement in various biochemical and physiological functions which are directly related to cotton fiber development during initiation and elongation stages. This work not only provides a basis for determining the nominal role of the C2H2-zinc finger genes in fiber development but also provide valuable information for characterization of potential candidate genes involved in regulation of cotton fiber development.
Collapse
Affiliation(s)
- Haron Salih
- College of life sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
- Zalingei University, Central Darfur, Sudan
| | - Magwanga Richard Odongo
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Wenfang Gong
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Shoupu He
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
10
|
Liu G, Pei W, Li D, Ma J, Cui Y, Wang N, Song J, Wu M, Li L, Zang X, Yu S, Zhang J, Yu J. A targeted QTL analysis for fiber length using a genetic population between two introgressed backcrossed inbred lines in upland cotton (Gossypium hirsutum). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
QTL analysis for yield and fibre quality traits using three sets of introgression lines developed from three Gossypium hirsutum race stocks. Mol Genet Genomics 2019; 294:789-810. [PMID: 30887144 DOI: 10.1007/s00438-019-01548-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022]
Abstract
Upland cotton (Gossypium hirsutum L.) race stocks may possess desirable traits for the genetic improvement of cotton. Quantitative trait locus (QTL) analysis can assist in uncovering new alleles from unadapted race stocks. In this study, three sets of chromosome segment introgression lines (ILs) were developed from three backcrosses (BC3) between three race stocks, G. hirsutum races latifolium accs. TX-34 and TX-48 and punctatum acc. TX-114, as donor parents and Texas Marker-1 (TM-1) as the recurrent parent. Based on a total of 452 polymorphic simple sequence repeat (SSR) markers in BC3F2 genotyping, 149, 150 and 184 ILs were obtained from TM-1 × TX-34, TM-1 × TX-48 and TM-1 × TX-114, respectively. The average introgressed chromosomal segment length was 12.7 cM, and the total genetic distance was 3268 cM covering approximately 73.4% of the Upland cotton genome. The BC3F2, BC3F2:3 and BC3F2:4 progeny, which produced the ILs, were evaluated for yield and fibre quality traits. A total of 128 QTLs were detected, each of which explained 1.6-13.0% of the phenotypic variation. Thirty-five common QTLs related to eight traits were detected. Six QTL clusters were found on five chromosomes. Thirty-eight QTLs were previously unreported, and they may be footprints of cotton domestication. Domestication or artificial selection by humans successfully eliminated most unfavourable QTLs (21/38); however, some favourable QTLs (17/38) are not present in modern cultivars, demonstrating the importance of race stocks for improving cotton cultivars. The 26 elite ILs developed could be used to improve the yield and fibre quality components simultaneously. These results provide information on desirable QTLs for cotton improvement.
Collapse
|
12
|
Zhao N, Wang Y, Hua J. Genomewide identification of PPR gene family and prediction analysis on restorer gene in Gossypium. J Genet 2018; 97:1083-1095. [PMID: 30555058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pentatricopeptide repeat (PPR) gene family plays an essential role in the regulation of plant growth and organelle gene expression. Some PPR genes are related to fertility restoration in plant, but there is no detailed information in Gossypium. In the present study, we identified 482 and 433 PPR homologues in Gossypium raimondii (D5) and G. arboreum (A2) genomes, respectively. Most PPR homologues showed an even distribution on the whole chromosomes. Given an evolutionary analysis to PPR genes from G. raimondii (D5), G. arboreum (A2) and G. hirsutum genomes, eight PPR genes were clustered together with restoring genes of other species. Most cotton PPR genes were qualified with no intron, high proportion of α-helix and classical tertiary structure of PPR protein. Based on bioinformatics analyses, eight PPR genes were targeted in mitochondrion, encoding typical P subfamily protein with protein binding activity and organelle RNA metabolism in function. Further verified by RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, two PPR candidate genes, Gorai.005G0470 (D5) and Cotton_A_08373 (A2), were upregulated in fertile line than sterile line. These results reveal new insights into PPR gene evolution in Gossypium.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| | | | | |
Collapse
|
13
|
Yang Q, Yang Z, Tang H, Yu Y, Chen Z, Wei S, Sun Q, Peng Z. High-density genetic map construction and mapping of the homologous transformation sterility gene (hts) in wheat using GBS markers. BMC PLANT BIOLOGY 2018; 18:301. [PMID: 30477426 PMCID: PMC6258151 DOI: 10.1186/s12870-018-1532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/16/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Homologous transformation sterility-1 (HTS-1) is a novel wheat mutant that exhibits pistillody, the transformation of stamens into pistils or pistil-like structures. More extreme phenotypes of this mutation can have six pistils or pistil-like structures without any stamens in a floret. Thus, HTS-1 is highly valuable for studies of wheat hybrid breeding and flower development. Previous studies have shown that two major genes (Pis1 and hts) control pistillody in HTS-1. The Pis1 gene controls the three-pistil trait in the three-pistil wheat mutant and has been mapped on chromosome 2D, but the hts gene has not been mapped or identified. To do so, we crossed HTS-1 with CM28TP (three-pistil mutant) and constructed a high-density linkage map with the F2 population (200 individuals). RESULTS The map covered 2779.96 cM, and the genetic distance per chromosome ranged from 37.59 cM to 318.95 cM. The average distance between markers was 1.04 cM. We then mapped hts between GBS-SNP markers 4A_109 and 4A_119, separated by 2.0 cM and 5.2 Mb. To find the candidate genes, the hts region was enlarged to 7.2 Mb, encompassing 752 protein-coding genes. We identified TaWin1 as a possible candidate gene after comparing the 752 genes with 206 common differentially expressed genes between pistillody stamens (PS) versus normal stamens (S) and pistils (P) versus S. Real-time PCR indicated that TaWin1 was highly expressed in HTS-1 during the pistil-and-stamen-differentiating stage, at levels approximately 120 times greater than those in CM28TP. Further analysis indicated that TaWin1 was mainly expressed in HTS-1 PS, supporting its status as a candidate gene of hts. Thus, TaWin1 overexpression probably leads to the transformation of stamens into pistils in wheat. CONCLUSIONS The results of this study provide a foundation for further research on stamen and pistil development, with implications for wheat-hybrid breeding programs.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education), College of Life Science, China West Normal University, Nanchong, 637009 Sichuan China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education), College of Life Science, China West Normal University, Nanchong, 637009 Sichuan China
| | - Haifeng Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education), College of Life Science, China West Normal University, Nanchong, 637009 Sichuan China
| | - Yan Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education), College of Life Science, China West Normal University, Nanchong, 637009 Sichuan China
| | - Zhenyong Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education), College of Life Science, China West Normal University, Nanchong, 637009 Sichuan China
| | - Shuhong Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education), College of Life Science, China West Normal University, Nanchong, 637009 Sichuan China
| | - Qinxu Sun
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education), College of Life Science, China West Normal University, Nanchong, 637009 Sichuan China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang University, Xichang, 615000 Sichuan China
| |
Collapse
|
14
|
Li P, Kirungu JN, Lu H, Magwanga RO, Lu P, Cai X, Zhou Z, Wang X, Hou Y, Wang Y, Xu Y, Peng R, Cai Y, Zhou Y, Wang K, Liu F. SSR-Linkage map of interspecific populations derived from Gossypium trilobum and Gossypium thurberi and determination of genes harbored within the segregating distortion regions. PLoS One 2018; 13:e0207271. [PMID: 30419064 PMCID: PMC6231669 DOI: 10.1371/journal.pone.0207271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Wild cotton species have significant agronomic traits that can be introgressed into elite cultivated varieties. The use of a genetic map is important in exploring, identification and mining genes which carry significant traits. In this study, 188 F2mapping individuals were developed from Gossypium thurberi (female) and Gossypium trilobum (male), and were genotyped by using simple sequence repeat (SSR) markers. A total of 12,560 simple sequence repeat (SSR) markers, developed by Southwest University, thus coded SWU were screened out of which only 994 were found to be polymorphic, and 849 markers were linked in all the 13 chromosomes. The map had a length of 1,012.458 cM with an average marker distance of 1.193 cM. Segregation distortion regions (SDRs) were observed on Chr01, Chr02, Chr06, Chr07 Chr09, Chr10 and Chr11 with a large proportion of the SDR regions segregating towards the heterozygous allele. There was good syntenic block formation that revealed good collinearity between the genetic and physical map of G. raimondii, compared