1
|
Mayeux G, Gayet L, Liguori L, Odier M, Martin DK, Cortès S, Schaack B, Lenormand JL. Cell-free expression of the outer membrane protein OprF of Pseudomonas aeruginosa for vaccine purposes. Life Sci Alliance 2021; 4:4/6/e202000958. [PMID: 33972378 PMCID: PMC8127326 DOI: 10.26508/lsa.202000958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Production of recombinant proteoliposomes containing OprF from P. aeruginosa promotes the active open conformation of the porin exposing native epitopes. These OprF proteoliposomes were used as vaccines to protect mice against a P. aeruginosa acute pulmonary infection model. Pseudomonas aeruginosa is the second-leading cause of nosocomial infections and pneumonia in hospitals. Because of its extraordinary capacity for developing resistance to antibiotics, treating infections by Pseudomonas is becoming a challenge, lengthening hospital stays, and increasing medical costs and mortality. The outer membrane protein OprF is a well-conserved and immunogenic porin playing an important role in quorum sensing and in biofilm formation. Here, we used a bacterial cell-free expression system to reconstitute OprF under its native forms in liposomes and we demonstrated that the resulting OprF proteoliposomes can be used as a fully functional recombinant vaccine against P. aeruginosa. Remarkably, we showed that our system promotes the folding of OprF into its active open oligomerized state as well as the formation of mega-pores. Our approach thus represents an easy and efficient way for producing bacterial membrane antigens exposing native epitopes for vaccine purposes.
Collapse
Affiliation(s)
- Géraldine Mayeux
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | - Landry Gayet
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | - Lavinia Liguori
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,Maison Familiale Rurale Moirans, Moirans, France
| | - Marine Odier
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,Catalent Pharma Solutions, Eberbach, Germany
| | - Donald K Martin
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | | | - Béatrice Schaack
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,University Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jean-Luc Lenormand
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| |
Collapse
|
2
|
Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:mgen000513. [PMID: 33529147 PMCID: PMC8190622 DOI: 10.1099/mgen.0.000513] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main microbial species colonizing the lungs of cystic fibrosis patients and is responsible for the decline in respiratory function. Despite the hostile pulmonary environment, P. aeruginosa is able to establish chronic infections thanks to its strong adaptive capacity. Various longitudinal studies have attempted to compare the strains of early infection with the adapted strains of chronic infection. Thanks to new '-omics' techniques, convergent genetic mutations, as well as transcriptomic and proteomic dysregulations have been identified. As a consequence of this evolution, the adapted strains of P. aeruginosa have particular phenotypes that promote persistent infection.
Collapse
Affiliation(s)
- Laura Camus
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| |
Collapse
|
3
|
Munder A, Rothschuh J, Schirmer B, Klockgether J, Kaever V, Tümmler B, Seifert R, Kloth C. The Pseudomonas aeruginosa ExoY phenotype of high-copy-number recombinants is not detectable in natural isolates. Open Biol 2019; 8:rsob.170250. [PMID: 29386405 PMCID: PMC5795057 DOI: 10.1098/rsob.170250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
The nucleotidyl cyclase ExoY is an effector protein of the type III secretion system of Pseudomonas aeruginosa. We compared the cyclic nucleotide production and lung disease phenotypes caused by the ExoY-overexpressing strain PA103ΔexoUexoT::Tc pUCPexoY, its vector control strain PA103ΔexoUexoT::Tc pUCP18, its loss-of-function control PA103ΔexoUexoT::Tc pUCPexoY K81M and natural ExoY-positive and ExoY-negative isolates in a murine acute airway infection model. Only the P. aeruginosa carrier of the exoY-plasmid produced high levels of cUMP and caused the most severe course of infection. The pathology ascribed to ExoY from studies using the high-copy-number plasmid on mammalian cells in vitro and in vivo was not observed with natural P. aeruginosa isolates. This indicates that the role of ExoY during infection with real-life P. aeruginosa still needs to be resolved.
Collapse
Affiliation(s)
- Antje Munder
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany .,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Justin Rothschuh
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jens Klockgether
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christina Kloth
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
4
|
Maroui I, Barguigua A, Aboulkacem A, Elhafa H, Ouarrak K, Sbiti M, Louzi L, Timinouni M, Belhaj A. Clonal Analysis of Clinical and Environmental Pseudomonas aeruginosa Isolates from Meknes Region, Morocco. Pol J Microbiol 2017; 66:397-400. [PMID: 29319518 DOI: 10.5604/01.3001.0010.4882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
From 123 clinical and environmental Pseudomonas aeruginosa isolates, 24 strains were selected for their similar antibioresistance, virulence and biofilm formation profiles, to examine their diversity and occurrence of clones within two hospitals and different natural sites in Meknes (Morocco). Pulsed-field gel electrophoresis, using DraI enzyme, didn't reveal a close relationship between clinical and environmental isolates nor between strains of the two hospitals. 19 genotypes were obtained, including two virulent environmental clones and three clinical clones virulent and resistant to antibiotics. Intra-hospital transmission of high-risk clones detected, in and between wards, constitutes a great public health concern.
