1
|
Zhang K, Cao Y, Guo X, Kong F, Sun H, Jing T, Zhan Y, Qi F. Comparative transcriptome analysis of differentially expressed genes and pathways in male and female flowers of Fraxinus mandshurica. PLoS One 2024; 19:e0308013. [PMID: 39264914 PMCID: PMC11392328 DOI: 10.1371/journal.pone.0308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/16/2024] [Indexed: 09/14/2024] Open
Abstract
Fraxinus mandshurica Rupr. (F. mandshurica) is a dioecious tree species with important ecological and application values. To delve deeper into the regulatory pathways and genes responsible for male and female flowers in F. mandshurica, we conducted transcriptome sequencing on male and female flowers at four distinct stages. The analysis revealed that the female database generated 38,319,967 reads while the male database generated 43,320,907 reads, resulting in 2930 differentially expressed genes with 1441 were up-regulated and 1489 down-regulated in males compared to females. Following an analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), four distinct pathways (hormone signal transduction, energy metabolism, flavonoid biosynthesis, and photoperiod) linked to female and male flowers were identified. Subsequently, qRT-PCR verification revealed that FmAUX/IAA, FmEIN3, and FmA-ARR genes in hormone signal transduction pathway are related to female flower development. Meanwhile, FmABF genes in hormone signal transduction pathway, FmGS and FmGDH genes in energy metabolism pathway, FmFLS genes in flavonoid biosynthesis pathway, and FmCaM, FmCRY, and FmPKA genes in photoperiod pathway are related to male flower development. This study was the first to analyze the transcriptome of male and female flowers of F. mandshurica, providing a reference for the developmental pathways and gene expression levels of male and female plants.
Collapse
Affiliation(s)
- Kaifang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xinyue Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fanqiu Kong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongran Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianzhong Jing
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fenghui Qi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Talukdar A, Kundu P, Bhattacharya S, Dutta N. Microplastic contamination in wastewater: Sources, distribution, detection and remediation through physical and chemical-biological methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170254. [PMID: 38253100 DOI: 10.1016/j.scitotenv.2024.170254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Microplastics are tiny plastic particles smaller than 5 mm. that have been widely detected in the environment, including in wastewater. They originate from various sources including breakdown of larger plastic debris, release of plastic fibres from textiles, and microbeads commonly used in personal care products. In wastewater, microplastics can pass through the treatment process and enter the environment, causing harm to biodiversity by potentially entering the food chain. Additionally, microplastics can act as a vector for harmful pollutants, increasing their transport and distribution in the environment. To address this issue, there is a growing need for effective wastewater treatment methods that can effectively remove microplastics. Currently, several physical and chemical methods are available, including filtration, sedimentation, and chemical degradation. However, these methods are costly, low efficiency and generate secondary pollutants. Furthermore, lack of standardization in the measurement and reporting of microplastics in wastewater, makes it difficult to accurately assess microplastic impact on the environment. In order to effectively manage these issues, further research and development of effective and efficient methods for removing microplastics from wastewater, as well as standardization in measurement and reporting, are necessary to effectively manage these detrimental contaminants.
Collapse
Affiliation(s)
- Avishek Talukdar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| | - Nalok Dutta
- Biochemical Engineering Department, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Hatchett WJ, Jueterbock AO, Kopp M, Coyer JA, Coelho SM, Hoarau G, Lipinska AP. Evolutionary dynamics of sex-biased gene expression in a young XY system: insights from the brown alga genus Fucus. THE NEW PHYTOLOGIST 2023; 238:422-437. [PMID: 36597732 DOI: 10.1111/nph.18710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Sex-biased gene expression is considered to be an underlying cause of sexually dimorphic traits. Although the nature and degree of sex-biased expression have been well documented in several animal and plant systems, far less is known about the evolution of sex-biased genes in more distant eukaryotic groups. Here, we investigate sex-biased gene expression in two brown algal dioecious species, Fucus serratus and Fucus vesiculosus, where male heterogamety (XX/XY) has recently emerged. We find that in contrast to evolutionary distant plant and animal lineages, male-biased genes do not experience high turnover rates, but instead reveal remarkable conservation of bias and expression levels between the two species, suggesting their importance in sexual differentiation. Genes with consistent male bias were enriched in functions related to gamete production, along with sperm competition and include three flagellar proteins under positive selection. We present one of the first reports, outside of the animal kingdom, showing that male-biased genes display accelerated rates of coding sequence evolution compared with female-biased or unbiased genes. Our results imply that evolutionary forces affect male and female sex-biased genes differently on structural and regulatory levels, resulting in unique properties of differentially expressed transcripts during reproductive development in Fucus algae.