to the Dt_sub genome of the G. hirsutum and G. barbadense. A total of 2,496 genes were mined within the SSR related regions. The proteins encoding the mined genes within the SDR had varied physiochemical properties; their molecular weights ranged from 6.586 to 252.737 kDa, charge range of -39.5 to 52, grand hydropathy value (GRAVY) of -1.177 to 0.936 and isoelectric (pI) value of 4.087 to 12.206. The low GRAVY values detected showed that the proteins encoding these genes were hydrophilic in nature, a property common among the stress responsive genes. The RNA sequence analysis revealed more of the genes were highly upregulated in various stages of fiber development for instance; Gorai.002G241300 was highly up regulated at 5, 10, 20 and 25 day post anthesis (DPA). Validation through RT-qPCR further revealed that these genes mined within the SDR regions might be playing a significant role under fiber development stages, therefore we infer that Gorai.007G347600 (TFCA), Gorai.012G141600 (FOLB1), Gorai.006G024500 (NMD3), Gorai.002G229900 (LST8) and Gorai.002G235200 (NSA2) are significantly important in fiber development and in turn the quality, and further researches needed to be done to elucidate their exact roles in the fiber development process. The construction of the genetic map between the two wild species paves away for the mapping of quantitative trait loci (QTLs) since the average distance between the markers is small, and mining of genes on the SSR regions will provide an insight in identifying key genes that can be introgressed into the cultivated cotton cultivars.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
- School of Life Science, Henan University/State Key Laboratory of Cotton Biology/Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan, China
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Hejun Lu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo- Kenya
| | - Pu Lu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Renhai Peng
- Biological and Food Engineering, Anyang Institute of technology, Anyang, Henan, China
| | - Yingfan Cai
- School of Life Science, Henan University/State Key Laboratory of Cotton Biology/Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan, China
| | - Yun Zhou
- School of Life Science, Henan University/State Key Laboratory of Cotton Biology/Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan, China
- * E-mail: (YZ); (KW); (FL)
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
- * E-mail: (YZ); (KW); (FL)
| | - Fang Liu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
- * E-mail: (YZ); (KW); (FL)
| |
Collapse
|
15
|
Zhao N, Wang Y, Hua J. Genomewide identification of PPR gene family and prediction analysis on restorer gene in Gossypium. J Genet 2018. [DOI: 10.1007/s12041-018-0993-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Yin F, Liu W, Chai J, Lu B, Murphy RW, Luo J. CRISPR/Cas9 Application for Gene Copy Fate Survey of Polyploid Vertebrates. Front Genet 2018; 9:260. [PMID: 30079079 PMCID: PMC6062590 DOI: 10.3389/fgene.2018.00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
Polyploidization occurs widely in eukaryotes, and especially in plants. Polyploid plants and some fishes have been commercialized. Typically, severe genomic perturbations immediately follow polyploidization and little is known about how polyploid offspring survives the genetic and epigenetic changes. Investigations into this require the identification of genes related to polyploidization and the discrimination of dosage-balance from paternal and maternal copies, and regardless of the mechanism being either autopolyploidization or allopolyploidization. New approaches and technologies may discern the mosaic of novel gene functions gained through the recombination of paternal and maternal genes in allopolyploidization. Modifications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) with CRISPR-associated system (Cas) protein 9 (CRISPR/Cas9) have been employed in studies of polyploidization of plants. However, the approach has seldom been applied to polyploidization in vertebrates. Herein, we use CRISPR/Cas9 to trace gene-fate in tetraploid goldfish, and specifically to identify the functional differentiation of two divergent copies of fgf20a, which are expressed differently throughout embryonic development. We expect this gene editing system will be applicable to studies of polyploids and the genetic improvement of polyploid livestock.
Collapse
Affiliation(s)
- Fanqian Yin
- School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Wenfu Liu
- School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jing Chai
- School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Bin Lu
- School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Jing Luo
- School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
17
|
Chen Y, Liu G, Ma H, Song Z, Zhang C, Zhang J, Zhang J, Wang F, Zhang J. Identification of Introgressed Alleles Conferring High Fiber Quality Derived From Gossypium barbadense L. in Secondary Mapping Populations of G. hirsutum L. FRONTIERS IN PLANT SCIENCE 2018; 9:1023. [PMID: 30073008 PMCID: PMC6058274 DOI: 10.3389/fpls.2018.01023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/25/2018] [Indexed: 05/02/2023]
Abstract
The improvement of fiber quality is an essential goal in cotton breeding. In our previous studies, several quantitative trait loci (QTLs) contributing to improved fiber quality were identified in different introgressed chromosomal regions from Sea Island cotton (Gossypium barbadense L.) in a primary introgression population (Pop. A) of upland cotton (G. hirsutum L.). In the present study, to finely map introgressed major QTLs and accurately dissect the genetic contribution of the target introgressed chromosomal segments, we backcrossed two selected recombinant inbred lines (RILs) that presented desirable high fiber quality with their high lint-yielding recurrent parent to ultimately develop two secondary mapping populations (Pop. B and Pop. C). Totals of 20 and 27 QTLs for fiber quality were detected in Pop. B and Pop. C, respectively, including four and five for fiber length, four and eight for fiber micronaire, two and four for fiber uniformity, five and four for fiber elongation, and six and four for fiber strength, respectively. Two QTLs for lint percentage were detected only in Pop. C. In addition, seven stable QTLs were identified, including two for both fiber length and fiber strength and three for fiber elongation. Five QTL clusters for fiber quality were identified in the introgressed chromosomal regions, and negative effects of these chromosomal regions on lint percentage (a major lint yield parameter) were not observed. Candidate genes with a QTL-cluster associated with fiber strength and fiber length in the introgressed region of Chr.7 were further identified. The results may be helpful for revealing the genetic basis of superior fiber quality contributed by introgressed alleles from G. barbadense. Possible strategies involving marker-assisted selection (MAS) for simultaneously improving upland cotton fiber quality and lint yield in breeding programs was also discussed.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guodong Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hehuan Ma
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chuanyun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Junhao Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
18
|
Association mapping and favourable QTL alleles for fibre quality traits in Upland cotton (Gossypium hirsutum L.). J Genet 2018. [DOI: 10.1007/s12041-017-0878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Detection of favorable alleles for yield and yield components by association mapping in upland cotton. Genes Genomics 2018; 40:725-734. [PMID: 29934807 DOI: 10.1007/s13258-018-0678-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Association mapping based on linkage disequilibrium provides a promising tool for dissecting the genetic basis underlying complex traits. To reveal the genetic variations of yield and yield components traits in upland cotton, 403 upland cotton accessions were collected and analyzed by 560 genome-wide simple sequence repeats (SSRs). A diverse panel consisting of 403 upland cotton accessions was grown in six different environments, and the yield and yield component traits were measured, and 560 SSR markers covering the whole genome were mapped. Association studies were performed to uncover the genotypic and phenotypic variations using a mixed linear model. Favorable alleles and typical accessions for yield traits were identified. A total of 201 markers were polymorphic, revealing 394 alleles. The average gene diversity and polymorphism information content were 0.556 and 0.483, respectively. Based on a population structure analysis, 403 accessions were divided into two subgroups. A mixed linear model analysis of the association mapping detected 43 marker loci according to the best linear unbiased prediction and in at least three of the six environments(- lgP > 1.30, P < 0.05). Among the 43 associated markers, five were associated with more than two traits simultaneously and nine were coincident with those identified previously. Based on phenotypic effects, favorable alleles and typical accessions that contained the elite allele loci related to yield traits were identified and are widely used in practical breeding. This study detected favorable quantitative trait loci's alleles and typical accessions for yield traits, these are excellent genetic resources for future high-yield breeding by marker-assisted selection in upland cotton in China.