Collapse
Affiliation(s)
- William J Hatchett
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Martina Kopp
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - James A Coyer
- Shoals Marine Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Susana M Coelho
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tuebingen, Germany
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Agnieszka P Lipinska
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tuebingen, Germany
| |
Collapse
|
4
|
Jachimowicz P, Jo YJ, Cydzik-Kwiatkowska A. Polyethylene microplastics increase extracellular polymeric substances production in aerobic granular sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158208. [PMID: 36028039 DOI: 10.1016/j.scitotenv.2022.158208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants act as microplastic (MPs) sinks and secondary MP pollution sources. Little is known about the effect of MPs on biomass and the efficiency of biological wastewater treatment. This study assessed the impact of polyethylene (PE) MPs concentrations (1, 10, 50 mg/L) in wastewater on biological conversions and extracellular polymeric substances (EPS) production (including alginate) in aerobic granular sludge (AGS). PE MPs did not worsen the efficiency of biological treatment but stimulated the production of EPS and alginate in AGS. The alginate content increased from 238.7 ± 4.4 mg/g MLSS in control to 441.6 ± 13.8 mg/g MLSS at the highest PE load in wastewater. The presence of MP changed AGS morphology and worsened the settling properties of biomass, causing biomass washout from the reactors. At the highest PE load in wastewater, the biomass concentration in the reactor effluent was over 2.8 times higher than in the control.
Collapse
Affiliation(s)
- Piotr Jachimowicz
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, 10-709 Olsztyn, Poland.
| | - Young-Jae Jo
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, 10-709 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, 10-709 Olsztyn, Poland
| |
Collapse
|
5
|
Singh S, Kalyanasundaram M, Diwan V. Removal of microplastics from wastewater: available techniques and way forward. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3689-3704. [PMID: 34928836 DOI: 10.2166/wst.2021.472] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastics are the newly emerged contaminants with a presence in almost every part of the globe. Despite being small in size, microplastic particles have proved to be harmful for plants, animals, humans, and for the ecosystem in general. Water is one of the most important routes through which microplastics transfer from one place to another. Moreover, water is also an important route for the ingestion of microplastics in human, which results in various health issues, such as cancer, mutagenic and teratogenic abnormalities. Thus, microplastics in water is an emerging public health issue which needs attention and, hence, it is important to investigate removal techniques for microplastics in wastewater. Although, there are some biological, chemical/electrochemical, and physical techniques to remove microplastics, their wide scale applicability and cost-effectiveness is an issue. In this review, we have discussed the existing and upcoming treatment technologies for the removal of microplastics from wastewater and also tried to present an overview for the future approaches.
Collapse
Affiliation(s)
- Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health, Bhopal 462 030, India E-mail:
| | - Madhanraj Kalyanasundaram
- Division of Environmental Health and Epidemiology, ICMR - National Institute for Research in Environmental Health, Bhopal 462 030, India
| | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health, Bhopal 462 030, India E-mail:
| |
Collapse
|
6
|
Zhang J, Li Y, Luo S, Cao M, Zhang L, Li X. Differential gene expression patterns during gametophyte development provide insights into sex differentiation in the dioicous kelp Saccharina japonica. BMC PLANT BIOLOGY 2021; 21:335. [PMID: 34261451 PMCID: PMC8278619 DOI: 10.1186/s12870-021-03117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In brown algae, dioicy is the prevalent sexual system, and phenotypic differences between male and female gametophytes have been found in many dioicous species. Saccharina japonica show remarkable sexual dimorphism in gametophytes before gametogenesis. A higher level of phenotypic differentiation was also found in female and male gametes after gametogenesis. However, the patterns of differential gene expression throughout gametophyte development and how these changes might relate to sex-specific fitness at the gamete stage in S. japonica are not well known. RESULTS In this study, differences in gene expression between male and female gametophytes in different developmental stages were investigated using comparative transcriptome analysis. Among the 20,151 genes expressed in the haploid gametophyte generation, 37.53% were sex-biased. The abundance of sex-biased genes in mature gametophytes was much higher than that in immature gametophytes, and more male-biased than female-biased genes were observed in the mature stage. The predicted functions of most sex-biased genes were closely related to the sex-specific characteristics of gametes, including cell wall biosynthesis, sperm motility, and sperm and egg recognition. In addition, 51 genes were specifically expressed in males in both stages, showing great potential as candidate male sex-determining region (SDR) genes. CONCLUSIONS This study describes a thorough investigation into differential gene expression between male and female gametophytes in the dioicous kelp S. japonica. A large number of sex-biased genes in mature gametophytes may be associated with the divergence of phenotypic traits and physiological functions between female gametes (eggs) and male gametes (sperm) during sexual differentiation. These genes may mainly come from new sex-biased genes that have recently evolved in the S. japonica lineage. The duplication of sex-biased genes was detected, which may increase the number of sex-biased genes after gametogenesis in S. japonica to some extent. The excess of male-biased genes over female-biased genes in the mature stage may reflect the different levels of sexual selection across sexes. This study deepens our understanding of the regulation of sex development and differentiation in the dioicous kelp S. japonica.
Collapse
Affiliation(s)
- Jiaxun Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Shiju Luo
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xiaojie Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| |
Collapse
|
7
|
Zhang X, Fan X, Wang Y, Xu D, Zhang J, Ye N. Exploring Core Response Mechanisms to Multiple Environmental Stressors Via A Genome-Wide Study in the Brown Alga Saccharina japonica (Laminariales, Phaeophyceae). JOURNAL OF PHYCOLOGY 2021; 57:345-354. [PMID: 33211355 DOI: 10.1111/jpy.13108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Saccharina japonica is an important large brown alga and a major component of productive beds on the northwest coast of the Pacific Ocean. Abiotic stress response mechanisms are receiving considerable attention because global climate change is increasing their abiotic stress levels. However, our knowledge of how S. japonica broadly responds to stress is limited. In this study, we investigated the S. japonica responsive genes underlying acclimation to diverse stressors of acidification, high light, high temperature, hypersalinity, and hyposalinity and identified 408 core genes constantly and differentially expressed in response to all stressors. Our results confirm that stressors had strong effects on genes participating in photosynthesis, amino acid metabolism, carbohydrate metabolism, halogen metabolism, and reactive oxygen species defense. These findings will improve our understanding of brown algal response mechanisms linked to environmental stress and provide a list of candidate genes for improving algal stress tolerance in light of environmental stress in future studies.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Jian Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| |
Collapse
|
8
|
Abstract
Model organisms are extensively used in research as accessible and convenient systems for studying a particular area or question in biology. Traditionally, only a limited number of organisms have been studied in detail, but modern genomic tools are enabling researchers to extend beyond the set of classical model organisms to include novel species from less-studied phylogenetic groups. This review focuses on model species for an important group of multicellular organisms, the brown algae. The development of genetic and genomic tools for the filamentous brown alga Ectocarpus has led to it emerging as a general model system for this group, but additional models, such as Fucus or Dictyota dichotoma, remain of interest for specific biological questions. In addition, Saccharina japonica has emerged as a model system to directly address applied questions related to algal aquaculture. We discuss the past, present, and future of brown algal model organisms in relation to the opportunities and challenges in brown algal research.