Collapse
|
20
|
Zhao J, Liu J, Xu J, Zhao L, Wu Q, Xiao S. Quantitative Trait Locus Mapping and Candidate Gene Analysis for Verticillium Wilt Resistance Using Gossypium barbadense Chromosomal Segment Introgressed Line. FRONTIERS IN PLANT SCIENCE 2018; 9:682. [PMID: 29899750 PMCID: PMC5988901 DOI: 10.3389/fpls.2018.00682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/03/2018] [Indexed: 05/08/2023]
Abstract
Verticillium wilt (VW) is a soil-borne fungal disease that is caused by Verticillium dahliae Kleb and seriously damages cotton production annually in China. To date, many efforts have been made to improve the resistance of upland cotton against VW, but little progress has been achieved because of a lack of resistant upland cotton to VW. G. barbadense is known to carry high resistance to VW; however, it is difficult to transfer the resistance trait from G. barbadense to upland cotton because of linkage drag and distortion in the interspecific hybrid. In this study, a chromosomal segment introgression line (CSIL), SuVR043, containing a single and homozygous chromosome segment of G. barbadense cv. H7124 D04 (Chr 22), was created and used to construct an F2 population for mapping of VW resistance quantitative trait loci (QTLs) in the greenhouse. Two major resistance QTLs against nondefoliating V. dahliae isolate Bp2, called qVW-Bp2-1 and qVW-Bp2-2, which were flanked by the markers cgr6409-ZHX37 and ZHX57-ZHX70 and explained an average of 16.38 and 22.36% of the observed phenotypic variation, respectively, were detected in three independent replicate experiments. The genetic distances from cgr6409 to ZHX37 and from ZHX57 to ZHX70 were 2.4 and 0.8 cM, respectively. By analyzing the genome sequence of the qVW-Bp2-1 and qVW-Bp2-2 regions, we determined that the accurate physical distances from cgr6409 to ZHX37 and from ZHX57 to ZHX70 in the G. barbadense genome are 254 and 140 kb, and that those spans 36 and 20 putative genes, respectively. The results of the expression analysis showed significant differences in the expression profiles of GbCYP450, GbTMEM214, and GbRLK among G. barbadense cv. H7124, CSIL SuVR043 and G. hirsutum acc. Sumian 8 at different times after inoculation with V. dahliae isolate Bp2. Virus-induced gene silencing (VIGS) analysis showed that silencing of GbCYP450 and GbTMEM214 decreased H7124 and CSIL SuVR043 resistance to VW. These results form a solid foundation for fine mapping and cloning of resistance genes in the substituted segment and will provide valuable assistance in future efforts to breed for VW resistance.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianguang Liu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianwen Xu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Zhao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiaojuan Wu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Songhua Xiao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Songhua Xiao
| |
Collapse
|
21
|
Wang C, Ulloa M, Duong TT, Roberts PA. QTL Analysis of Transgressive Nematode Resistance in Tetraploid Cotton Reveals Complex Interactions in Chromosome 11 Regions. FRONTIERS IN PLANT SCIENCE 2017; 8:1979. [PMID: 29209344 PMCID: PMC5702019 DOI: 10.3389/fpls.2017.01979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 05/24/2023]
Abstract
Transgressive segregation in cotton (Gossypium spp.) provides an important approach to enhance resistance to the major pest root-knot nematode (RKN) Meloidogyne incognita. Our previous studies reported transgressive RKN resistance in an intraspecific Gossypium hirsutum resistant NemX × susceptible SJ-2 recombinant inbred line (RIL) population and early generations of interspecific cross Gossypium barbadense (susceptible Pima S-7) × G. hirsutum (NemX). However, the underlying functional mechanisms for this phenomenon are not known. In this study, the region of RKN resistance gene rkn1 on chromosome (Chr) 11 and its homoeologous Chr 21 was fine mapped with G. raimondii D5 genome reference sequence. Transgressive resistance was found in the later generation of a new RIL population F2:7 (Pima S-7 × NemX) and one interspecific F2 (susceptible Pima S-7 × susceptible SJ-2). QTL analysis revealed similar contributions to root-galling and egg-production resistance phenotypes associated with SSR marker CIR316 linked to resistance gene rkn1 in NemX on Chr 11 in all seven populations analyzed. In testcross NemX × F1 (Pima S-7 × SJ-2) marker allele CIR069-271 from Pima S-7 linked to CIR316 contributed 63% of resistance to galling phenotype in the presence of rkn1. Similarly, in RIL population F2:8 (NemX × SJ-2), SJ-2 markers closely linked to CIR316 contributed up to 82% of resistance to root-galling. These results were confirmed in BC1F1 SJ-2 × F1 (NemX × SJ-2), F2 (NemX × SJ-2), and F2 (Pima S-7 × SJ-2) populations in which up to 44, 36, and 15% contribution in resistance to galling was found, respectively. Transgressive segregation for resistance was universal in all intra- and inter-specific populations, although stronger transgressive resistance occurred in later than in early generations in the intraspecific cross compared with the interspecific cross. Transgressive effects on progeny from susceptible parents are possibly provided in the rkn1 resistance region of chromosome 11 by tandemly arrayed allele (TAA) or gene (TAG) interactions contributing to transgressive resistance. Complex TAA and TAG recombination and interactions in the rkn1 resistance region provide three genes and a model to study disease and transgressive resistance in polyploid plants, and novel genotypes for plant breeding.
Collapse
Affiliation(s)
- Congli Wang
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Mauricio Ulloa
- Plant Stress and Germplasm Development Research, PA, CSRL, USDA-ARS, Lubbock, TX, United States
| | - Tra T. Duong
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
22
|
Li L, Zhao S, Su J, Fan S, Pang C, Wei H, Wang H, Gu L, Zhang C, Liu G, Yu D, Liu Q, Zhang X, Yu S. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS One 2017; 12:e0182918. [PMID: 28809947 PMCID: PMC5557542 DOI: 10.1371/journal.pone.0182918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022] Open
Abstract
Due to China’s rapidly increasing population, the total arable land area has dramatically decreased; as a consequence, the competition for farming land allocated for grain and cotton production has become fierce. Therefore, to overcome the existing contradiction between cotton grain and fiber production and the limited farming land, development of early-maturing cultivars is necessary. In this research, a high-density linkage map of upland cotton was constructed using genotyping by sequencing (GBS) to discover single nucleotide polymorphism (SNP) markers associated with early maturity in 170 F2 individuals derived from a cross between LU28 and ZHONG213. The high-density genetic map, which was composed of 3978 SNP markers across the 26 cotton chromosomes, spanned 2480 cM with an average genetic distance of 0.62 cM. Collinearity analysis showed that the genetic map was of high quality and accurate and agreed well with the Gossypium hirsutum reference genome. Based on this high-density linkage map, QTL analysis was performed on cotton early-maturity traits, including FT, FBP, WGP, NFFB, HNFFB and PH. A total 47 QTLs for the six traits were detected; each of these QTLs explained between 2.61% and 32.57% of the observed phenotypic variation. A major region controlling early-maturity traits in Gossypium hirsutum was identified for FT, FBP, WGP, NFFB and HNFFB on chromosome D03. QTL analyses revealed that phenotypic variation explained (PVE) ranged from 10.42% to 32.57%. Two potential candidate genes, Gh_D03G0885 and Gh_D03G0922, were predicted in a stable QTL region and had higher expression levels in the early-maturity variety ZHONG213 than in the late-maturity variety LU28. However, further evidence is required for functional validation. This study could provide useful information for the dissection of early-maturity traits and guide valuable genetic loci for molecular-assisted selection (MAS) in cotton breeding.
Collapse
Affiliation(s)
- Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Chi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Guoyuan Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Dingwei Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Qibao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, China
- * E-mail:
| |
Collapse
|
23
|
Zhu J, Chen J, Gao F, Xu C, Wu H, Chen K, Si Z, Yan H, Zhang T. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4125-4135. [PMID: 28922761 PMCID: PMC5853531 DOI: 10.1093/jxb/erx240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Map-based gene cloning is a vital strategy for the identification of the quantitative trait loci or genes underlying important agronomic traits. The conventional map-based cloning method is powerful but generally time-consuming and labor-intensive. In this context, we introduce an improved bulked segregant analysis method in combination with a virus-induced gene silencing (VIGS) strategy for rapid and reliable gene mapping, identification and functional verification. This method was applied to a multiple recessive marker line of upland cotton, Texas 582 (T582), and identified unique genomic positions harboring mutant loci, showing the reliability and efficacy of this method. The v1 locus was further fine-mapped. Only one gene, GhCHLI, which encodes one of the subunits of Mg chelatase, was differentially down-regulated in T582 compared with TM-1. A point mutation occurred in the AAA+ conserved region of GhCHLI and led to an amino acid substitution. Suppression of its expression by VIGS in TM-1 resulted in a yellow blade phenotype that was similar to T582. This integrated approach provides a paradigm for the rapid mapping and identification of the candidate genes underlying the genetic traits in plants with large and complex genomes in the future.
Collapse
Affiliation(s)
- Jiankun Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiedan Chen
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
| | - Fengkai Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyu Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Huaitong Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhanfeng Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hu Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
| |
Collapse
|
24
|
Cai C, Wu S, Niu E, Cheng C, Guo W. Identification of genes related to salt stress tolerance using intron-length polymorphic markers, association mapping and virus-induced gene silencing in cotton. Sci Rep 2017; 7:528. [PMID: 28373664 PMCID: PMC5428780 DOI: 10.1038/s41598-017-00617-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
Intron length polymorphisms (ILPs), a type of gene-based functional marker, could themselves be related to the particular traits. Here, we developed a genome-wide cotton ILPs based on orthologs annotation from two sequenced diploid species, A-genome Gossypium arboreum and D-genome G. raimondii. We identified 10,180 putative ILP markers from 5,021 orthologous genes. Among these, 535 ILP markers from 9 gene families related to stress were selected for experimental verification. Polymorphic rates were 72.71% between G. arboreum and G. raimondii and 36.45% between G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124. Furthermore, 14 polymorphic ILP markers were detected in 264 G. hirsutum accessions. Coupled with previous simple sequence repeats (SSRs) evaluations and salt tolerance assays from the same individuals, we found a total of 25 marker-trait associations involved in nine ILPs. The nine genes, temporally named as C1 to C9, showed the various expressions in different organs and tissues, and five genes (C3, C4, C5, C7 and C9) were significantly upregulated after salt treatment. We verified that the five genes play important roles in salt tolerance. Particularly, silencing of C4 (encodes WRKY DNA-binding protein) and C9 (encodes Mitogen-activated protein kinase) can significantly enhance cotton susceptibility to salt stress.
Collapse
Affiliation(s)
- Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erli Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Zhang S, Lan Q, Gao X, Yang B, Cai C, Zhang T, Zhou B. Mapping of genes for flower-related traits and QTLs for flowering time in an interspecific population of Gossypium hirsutum × G. darwinii. J Genet 2016; 95:197-201. [PMID: 27019451 DOI: 10.1007/s12041-016-0617-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, People's Republic of
| | | | | | | | | | | | | |
Collapse
|
26
|
Jia X, Pang C, Wei H, Wang H, Ma Q, Yang J, Cheng S, Su J, Fan S, Song M, Wusiman N, Yu S. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genomics 2016; 17:909. [PMID: 27835938 PMCID: PMC5106845 DOI: 10.1186/s12864-016-3269-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Gossypium hirsutum L., or upland cotton, is an important renewable resource for textile fiber. To enhance understanding of the genetic basis of cotton earliness, we constructed an intra-specific recombinant inbred line population (RIL) containing 137 lines, and performed linkage map construction and quantitative trait locus (QTL) mapping. Results Using restriction-site associated DNA sequencing, a genetic map composed of 6,434 loci, including 6,295 single nucleotide polymorphisms and 139 simple sequence repeat loci, was developed from RIL population. This map spanned 4,071.98 cM, with an average distance of 0.63 cM between adjacent markers. A total of 247 QTLs for six earliness-related traits were detected in 6 consecutive years. In addition, 55 QTL coincidence regions representing more than 60 % of total QTLs were found on 22 chromosomes, which indicated that several earliness-related traits might be simultaneously improved. Fine-mapping of a 2-Mb region on chromosome D3 associated with five stable QTLs between Marker25958 and Marker25963 revealed that lines containing alleles derived from CCRI36 in this region exhibited smaller phenotypes and earlier maturity. One candidate gene (EMF2) was predicted and validated by quantitative real-time PCR in early-, medium- and late-maturing cultivars from 3- to 6-leaf stages, with highest expression level in early-maturing cultivar, CCRI74, lowest expression level in late-maturing cultivar, Bomian1. Conclusions We developed an SNP-based genetic map, and this map is the first high-density genetic map for short-season cotton and has the potential to provide deeper insights into earliness. Cotton earliness-related QTLs and QTL coincidence regions will provide useful materials for QTL fine mapping, gene positional cloning and MAS. And the gene, EMF2, is promising for further study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3269-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyun Jia
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Jilong Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Shuaishuai Cheng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Junji Su
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Nusireti Wusiman
- Institute of Industrial Crops of Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China. .,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China.
| |
Collapse
|
27
|
Wang X, Wang Y, Wang C, Chen Y, Chen Y, Feng S, Zhao T, Zhou B. Characterization of eleven monosomic alien addition lines added from Gossypium anomalum to Gossypium hirsutum using improved GISH and SSR markers. BMC PLANT BIOLOGY 2016; 16:218. [PMID: 27717331 PMCID: PMC5055718 DOI: 10.1186/s12870-016-0913-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Gossypium anomalum (BB genome) possesses the desirable characteristics of drought tolerance, resistance to diseases and insect pests, and the potential for high quality fibers. However, it is difficult to transfer the genes associated with these desirable traits into cultivated cotton (G. hirsutum, AADD genome). Monosomic alien addition lines (MAALs) can be used as a bridge to transfer desired genes from wild species into G. hirsutum. In cotton, however, the high number and smaller size of the chromosomes has resulted in difficulties in discriminating chromosomes from wild species in cultivated cotton background, the development of cotton MAALs has lagged far behind many other crops. To date, no set of G. hirsutum-G. anomalum MAALs was reported. Here the amphiploid (AADDBB genome) derived from G. hirsutum × G. anomalum was used to generate a set of G. hirsutum-G. anomalum MAALs through a combination of consecutive backcrossing, genomic in situ hybridization (GISH), morphological survey and microsatellite marker identification. RESULTS We improved the GISH technique used in our previous research by using a mixture of two probes from G. anomalum and G. herbaceum (AA genome). The results indicate that a ratio of 4:3 (G. anomalum : G. herbaceum) is the most suitable for discrimination of chromosomes from G. anomalum and the At-subgenome of G. hirsutum. Using this improved GISH technique, 108 MAAL individuals were isolated. Next, 170 G. hirsutum- and G. anomalum-specific codominant markers were obtained and employed for characterization of these MAAL individuals. Finally, eleven out of 13 MAALs were identified. Unfortunately, we were unable to isolate Chrs. 1Ba and 5Ba due to their very low incidences in backcrossing generation, as these remained in a condition of multiple additions. CONCLUSIONS The characterized lines can be employed as bridges for the transfer of desired genes from G. anomalum into G. hirsutum, as well as for gene assignment, isolation of chromosome-specific probes, development of chromosome-specific "paints" for fluorochrome-labeled DNA fragments, physical mapping, and selective isolation and mapping of cDNAs/genes for a particular G. anomalum chromosome.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong People’s Republic of China
| | - Shouli Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ting Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
28
|
Zhang SW, Zhu XF, Feng LC, Gao X, Yang B, Zhang TZ, Zhou BL. Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines. Sci Rep 2016; 6:31954. [PMID: 27549323 PMCID: PMC4994025 DOI: 10.1038/srep31954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Fiber quality improvement is a driving force for further cotton domestication and breeding. Here, QTLs for fiber quality were mapped in 115 introgression lines (ILs) first developed from two intraspecific populations of cultivated and feral cotton landraces. A total of 60 QTLs were found, which explained 2.03–16.85% of the phenotypic variance found in fiber quality traits. A total of 36 markers were associated with five fiber traits, 33 of which were found to be associated with QTLs in multiple environments. In addition, nine pairs of common QTLs were identified; namely, one pair of QTLs for fiber elongation, three pairs for fiber length, three pairs for fiber strength and two pairs for micronaire (qMICs). All common QTLs had additive effects in the same direction in both IL populations. We also found five QTL clusters, allowing cotton breeders to focus their efforts on regions of QTLs with the highest percentages of phenotypic variance. Our results also reveal footprints of domestication; for example, fourteen QTLs with positive effects were found to have remained in modern cultivars during domestication, and two negative qMICs that had never been reported before were found, suggesting that the qMICs regions may be eliminated during artificial selection.