Collapse
Affiliation(s)
- Susana M Coelho
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
- Current affiliation: Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - J Mark Cock
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
| |
Collapse
|
9
|
Rugiu L, Panova M, Pereyra RT, Jormalainen V. Gene regulatory response to hyposalinity in the brown seaweed Fucus vesiculosus. BMC Genomics 2020; 21:42. [PMID: 31931708 PMCID: PMC6958763 DOI: 10.1186/s12864-020-6470-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Rockweeds are among the most important foundation species of temperate rocky littoral shores. In the Baltic Sea, the rockweed Fucus vesiculosus is distributed along a decreasing salinity gradient from the North Atlantic entrance to the low-salinity regions in the north-eastern margins, thus, demonstrating a remarkable tolerance to hyposalinity. The underlying mechanisms for this tolerance are still poorly understood. Here, we exposed F. vesiculosus from two range-margin populations to the hyposaline (2.5 PSU - practical salinity unit) conditions that are projected to occur in the region by the end of this century as a result of climate change. We used transcriptome analysis (RNA-seq) to determine the gene expression patterns associated with hyposalinity acclimation, and examined the variation in these patterns between the sampled populations. RESULTS Hyposalinity induced different responses in the two populations: in one, only 26 genes were differentially expressed between salinity treatments, while the other population demonstrated up- or downregulation in 3072 genes. In the latter population, the projected future hyposalinity induced an acute response in terms of antioxidant production. Genes associated with membrane composition and structure were also heavily involved, with the upregulation of fatty acid and actin production, and the downregulation of ion channels and alginate pathways. Changes in gene expression patterns clearly indicated an inhibition of the photosynthetic machinery, with a consequent downregulation of carbohydrate production. Simultaneously, energy consumption increased, as revealed by the upregulation of genes associated with respiration and ATP synthesis. Overall, the genes that demonstrated the largest increase in expression were ribosomal proteins involved in translation pathways. The fixation rate of SNP:s was higher within genes responding to hyposalinity than elsewhere in the transcriptome. CONCLUSIONS The high fixation rate in the genes coding for salinity acclimation mechanisms implies strong selection for them. The among-population differentiation that we observed in the transcriptomic response to hyposalinity stress suggests that populations of F. vesiculosus may differ in their tolerance to future desalination, possibly as a result of local adaptation to salinity conditions within the Baltic Sea. These results emphasise the importance of considering interspecific genetic variation when evaluating the consequences of environmental change.
Collapse
Affiliation(s)
- Luca Rugiu
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Marina Panova
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Ricardo Tomás Pereyra
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Veijo Jormalainen
- Department of Biology, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
10
|
Pearson GA, Martins N, Madeira P, Serrão EA, Bartsch I. Sex-dependent and -independent transcriptional changes during haploid phase gametogenesis in the sugar kelp Saccharina latissima. PLoS One 2019; 14:e0219723. [PMID: 31513596 PMCID: PMC6742357 DOI: 10.1371/journal.pone.0219723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic gametogenesis has been little studied at the molecular level. We addressed this by generating an annotated reference transcriptome for the gametophytic phase of the sugar kelp, Saccharina latissima. Transcriptional profiles of microscopic male and female gametophytes were analysed at four time points during the transition from vegetative growth to gametogenesis. Gametogenic signals resulting from a switch in culture irradiance from red to white light activated a core set of genes in a sex-independent manner, involving rapid activation of ribosome biogenesis, transcription and translation related pathways, with several acting at the post-transcriptional or post-translational level. Additional genes regulating nutrient acquisition and key carbohydrate-energy pathways were also identified. Candidate sex-biased genes under gametogenic conditions had potentially key roles in controlling female- and male-specific gametogenesis. Among these were several sex-biased or -specific E3 ubiquitin-protein ligases that may have important regulatory roles. Females specifically expressed several genes that coordinate gene expression and/or protein degradation, and the synthesis of inositol-containing compounds. Other female-biased genes supported parallels with oogenesis in divergent multicellular lineages, in particular reactive oxygen signalling via an NADPH-oxidase. Males specifically expressed the hypothesised brown algal sex-determining factor. Male-biased expression mainly involved upregulation of genes that control mitotic cell proliferation and spermatogenesis in other systems, as well as multiple flagella-related genes. Our data and results enhance genome-level understanding of gametogenesis in this ecologically and economically important multicellular lineage.
Collapse
Affiliation(s)
- Gareth A. Pearson
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Neusa Martins
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Pedro Madeira
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Ester A. Serrão
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Inka Bartsch
- Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen, Germany
| |
Collapse
|
11
|
Coelho SM, Mignerot L, Cock JM. Origin and evolution of sex-determination systems in the brown algae. THE NEW PHYTOLOGIST 2019; 222:1751-1756. [PMID: 30667071 DOI: 10.1111/nph.15694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Meiosis appears to have had a single ancient origin, but the mechanisms underlying male or female sex determination are diverse and have emerged repeatedly and independently in the different eukaryotic groups. The brown algae are a group of multicellular photosynthetic eukaryotes that have a distinct evolutionary history compared with animals and plants, as they have been evolving independently for over 1 billion yr. Here, we review recent work using the brown alga Ectocarpus as a model organism to study haploid sex chromosomes, and highlight how the diversity of reproductive and life cycle features of the brown algae offer unique opportunities to characterize the evolutionary forces and the mechanisms underlying the evolution of sex determination.