Collapse
Affiliation(s)
- Shu-Wen Zhang
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xie-Fei Zhu
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Liu-Chun Feng
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Gao
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Biao Yang
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian-Zhen Zhang
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bao-Liang Zhou
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Shang L, Liang Q, Wang Y, Zhao Y, Wang K, Hua J. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1429-1446. [PMID: 27138784 DOI: 10.1007/s00122-016-2714-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/12/2016] [Indexed: 05/19/2023]
Abstract
QTL mapping based on backcross and RIL populations suggests that epistasis together with partial dominance, over-dominance and their environmental interactions of QTLs play an important role in yield heterosis in upland cotton. A backcross population (BC) was constructed to explore the genetic basis of heterosis in upland cotton (Gossypium hirsutum L.). For yield and yield components, recombinant inbred line (RIL) and BC populations were evaluated simultaneously at three different locations. A total of 35 and 30 quantitative trait loci (QTLs) were detected based on the RILs and BC data, respectively. Six (16.7 %) additive QTLs, 19 (52.8 %) partial dominant QTLs and 11 (30.6 %) over-dominant QTLs were detected by single-locus analysis using composite interval mapping in BC population. QTLs detected for mid-parent heterosis (MPH) were mostly related to those detected in the BC population. No significant correlation was found between marker heterozygosity and performance. It indicated that heterozygosity was not always favorable for performance. Two-locus analysis revealed 46, 25 and 12 QTLs with main effects (M-QTLs), and 55, 63 and 33 QTLs involved in digenic interactions (E-QTLs) were detected for yield and yield components in RIL, BC and MPH, respectively. A large number of M-QTLs and E-QTLs showed QTL by environment interactions (QEs) in three environments. These results suggest that epistasis together with partial dominance, over-dominance and QEs all contribute to yield heterosis in upland cotton.
Collapse
Affiliation(s)
- Lianguang Shang
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qingzhi Liang
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- The Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, The South Subtropical Crops Research Institutes, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Yumei Wang
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Research Institute of Cash Crop, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yanpeng Zhao
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kunbo Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Jinping Hua
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
Detection and validation of one stable fiber strength QTL on c9 in tetraploid cotton. Mol Genet Genomics 2016; 291:1625-38. [PMID: 27119657 DOI: 10.1007/s00438-016-1206-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Fiber strength is an essential trait of fiber property in cotton, and it is quantitatively inherited. Identification of stable quantitative trait loci (QTL) contributing to fiber strength would provide the key basis for marker-assisted selection (MAS) in cotton breeding. In this study, four interspecific hybridization populations were established with a common G. barbadense parent Pima 90-53 and two G. hirsutum parents (CCRI 8 and Handan 208), each of which had fiber strength characteristic. Based on the phenotypic data of fiber strength from seven environments, a stable QTL, qFS-c9-1, was detected and validated on c9 in a marker interval between SSR markers NAU2395 and NAU1092. The QTL explaining 14.4-17.9 % of the phenotypic variation was firstly detected in two populations (CCRI 8 × Pima 90-53, BC1F1 and BC1F2) and its derived lines in four environments. And it accounting for 12.1-14.8 % of the phenotypic variation was further confirmed in two populations (Handan 208 × Pima 90-53, BC1F1, and F2) under one environment. In silico mapping using three sequenced cotton genomes indicated that homologous genes, anchored by NAU2395 and NAU1092, were aligned to the G. arboreum genome within a physical distance between 81.10 Mbps and 87.07 Mbps. In that interval, several genes were confirmed in literatures to associate with fiber development. Among these genes, seven genes were further selected for an expression analysis through fiber development transcriptome database, revealing unique expression patterns across different stages of fiber development between CCRI 8 and Pima 90-53. The genes underlying qFS-c9-1 were favorable to fine mapping and cloning. The current study results provided valuable evidence for mapping stable QTL of fiber strength utilizing multiple populations and environments, as well as map-based cloning the candidate gene underlying the QTL for future prospective research directions.
Collapse
|
32
|
Li X, Jin X, Wang H, Zhang X, Lin Z. Structure, evolution, and comparative genomics of tetraploid cotton based on a high-density genetic linkage map. DNA Res 2016; 23:283-93. [PMID: 27084896 PMCID: PMC4909315 DOI: 10.1093/dnares/dsw016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/17/2016] [Indexed: 01/17/2023] Open
Abstract
A high-density linkage map was constructed using 1,885 newly obtained loci and 3,747 previously published loci, which included 5,152 loci with 4696.03 cM in total length and 0.91 cM in mean distance. Homology analysis in the cotton genome further confirmed the 13 expected homologous chromosome pairs and revealed an obvious inversion on Chr10 or Chr20 and repeated inversions on Chr07 or Chr16. In addition, two reciprocal translocations between Chr02 and Chr03 and between Chr04 and Chr05 were confirmed. Comparative genomics between the tetraploid cotton and the diploid cottons showed that no major structural changes exist between DT and D chromosomes but rather between AT and A chromosomes. Blast analysis between the tetraploid cotton genome and the mixed genome of two diploid cottons showed that most AD chromosomes, regardless of whether it is from the AT or DT genome, preferentially matched with the corresponding homologous chromosome in the diploid A genome, and then the corresponding homologous chromosome in the diploid D genome, indicating that the diploid D genome underwent converted evolution by the diploid A genome to form the DT genome during polyploidization. In addition, the results reflected that a series of chromosomal translocations occurred among Chr01/Chr15, Chr02/Chr14, Chr03/Chr17, Chr04/Chr22, and Chr05/Chr19.
Collapse
Affiliation(s)
- Ximei Li
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China College of Agronomy and Plant Protection, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology, Qingdao, Shandong, China
| | - Xin Jin
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hantao Wang
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
33
|
Khan MKR, Chen H, Zhou Z, Ilyas MK, Wang X, Cai X, Wang C, Liu F, Wang K. Genome Wide SSR High Density Genetic Map Construction from an Interspecific Cross of Gossypium hirsutum × Gossypium tomentosum. FRONTIERS IN PLANT SCIENCE 2016; 7:436. [PMID: 27148280 PMCID: PMC4829609 DOI: 10.3389/fpls.2016.00436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/21/2016] [Indexed: 05/24/2023]
Abstract
A high density genetic map was constructed using F2 population derived from an interspecific cross of G. hirsutum × G. tomentosum. The map consisted of 3093 marker loci distributed across all the 26 chromosomes and covered 4365.3 cM of cotton genome with an average inter-marker distance of 1.48 cM. The maximum length of chromosome was 218.38 cM and the minimum was 122.09 cM with an average length of 167.90 cM. A sub-genome covers more genetic distance (2189.01 cM) with an average inter loci distance of 1.53 cM than D sub-genome which covers a length of 2176.29 cM with an average distance of 1.43 cM. There were 716 distorted loci in the map accounting for 23.14% and most distorted loci were distributed on D sub-genome (25.06%), which were more than on A sub-genome (21.23%). In our map 49 segregation hotspots (SDR) were distributed across the genome with more on D sub-genome as compared to A genome. Two post-polyploidization reciprocal translocations of "A2/A3 and A4/A5" were suggested by seven pairs of duplicate loci. The map constructed through these studies is one of the three densest genetic maps in cotton however; this is the first dense genome wide SSR interspecific genetic map between G. hirsutum and G. tomentosum.
Collapse
Affiliation(s)
- Muhammad K. R. Khan
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and BiologyFaisalabad, Pakistan
| | - Haodong Chen
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- Cotton Sciences Research Institute of Hunan/National Hybrid Cotton Research Promotion CenterChangde, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Muhammad K. Ilyas
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- National Agricultural Research CentreIslamabad, Pakistan
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Chunying Wang
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| |
Collapse
|
34
|
Dai B, Guo H, Huang C, Ahmed MM, Lin Z. Identification and Characterization of Segregation Distortion Loci on Cotton Chromosome 18. FRONTIERS IN PLANT SCIENCE 2016; 7:2037. [PMID: 28149299 PMCID: PMC5242213 DOI: 10.3389/fpls.2016.02037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/20/2016] [Indexed: 05/11/2023]
Abstract
Segregation distortion is commonly detected via genetic mapping and this phenomenon has been reported in many species. However, the genetic causes of the segregation distortion regions in a majority of species are still unclear. To genetically dissect the SD on chromosome 18 in cotton, eight reciprocal backcross populations and two F2 populations were developed. Eleven segregation distortion loci (SDL) were detected in these ten populations. Comparative analyses among populations revealed that SDL18.1 and SDL18.9 were consistent with male gametic competition; whereas SDL18.4 and SDL18.11 reflected female gametic selection. Similarly, other SDL could reflect zygotic selection. The surprising finding was that SDL18.8 was detected in all populations, and the direction was skewed towards heterozygotes. Consequently, zygotic selection or heterosis could represent the underlying genetic mechanism for SDL18.8. Among developed introgression lines, SDL18.8 was introgressed as a heterozygote, further substantiating that a heterozygote state was preferred under competition. Six out of 11 SDL on chromosome 18 were dependent on the cytoplasmic environment. These results indicated that different SDL showed varying responses to the cytoplasmic environment. Overall, the results provided a novel strategy to analyze the molecular mechanisms, which could be further exploited in cotton interspecific breeding programs.
Collapse
|
35
|
Niu E, Shang X, Cheng C, Bao J, Zeng Y, Cai C, Du X, Guo W. Comprehensive Analysis of the COBRA-Like (COBL) Gene Family in Gossypium Identifies Two COBLs Potentially Associated with Fiber Quality. PLoS One 2015; 10:e0145725. [PMID: 26710066 PMCID: PMC4692504 DOI: 10.1371/journal.pone.0145725] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/08/2015] [Indexed: 12/28/2022] Open
Abstract
COBRA-Like (COBL) genes, which encode a plant-specific glycosylphosphatidylinositol (GPI) anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O. sativa, Z. mays and S. lycopersicum, but little in Gossypium. Here we identified 19, 18 and 33 candidate COBL genes from three sequenced cotton species, diploid cotton G. raimondii, G. arboreum and tetraploid cotton G. hirsutum acc. TM-1, respectively. These COBL members were anchored onto 10 chromosomes in G. raimondii and could be divided into two subgroups. Expression patterns of COBL genes showed highly developmental and spatial regulation in G. hirsutum acc. TM-1. Of them, GhCOBL9 and GhCOBL13 were preferentially expressed at the secondary cell wall stage of fiber development and had significantly co-upregulated expression with cellulose synthase genes GhCESA4, GhCESA7 and GhCESA8. Besides, GhCOBL9 Dt and GhCOBL13 Dt were co-localized with previously reported cotton fiber quality quantitative trait loci (QTLs) and the favorable allele types of GhCOBL9 Dt had significantly positive correlations with fiber quality traits, indicating that these two genes might play an important role in fiber development.
Collapse
Affiliation(s)
- Erli Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jianghao Bao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanda Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
36
|
Liang Q, Shang L, Wang Y, Hua J. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.). PLoS One 2015; 10:e0143548. [PMID: 26618635 PMCID: PMC4664285 DOI: 10.1371/journal.pone.0143548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in F2: 3 and F2: 4 populations derived from a hybrid 'Xinza No. 1'. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F1 for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F2: 3 and F2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F2:3 population, and 19 QTLs showed overdominance in F2:4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive × additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary two-locus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at single-locus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton.
Collapse
Affiliation(s)
- Qingzhi Liang
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, China Agricultural University, Beijing, 100193, P. R. China
| | - Lianguang Shang
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, China Agricultural University, Beijing, 100193, P. R. China
| | - Yumei Wang
- Research Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Jinping Hua
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, China Agricultural University, Beijing, 100193, P. R. China
- * E-mail:
| |
Collapse
|
37
|
Liu C, Yuan D, Lin Z. Construction of an EST-SSR-based interspecific transcriptome linkage map of fibre development in cotton. J Genet 2015; 93:689-97. [PMID: 25572227 DOI: 10.1007/s12041-014-0425-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Quantitative trait locus (QTL) mapping is an important method in marker-assisted selection breeding. Many studies on the QTLs focus on cotton fibre yield and quality; however, most are conducted at the DNA level, which may reveal null QTLs. Hence, QTL mapping based on transcriptome maps at the cDNA level is often more reliable. In this study, an interspecific transcriptome map of allotetraploid cotton was developed based on an F2 population (Emian22 x 3-79) by amplifying cDNA using EST-SSRs. The map was constructed using cDNA obtained from developing fibres at five days post anthesis (DPA). A total of 1270 EST-SSRs were screened for polymorphisms between the mapping parents. The resulting transcriptome linkage map contained 242 markers that were distributed in 32 linkage groups (26 chromosomes). The full length of this map is 1938.72 cM with a mean marker distance of 8.01 cM. The functions of some ESTs have been annotated by exploring homologous sequences. Some markers were related to the differentiation and elongation of cotton fibre, while most were related to the basic metabolism. This study demonstrates that constructing a transcriptome linkage map by amplifying cDNAs using EST-SSRs is a simple and practical method as well as a powerful tool to map eQTLs for fibre quality and other traits in cotton.
Collapse
Affiliation(s)
- Chuanxiang Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.
| | | | | |
Collapse
|
38
|
Chen H, Khan MKR, Zhou Z, Wang X, Cai X, Ilyas MK, Wang C, Wang Y, Li Y, Liu F, Wang K. A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii. Gene 2015; 574:273-86. [PMID: 26275937 DOI: 10.1016/j.gene.2015.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/13/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
The cultivated allotetraploid species Gossypium hirsutum, accounts for 90% of the world cotton production, has narrow genetic basis that's why its yield, quality or stress resistance breeding is stagnant. It is therefore, essential to explore desirable genes from Gossypium darwinii which has enviable traits such as high fiber fineness, drought tolerance, fusarium and verticillium resistance. We used G. darwinii as primary plant materials in this study not only to enrich the genetic diversity of exiting germplasm but also to better understand its genome structure. An interspecific high density linkage map of allotetraploid cotton was constructed using F2 population (G. hirsutum×G. darwinii). The map was based entirely on genome-wide simple sequence repeat (SSR) markers. A total of 2763 markers were mapped in 26 linkage groups (chromosomes) covering a genome length of 4176.7cM with an average inter-locus distance of 1.5cM. The length of the chromosomes ranged from 84.7 to 238.5cM with an average length of 160.6cM. At subgenome length was 2160.7cM with an average distance of 1.6cM, where as Dt genome length was 2016cM with an average distance of 1.4cM. There were 601 distorted SSR loci. Less number of segregation distortion loci were located in At subgenome than in Dt subgenome. Two post-polyploidization reciprocal translocations of "A2/A3 and A4/A5" were suggested by 44 pairs of duplicate loci.