Collapse
Affiliation(s)
- Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| | - Laure Mignerot
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| |
Collapse
|
12
|
Ma WJ, Veltsos P, Sermier R, Parker DJ, Perrin N. Evolutionary and developmental dynamics of sex-biased gene expression in common frogs with proto-Y chromosomes. Genome Biol 2018; 19:156. [PMID: 30290841 PMCID: PMC6173898 DOI: 10.1186/s13059-018-1548-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The patterns of gene expression on highly differentiated sex chromosomes differ drastically from those on autosomes, due to sex-specific patterns of selection and inheritance. As a result, X chromosomes are often enriched in female-biased genes (feminization) and Z chromosomes in male-biased genes (masculinization). However, it is not known how quickly sexualization of gene expression and transcriptional degeneration evolve after sex-chromosome formation. Furthermore, little is known about how sex-biased gene expression varies throughout development. RESULTS We sample a population of common frogs (Rana temporaria) with limited sex-chromosome differentiation (proto-sex chromosome), leaky genetic sex determination evidenced by the occurrence of XX males, and delayed gonadal development, meaning that XY individuals may first develop ovaries before switching to testes. Using high-throughput RNA sequencing, we investigate the dynamics of gene expression throughout development, spanning from early embryo to froglet stages. Our results show that sex-biased expression affects different genes at different developmental stages and increases during development, reaching highest levels in XX female froglets. Additionally, sex-biased gene expression depends on phenotypic, rather than genotypic sex, with similar expression in XX and XY males; correlates with gene evolutionary rates; and is not localized to the proto-sex chromosome nor near the candidate sex-determining gene Dmrt1. CONCLUSIONS The proto-sex chromosome of common frogs does not show evidence of sexualization of gene expression, nor evidence for a faster rate of evolution. This challenges the notion that sexually antagonistic genes play a central role in the initial stages of sex-chromosome evolution.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Current address: Department of Biology, Amherst College, Amherst, MA USA
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Kutschera U, Niklas KJ. Julius Sachs (1868): The father of plant physiology. AMERICAN JOURNAL OF BOTANY 2018; 105:656-666. [PMID: 29772073 DOI: 10.1002/ajb2.1078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 05/10/2023]
Abstract
The year 2018 marks the 150th anniversary of the first publication of Julius von Sachs' (1832-1897) Lehrbuch der Botanik (Textbook of Botany), which provided a comprehensive summary of what was then known about the plant sciences. Three years earlier, in 1865, Sachs produced the equally impressive Handbuch der Experimental-Physiologie der Pflanzen (Handbook of Experimental Plant Physiology), which summarized the state of knowledge in all aspects of the discipline known today as plant physiology. Both of these books provided numerous insights based on Sachs' seminal experiments. By virtue of a reliance on detailed empirical observation and the rigorous application of chemical and physical principles, it is fair to say that the publication of these two monumental works marked the beginning of what can be called "modern-day" plant science. Moreover, Sachs' Lehrbuch der Botanik prefigured the ascendance of plant molecular biology and the systems biology of photoautotrophic organisms. Regrettably, many of the insights of this great scientist have been forgotten by the generations who followed. It is only fitting, therefore, that the anniversary of the publication of the Lehrbuch der Botanik and the career of "the father of plant physiology" should be honored and reviewed, particularly because Sachs established the physiology of green organisms as an integral branch of botany and incorporated a Darwinian perspective into plant biology. Here we highlight key insights, with particular emphasis on Sachs' detailed discussion of sexual reproduction at the cellular level and his endorsement of Darwinian evolution.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
| | - Karl J Niklas
- Plant Science Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
Muyle A, Shearn R, Marais GA. The Evolution of Sex Chromosomes and Dosage Compensation in Plants. Genome Biol Evol 2017; 9:627-645. [PMID: 28391324 PMCID: PMC5629387 DOI: 10.1093/gbe/evw282] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Rylan Shearn
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Gabriel Ab Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
15
|