Collapse
Affiliation(s)
- Haodong Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Cotton Sciences Research Institute of Hunan/National Hybrid Cotton Research Promotion Center, Changde, Hunan 415101, China.
| | - M Kashif Riaz Khan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Nuclear Institute for Agriculture & Biology (NIAB), Faisalabad, Pakistan.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - M Kashif Ilyas
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Agricultural Research Centre, Park Road, Islamabad, Pakistan.
| | - Chunying Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuqiang Li
- Cotton Sciences Research Institute of Hunan/National Hybrid Cotton Research Promotion Center, Changde, Hunan 415101, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
39
|
Lv Y, Ma D, Liang W, Lv Y, Guo W, Hu Y, Zhang T. Construction of BAC contig maps of homoeologous chromosomes A12 and D12 of Gossypium hirsutum L. acc. TM-1. Mol Cytogenet 2015. [PMID: 26221184 PMCID: PMC4517413 DOI: 10.1186/s13039-015-0158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The Gossypium hirsutum homoeologous chromosome 12 encodes important genes that contribute to fiber fuzz, lethality, gland development and male sterility. In this study a physical map of the cotton TM-1 chromosome 12 was constructed. A number of large-insert cotton genome libraries are available, and genome-wide physical mapping using large insert segments combined with bacterial cloning is a thriving area of genome research. However, sequencing of the cotton genome is difficult due to sequence repeats and homoeologous regions. In order to effectively distinguish the homologous segments, a new method for adjusting the parameters of the FPC software was applied for contig map construction. Results All available markers on chromosomes A12 and D12 were used to screen the TM-1 BAC library by PCR. A total of 775 clones (387 for A12, 388 for D12) were obtained using Hind III fingerprinting and used for construction of the contig map. Seven pairs of SSR markers located on A12 and D12 were chosen for contig analysis. Following optimization of the tolerance (10) and cutoff (1e-12) parameters, combining all clones from A12 and D12 produced two separate contigs. Conclusions The BAC contig map of chromosomes A12 and D12 was constructed and FPC software parameters were optimized for analysis. The resulting approach is a powerful platform for genome-wide and evolutionary research on cotton.
Collapse
Affiliation(s)
- Yanhui Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dan Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenhua Liang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuanda Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yan Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
40
|
Wang H, Huang C, Guo H, Li X, Zhao W, Dai B, Yan Z, Lin Z. QTL Mapping for Fiber and Yield Traits in Upland Cotton under Multiple Environments. PLoS One 2015; 10:e0130742. [PMID: 26110526 PMCID: PMC4481505 DOI: 10.1371/journal.pone.0130742] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/24/2015] [Indexed: 01/30/2023] Open
Abstract
A population of 178 recombinant inbred lines (RILs) was developed using a single seed descendant from a cross between G. hirsutum. acc DH962 and G. hirsutum. cv Jimian5, was used to construct a genetic map and to map QTL for fiber and yield traits. A total of 644 polymorphic loci were used to construct a final genetic map, containing 616 loci and spanning 2016.44 cM, with an average of 3.27 cM between adjacent markers. Statistical analysis revealed that segregation distortion in the intraspecific population was more serious than that in the interspecific population. The RIL population and the two parents were phenotyped under 8 environments (two locations, six years), revealing a total of 134 QTL, including 64 for fiber qualities and 70 for yield components, independently detected in seven environments, explaining 4.40-15.28% of phenotypic variation (PV). Among the 134 QTL, 9 common QTL were detected in more than one environment, and 22 QTL and 19 new QTL were detected in combined analysis (E9). A total of 26 QTL hotspot regions were observed on 13 chromosomes and 2 larger linkage groups, and some QTL clusters related to fiber qualities or yield components were also observed. The results obtained in the present study suggested that to map accurate QTL in crops with larger plant types, such as cotton, phenotyping under multiple environments is necessary to effectively apply the obtained results in molecular marker-assisted selection breeding and QTL cloning.
Collapse
Affiliation(s)
- Hantao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University. Wuhan 430070, Hubei, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University. Wuhan 430070, Hubei, China
| | - Huanle Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University. Wuhan 430070, Hubei, China
| | - Ximei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University. Wuhan 430070, Hubei, China
| | - Wenxia Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University. Wuhan 430070, Hubei, China
| | - Baosheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University. Wuhan 430070, Hubei, China
| | - Zhenhua Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University. Wuhan 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University. Wuhan 430070, Hubei, China
| |
Collapse
|
41
|
Wang Q, Fang L, Chen J, Hu Y, Si Z, Wang S, Chang L, Guo W, Zhang T. Genome-wide mining, characterization, and development of microsatellite markers in gossypium species. Sci Rep 2015; 5:10638. [PMID: 26030481 PMCID: PMC4650602 DOI: 10.1038/srep10638] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/01/2015] [Indexed: 12/02/2022] Open
Abstract
Although much research has been conducted to characterize microsatellites and develop markers, the distribution of microsatellites remains ambiguous and the use of microsatellite markers in genomic studies and marker-assisted selection is limited. To identify microsatellites for cotton research, we mined 100,290, 83,160, and 56,937 microsatellites with frequencies of 41.2, 49.1, and 74.8 microsatellites per Mb in the recently sequenced Gossypium species: G. hirsutum, G. arboreum, and G. raimondii, respectively. The distributions of microsatellites in their genomes were non-random and were positively and negatively correlated with genes and transposable elements, respectively. Of the 77,996 developed microsatellite markers, 65,498 were physically anchored to the 26 chromosomes of G. hirsutum with an average marker density of 34 markers per Mb. We confirmed 67,880 (87%) universal and 7,705 (9.9%) new genic microsatellite markers. The polymorphism was estimated in above three species by in silico PCR and validated with 505 markers in G. hirsutum. We further predicted 8,825 polymorphic microsatellite markers within G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124. In our study, genome-wide mining and characterization of microsatellites, and marker development were very useful for the saturation of the allotetraploid genetic linkage map, genome evolution studies and comparative genome mapping.
Collapse
Affiliation(s)
- Qiong Wang
- 1] State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China [2]
| | - Lei Fang
- 1] State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China [2]
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhanfeng Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Sen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Wang S, Chen J, Zhang W, Hu Y, Chang L, Fang L, Wang Q, Lv F, Wu H, Si Z, Chen S, Cai C, Zhu X, Zhou B, Guo W, Zhang T. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 2015; 16:108. [PMID: 26003111 PMCID: PMC4469577 DOI: 10.1186/s13059-015-0678-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/18/2015] [Indexed: 11/23/2022] Open
Abstract
Background SNPs are the most abundant polymorphism type, and have been explored in many crop genomic studies, including rice and maize. SNP discovery in allotetraploid cotton genomes has lagged behind that of other crops due to their complexity and polyploidy. In this study, genome-wide SNPs are detected systematically using next-generation sequencing and efficient SNP genotyping methods, and used to construct a linkage map and characterize the structural variations in polyploid cotton genomes. Results We construct an ultra-dense inter-specific genetic map comprising 4,999,048 SNP loci distributed unevenly in 26 allotetraploid cotton linkage groups and covering 4,042 cM. The map is used to order tetraploid cotton genome scaffolds for accurate assembly of G. hirsutum acc. TM-1. Recombination rates and hotspots are identified across the cotton genome by comparing the assembled draft sequence and the genetic map. Using this map, genome rearrangements and centromeric regions are identified in tetraploid cotton by combining information from the publicly-available G. raimondii genome with fluorescent in situ hybridization analysis. Conclusions We report the genotype-by-sequencing method used to identify millions of SNPs between G. hirsutum and G. barbadense. We construct and use an ultra-dense SNP map to correct sequence mis-assemblies, merge scaffolds into pseudomolecules corresponding to chromosomes, detect genome rearrangements, and identify centromeric regions in allotetraploid cottons. We find that the centromeric retro-element sequence of tetraploid cotton derived from the D subgenome progenitor might have invaded the A subgenome centromeres after allotetrapolyploid formation. This study serves as a valuable genomic resource for genetic research and breeding of cotton. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0678-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenpan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fenni Lv
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huaitong Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhanfeng Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuqi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caiping Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
43
|
Shi Y, Li W, Li A, Ge R, Zhang B, Li J, Liu G, Li J, Liu A, Shang H, Gong J, Gong W, Yang Z, Tang F, Liu Z, Zhu W, Jiang J, Yu X, Wang T, Wang W, Chen T, Wang K, Zhang Z, Yuan Y. Constructing a high-density linkage map for Gossypium hirsutum × Gossypium barbadense and identifying QTLs for lint percentage. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:450-67. [PMID: 25263268 DOI: 10.1111/jipb.12288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/21/2014] [Indexed: 05/18/2023]
Abstract
To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high-density simple sequence repeat (SSR) genetic linkage map was developed from a BC1 F1 population of Gossypium hirsutum × Gossypium barbadense. The map comprised 2,292 loci and covered 5115.16 centiMorgan (cM) of the cotton AD genome, with an average marker interval of 2.23 cM. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five published high-density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty-six quantitative trait loci (QTLs) for lint percentage (LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker-assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%-2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.