Immonen E, Sayadi A, Bayram H, Arnqvist G. Mating Changes Sexually Dimorphic Gene Expression in the Seed Beetle Callosobruchus maculatus. Genome Biol Evol 2017; 9:677-699. [PMID: 28391318 PMCID: PMC5381559 DOI: 10.1093/gbe/evx029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Sexually dimorphic phenotypes arise largely from sex-specific gene expression, which has mainly been characterized in sexually naïve adults. However, we expect sexual dimorphism in transcription to be dynamic and dependent on factors such as reproductive status. Mating induces many behavioral and physiological changes distinct to each sex and is therefore expected to activate regulatory changes in many sex-biased genes. Here, we first characterized sexual dimorphism in gene expression in Callosobruchus maculatus seed beetles. We then examined how females and males respond to mating and how it affects sex-biased expression, both in sex-limited (abdomen) and sex-shared (head and thorax) tissues. Mating responses were largely sex-specific and, as expected, females showed more genes responding compared with males (∼2,000 vs. ∼300 genes in the abdomen, ∼500 vs. ∼400 in the head and thorax, respectively). Of the sex-biased genes present in virgins, 16% (1,041 genes) in the abdomen and 17% (243 genes) in the head and thorax altered their relative expression between the sexes as a result of mating. Sex-bias status changed in 2% of the genes in the abdomen and 4% in the head and thorax following mating. Mating responses involved de-feminization of females and, to a lesser extent, de-masculinization of males relative to their virgin state: mating decreased rather than increased dimorphic expression of sex-biased genes. The fact that regulatory changes of both types of sex-biased genes occurred in both sexes suggests that male- and female-specific selection is not restricted to male- and female-biased genes, respectively, as is sometimes assumed.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Helen Bayram
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Göran Arnqvist
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| |
Collapse
|
16
|
Shan T, Pang S, Li J, Li X, Su L. Construction of a high-density genetic map and mapping of a sex-linked locus for the brown alga Undaria pinnatifida (Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Genomics 2015; 16:902. [PMID: 26541547 PMCID: PMC4635539 DOI: 10.1186/s12864-015-2184-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Undaria pinnatifida is an important economic brown alga in East Asian countries. However, its genetic and genomic information is very scarce, which hinders further research in this species. A high-density genetic map is a basic tool for fundamental and applied research such as discovery of functional genes and mapping of quantitative trait loci (QTL). In this study the recently developed specific length amplified fragment sequencing (SLAF-seq) technology was employed to construct a high-density genetic linkage map and locate a sex determining locus for U. pinnatifida. RESULTS A total of 28.06 Gb data including 140.31 M pair-end reads was obtained. After linkage analysis 4626 SLAF markers were mapped onto the genetic map. After adding the sex linked simple sequence repeat (SSR) marker [GenBank:AY738602.1], the final genetic map was 1816.28 cM long, consisting of 30 linkage groups with an average distance of 0.39 cM between adjacent markers. The length of LGs ranged from 20.12 to 106.95 cM. A major sex associated QTL was mapped to LG22 within a window starting at 29.01 cM and ending at 68.81 cM with a total of 68 SLAF markers. The SSR marker and five SLAF markers (Marker6556, 19020, 43089, 60771 and 26359) were identified as tightly sex-linked markers, as indicated by the absence of recombination between them and the sex phenotype. These markers were located at the position of 59.50 cM, which was supposed to be the sex determining region. CONCLUSIONS A high-density genetic linkage map was constructed using SLAF-seq technique and F1 gametophyte population for the first time in the economically important brown alga U. pinnatifida. For the first time, a major sex associated QTL suggesting a sex determining region was mapped to a single LG. This map will facilitate the further fundamental and applied research such as QTL mapping and map-based gene clone in U. pinnatifida and provide a reference for studies in other kelp species.
Collapse
Affiliation(s)
- Tifeng Shan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Shaojun Pang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Jing Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
- Graduate University of Chinese Academy of Science, Beijing, 100049, PR China.
| | - Xia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
- Graduate University of Chinese Academy of Science, Beijing, 100049, PR China.
| | - Li Su
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
- Graduate University of Chinese Academy of Science, Beijing, 100049, PR China.
| |
Collapse
|
17
|
Ramos A, Weydmann A, Cox C, Canário A, Serrão E, Pearson G. A transcriptome resource for the copepod Calanus glacialis across a range of culture temperatures. Mar Genomics 2015; 23:27-9. [DOI: 10.1016/j.margen.2015.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 11/28/2022]
|
18
|
Lipinska A, Cormier A, Luthringer R, Peters AF, Corre E, Gachon CMM, Cock JM, Coelho SM. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga ectocarpus. Mol Biol Evol 2015; 32:1581-97. [PMID: 25725430 DOI: 10.1093/molbev/msv049] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Males and females often have marked phenotypic differences, and the expression of these dissimilarities invariably involves sex differences in gene expression. Sex-biased gene expression has been well characterized in animal species, where a high proportion of the genome may be differentially regulated in males and females during development. Male-biased genes tend to evolve more rapidly than female-biased genes, implying differences in the strength of the selective forces acting on the two sexes. Analyses of sex-biased gene expression have focused on organisms that exhibit separate sexes during the diploid phase of the life cycle (diploid sexual systems), but the genetic nature of the sexual system is expected to influence the evolutionary trajectories of sex-biased genes. We analyze here the patterns of sex-biased gene expression in Ectocarpus, a brown alga with haploid sex determination (dioicy) and a low level of phenotypic sexual dimorphism. In Ectocarpus, female-biased genes were found to be evolving as rapidly as male-biased genes. Moreover, genes expressed at fertility showed faster rates of evolution than genes expressed in immature gametophytes. Both male- and female-biased genes had a greater proportion of sites experiencing positive selection, suggesting that their accelerated evolution is at least partly driven by adaptive evolution. Gene duplication appears to have played a significant role in the generation of sex-biased genes in Ectocarpus, expanding previous models that propose this mechanism for the resolution of sexual antagonism in diploid systems. The patterns of sex-biased gene expression in Ectocarpus are consistent both with predicted characteristics of UV (haploid) sexual systems and with the distinctive aspects of this organism's reproductive biology.
Collapse
Affiliation(s)
- Agnieszka Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Rémy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Erwan Corre
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Claire M M Gachon
- Microbial and Molecular Biology Department, Scottish Marine Institute, Scottish Association for Marine Science, Oban, United Kingdom
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
19
|
Martins MJF, Lago-Leston A, Anjos A, Duarte CM, Agusti S, Serrão EA, Pearson GA. A transcriptome resource for Antarctic krill (Euphausia superba Dana) exposed to short-term stress. Mar Genomics 2015; 23:45-7. [PMID: 25957695 DOI: 10.1016/j.margen.2015.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
Euphausia superba is a keystone species in Antarctic food webs. However, the continued decrease in stock density raises concerns over the resilience and adaptive potential of krill to withstand the current rate of environmental change. We undertook a transcriptome-scale approach (454 pyrosequencing) as a baseline for future studies addressing the physiological response of krill to short-term food shortage and natural UV-B stress. The final assembly resulted in a total of 26,415 contigs, 39.8% of which were putatively annotated. Exploratory analyses indicate an overall reduction in protein synthesis under food shortage while UV stress resulted in the activation of photo-protective mechanisms.
Collapse
Affiliation(s)
| | | | - Antonio Anjos
- CCMAR,, Universidade do Algarve, 8005-139 Faro, Portugal; ISMAT - Instituto Superior Manuel Teixeira Gomes, 8500-508 Portimão, Portugal
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Susana Agusti
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ester A Serrão
- CCMAR,, Universidade do Algarve, 8005-139 Faro, Portugal
| | | |
Collapse
|
20
|
Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D, Wang J, Zhou L, Wang D, Gao Y, Wang Y, Shi W, Ji P, Li D, Guan Z, Shao C, Zhuang Z, Gao Z, Qi J, Zhao F. Saccharina genomes provide novel insight into kelp biology. Nat Commun 2015; 6:6986. [PMID: 25908475 PMCID: PMC4421812 DOI: 10.1038/ncomms7986] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/20/2015] [Indexed: 01/28/2023] Open
Abstract
Seaweeds are essential for marine ecosystems and have immense economic value. Here we present a comprehensive analysis of the draft genome of Saccharina japonica, one of the most economically important seaweeds. The 537-Mb assembled genomic sequence covered 98.5% of the estimated genome, and 18,733 protein-coding genes are predicted and annotated. Gene families related to cell wall synthesis, halogen concentration, development and defence systems were expanded. Functional diversification of the mannuronan C-5-epimerase and haloperoxidase gene families provides insight into the evolutionary adaptation of polysaccharide biosynthesis and iodine antioxidation. Additional sequencing of seven cultivars and nine wild individuals reveal that the genetic diversity within wild populations is greater than among cultivars. All of the cultivars are descendants of a wild S. japonica accession showing limited admixture with S. longissima. This study represents an important advance toward improving yields and economic traits in Saccharina and provides an invaluable resource for plant genome studies.