Collapse
Affiliation(s)
- Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, the Ministry of Agriculture, Institute of Cotton Research, the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 2015; 290:1683-700. [PMID: 25796191 DOI: 10.1007/s00438-015-1027-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
Upland cotton plays a critical role not only in the textile industry, but also in the production of important secondary metabolites, such as oil and proteins. Construction of a high-density linkage map and identifying yield and seed trait quantitative trail loci (QTL) are prerequisites for molecular marker-assisted selective breeding projects. Here, we update a high-density upland cotton genetic map from recombinant inbred lines. A total of 25,313 SSR primer pairs were screened for polymorphism between Yumian 1 and T586, and 1712 SSR primer pairs were used to genotype the mapping population and construct a map. An additional 1166 loci have been added to our previously published map with 509 SSR markers. The updated genetic map spans a total recombinant length of 3338.2 cM and contains 1675 SSR loci and nine morphological markers, with an average interval of 1.98 cM between adjacent markers. Green lint (Lg) mapped on chromosome 15 in a previous report is mapped in an interval of 2.6 cM on chromosome 21. Based on the map and phenotypic data from multiple environments, 79 lint percentage and seed nutrient trait QTL are detected. These include 8 lint percentage, 13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13 palmitic, and 12 stearic acid content QTL. They explain 3.5-62.7 % of the phenotypic variation observed. Four morphological markers identified have a major impact on lint percentage and cottonseed nutrients traits. In this study, our genetic map provides new sights into the tetraploid cotton genome. Furthermore, the stable QTL and morphological markers could be used for fine-mapping and map-based cloning.
Collapse
|
45
|
Xu Z, Yu J, Kohel RJ, Percy RG, Beavis WD, Main D, Yu JZ. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome. Genomics 2015; 106:61-9. [PMID: 25796538 DOI: 10.1016/j.ygeno.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/05/2015] [Accepted: 03/11/2015] [Indexed: 01/15/2023]
Abstract
Cotton fiber represents the largest single cell in plants and they serve as models to study cell development. This study investigated the distribution and evolution of fiber Unigenes anchored to recombination hotspots between tetraploid cotton (Gossypium hirsutum) At and Dt subgenomes, and within a parental diploid cotton (Gossypium raimondii) D genome. Comparative analysis of At vs D and Dt vs D showed that 1) the D genome provides many fiber genes after its merger with another parental diploid cotton (Gossypium arboreum) A genome although the D genome itself does not produce any spinnable fiber; 2) similarity of fiber genes is higher between At vs D than between Dt vs D genomic hotspots. This is the first report that fiber genes have higher similarity between At and D than between Dt and D. The finding provides new insights into cotton genomic regions that would facilitate genetic improvement of natural fiber properties.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Jing Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA; Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Russell J Kohel
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - Richard G Percy
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - William D Beavis
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA.
| |
Collapse
|
46
|
Waples RK, Seeb LW, Seeb JE. Linkage mapping with paralogs exposes regions of residual tetrasomic inheritance in chum salmon (Oncorhynchus keta). Mol Ecol Resour 2015; 16:17-28. [DOI: 10.1111/1755-0998.12394] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- R. K. Waples
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| | - L. W. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| | - J. E. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| |
Collapse
|
47
|
Development of chromosome-specific markers with high polymorphism for allotetraploid cotton based on genome-wide characterization of simple sequence repeats in diploid cottons (Gossypium arboreum L. and Gossypium raimondii Ulbrich). BMC Genomics 2015; 16:55. [PMID: 25652321 PMCID: PMC4325953 DOI: 10.1186/s12864-015-1265-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/22/2015] [Indexed: 02/04/2023] Open
Abstract
Background Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes. Results A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available. Conclusion Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Hinze LL, Fang DD, Gore MA, Scheffler BE, Yu JZ, Frelichowski J, Percy RG. Molecular characterization of the Gossypium Diversity Reference Set of the US National Cotton Germplasm Collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:313-327. [PMID: 25431191 DOI: 10.1007/s00122-014-2431-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
A core marker set containing markers developed to be informative within a single commercial cotton species can elucidate diversity structure within a multi-species subset of the Gossypium germplasm collection. An understanding of the genetic diversity of cotton (Gossypium spp.) as represented in the US National Cotton Germplasm Collection is essential to develop strategies for collecting, conserving, and utilizing these germplasm resources. The US collection is one of the largest world collections and includes not only accessions with improved yield and fiber quality within cultivated species, but also accessions possessing sources of abiotic and biotic stress resistance often found in wild species. We evaluated the genetic diversity of a subset of 272 diploid and 1,984 tetraploid accessions in the collection (designated the Gossypium Diversity Reference Set) using a core set of 105 microsatellite markers. Utility of the core set of markers in differentiating intra-genome variation was much greater in commercial tetraploid genomes (99.7 % polymorphic bands) than in wild diploid genomes (72.7 % polymorphic bands), and may have been influenced by pre-selection of markers for effectiveness in the commercial species. Principal coordinate analyses revealed that the marker set differentiated interspecific variation among tetraploid species, but was only capable of partially differentiating among species and genomes of the wild diploids. Putative species-specific marker bands in G. hirsutum (73) and G. barbadense (81) were identified that could be used for qualitative identification of misclassifications, redundancies, and introgression within commercial tetraploid species. The results of this broad-scale molecular characterization are essential to the management and conservation of the collection and provide insight and guidance in the use of the collection by the cotton research community in their cotton improvement efforts.
Collapse
Affiliation(s)
- Lori L Hinze
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Qin H, Chen M, Yi X, Bie S, Zhang C, Zhang Y, Lan J, Meng Y, Yuan Y, Jiao C. Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections. PLoS One 2015; 10:e0118073. [PMID: 25635680 PMCID: PMC4311988 DOI: 10.1371/journal.pone.0118073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/04/2015] [Indexed: 11/19/2022] Open
Abstract
Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1-2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.
Collapse
Affiliation(s)
- Hongde Qin
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Min Chen
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Xianda Yi
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Shu Bie
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Cheng Zhang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Youchang Zhang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Jiayang Lan
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Yanyan Meng
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Youlu Yuan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyan, China
| | - Chunhai Jiao
- Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
50
|
Construction of cytogenetic map of Gossypium herbaceum chromosome 1 and its integration with genetic maps. Mol Cytogenet 2015; 8:2. [PMID: 25628758 PMCID: PMC4307992 DOI: 10.1186/s13039-015-0106-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Background Cytogenetic map can provide not only information of the genome structure, but also can build a solid foundation for genetic research. With the developments of molecular and cytogenetic studies in cotton (Gossypium), the construction of cytogenetic map is becoming more and more imperative. Results A cytogenetic map of chromosome 1 (A101) of Gossypium herbaceum (A1) which includes 10 bacterial artificial chromosome (BAC) clones was constructed by using fluorescent in situ hybridization (FISH). Meanwhile, comparison and analysis were made for the cytogenetic map of chromosome 1 (A101) of G. herbaceum with four genetic linkage maps of chromosome 1 (Ah01) of G. hirsutum ((AD)1) and one genetic linkage map of chromosome 1 of (A101) G. arboreum (A2). The 10 BAC clones were also used to be localized on G. raimondii (D5) chromosome 1 (D501), and 2 of them showed clear unique hybridized signals. Furthermore, these 2 BAC clones were also shown localized on chromosome 1 of both A sub-genome and D sub-genome of G. hirsutum. Conclusion The comparison of the cytogenetic map with genetic linkage maps showed that most of the identified marker-tagged BAC clones appearing same orders in different maps except three markers showing different positions, which might indicate chromosomal segmental rearrangements. The positions of the 2 BAC clones which were localized on Ah01 and Dh01 chromosomes were almost the same as that on A101 and D501 chromosomes. The corresponding anchored SSR markers of these 2 BAC clones were firstly found to be localized on chromosome D501 (Dh01) as they were not seen mapped like this in any genetic map reported.
Collapse
|