Collapse
Affiliation(s)
- Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Miao Miao
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yi Zheng
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Zhou
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuan Gao
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenyu Shi
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peifeng Ji
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zheng Guan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Perry JC, Harrison PW, Mank JE. The ontogeny and evolution of sex-biased gene expression in Drosophila melanogaster. Mol Biol Evol 2014; 31:1206-19. [PMID: 24526011 PMCID: PMC3995337 DOI: 10.1093/molbev/msu072] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sexually dimorphic phenotypes are thought to largely result from sex differences in gene expression, and genes with sex-biased expression have been well characterized in adults of many species. Although most sexual dimorphisms manifest in adults, many result from sex-specific developmental trajectories, implying that juveniles may exhibit significant levels of sex-biased expression. However, it is unclear how much sex-biased expression occurs before reproductive maturity and whether preadult sex-biased genes should exhibit the same evolutionary dynamics observed for adult sex-biased genes. In order to understand the continuity, or lack thereof, and evolutionary dynamics of sex-biased expression throughout the life cycle, we examined sex-biased genes in pre-gonad tissue of two preadult stages and compared them with the adult gonad of Drosophila melanogaster. We found that the majority of the genome is sex-biased at some point in the life cycle, with some genes exhibiting conserved sex-biased expression and others displaying stage-specific sex bias. Our results also reveal a far more complex pattern of evolution for sex-biased genes throughout development. The most rapid evolutionary divergence occurred in genes expressed only in larvae within each sex, compared with continuously expressed genes. In females—but not males—this pattern appeared to be due to relaxed purifying selection in larva-limited genes. Furthermore, genes that retained male bias throughout life evolved more rapidly than stage-specific male-biased genes, due to stronger purifying selection in stage-specific genes. However, female-biased genes that were specific to larvae evolved most rapidly, a pattern that could not be definitively attributed to differences in adaptive evolution or purifying selection, suggesting that pleiotropic constraints on protein-coding sequences can arise when genes are broadly expressed across developmental stages. These results indicate that the signature of sex-specific selection can be detected well before reproductive maturity and is strongest during development.
Collapse
|
22
|
Lipinska AP, D’hondt S, Van Damme EJM, De Clerck O. Uncovering the genetic basis for early isogamete differentiation: a case study of Ectocarpus siliculosus. BMC Genomics 2013; 14:909. [PMID: 24359479 PMCID: PMC3879662 DOI: 10.1186/1471-2164-14-909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 12/17/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The phenomenon of sexual reproduction characterizes nearly all eukaryotes, with anisogamy being the most prevalent form of gamete discrimination. Since dimorphic gametes most likely descend from equal-sized specialized germ cells, identifying the genetic bases of the early functional diversification in isogametes can provide better understanding of the evolution of sexual dimorphism. However, despite the potential importance to the evolutionary biology field, no comprehensive survey of the transcriptome profiling in isomorphic gametes has been reported hitherto. RESULTS Gamete differentiation on the genomic level was investigated using Ectocarpus siliculosus, a model organism for brown algal lineage which displays an isogamous sexual reproduction cycle. Transcriptome libraries of male and female gametes were generated using Next Generation Sequencing technology (SOLiD) and analyzed to identify differentially regulated genes and pathways with potential roles in fertilization and gamete specialization. Gamete transcriptomes showed a high level of complexity with a large portion of gender specific gene expression. Our results indicate that over 4,000 of expressed genes are differentially regulated between male and female, including sequences related to cell movement, carbohydrate and lipid metabolism, signaling, transport and RNA processing. CONCLUSIONS This first comprehensive transcriptomic study of protist isogametes describes considerable adaptation to distinct sexual roles, suggesting that functional anisogamy precedes morphological differentiation. Several sex-biased genes and pathways with a putative role in reproduction were identified, providing the basis for more detailed investigations of the mechanisms underlying evolution of mating types and sexual dimorphism.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| | - Sofie D’hondt
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| | - Els JM Van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| |
Collapse
|