Collapse
Affiliation(s)
- Itto Maroui
- Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Abouddihaj Barguigua
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Asmae Aboulkacem
- Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Hanane Elhafa
- Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Khadija Ouarrak
- Medical Biology Laboratory of Regional Hospital Mohammed V Meknes, Morocco
| | - Mohammed Sbiti
- Medical Biology Laboratory of Regional Military Hospital Moulay Ismail Meknes, Morocco
| | - Lhoussain Louzi
- Medical Biology Laboratory of Regional Military Hospital Moulay Ismail Meknes, Morocco
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Abdelhaq Belhaj
- Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
5
|
Nascimento APB, Ortiz MF, Martins WMBS, Morais GL, Fehlberg LCC, Almeida LGP, Ciapina LP, Gales AC, Vasconcelos ATR. Intraclonal Genome Stability of the Metallo-β-lactamase SPM-1-producing Pseudomonas aeruginosa ST277, an Endemic Clone Disseminated in Brazilian Hospitals. Front Microbiol 2016; 7:1946. [PMID: 27994579 PMCID: PMC5136561 DOI: 10.3389/fmicb.2016.01946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/21/2016] [Indexed: 01/30/2023] Open
Abstract
Carbapenems represent the mainstay therapy for the treatment of serious P. aeruginosa infections. However, the emergence of carbapenem resistance has jeopardized the clinical use of this important class of compounds. The production of SPM-1 metallo-β-lactamase has been the most common mechanism of carbapenem resistance identified in P. aeruginosa isolated from Brazilian medical centers. Interestingly, a single SPM-1-producing P. aeruginosa clone belonging to the ST277 has been widely spread within the Brazilian territory. In the current study, we performed a next-generation sequencing of six SPM-1-producing P. aeruginosa ST277 isolates. The core genome contains 5899 coding genes relative to the reference strain P. aeruginosa PAO1. A total of 26 genomic islands were detected in these isolates. We identified remarkable elements inside these genomic islands, such as copies of the blaSPM−1 gene conferring resistance to carbapenems and a type I-C CRISPR-Cas system, which is involved in protection of the chromosome against foreign DNA. In addition, we identified single nucleotide polymorphisms causing amino acid changes in antimicrobial resistance and virulence-related genes. Together, these factors could contribute to the marked resistance and persistence of the SPM-1-producing P. aeruginosa ST277 clone. A comparison of the SPM-1-producing P. aeruginosa ST277 genomes showed that their core genome has a high level nucleotide similarity and synteny conservation. The variability observed was mainly due to acquisition of genomic islands carrying several antibiotic resistance genes.
Collapse
Affiliation(s)
- Ana P B Nascimento
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Mauro F Ortiz
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Willames M B S Martins
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Guilherme L Morais
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Lorena C C Fehlberg
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Luiz G P Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Luciane P Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Ana C Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Ana T R Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| |
Collapse
|
6
|
Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia. Antimicrob Agents Chemother 2016; 60:4991-5000. [PMID: 27297477 DOI: 10.1128/aac.00390-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/04/2016] [Indexed: 12/13/2022] Open
Abstract
The clinical development of antibiotics with a new mode of action combined with efficient pulmonary drug delivery is a priority against untreatable Pseudomonas aeruginosa lung infections. POL7001 is a macrocycle antibiotic belonging to the novel class of protein epitope mimetic (PEM) molecules with selective and potent activity against P. aeruginosa We investigated ventilator-associated pneumonia (VAP) and cystic fibrosis (CF) as indications of the clinical potential of POL7001 to treat P. aeruginosa pulmonary infections. MICs of POL7001 and comparators were measured for reference and clinical P. aeruginosa strains. The therapeutic efficacy of POL7001 given by pulmonary administration was evaluated in murine models of P. aeruginosa acute and chronic pneumonia. POL7001 showed potent in vitro activity against a large panel of P. aeruginosa isolates from CF patients, including multidrug-resistant (MDR) isolates with adaptive phenotypes such as mucoid or hypermutable phenotypes. The efficacy of POL7001 was demonstrated in both wild-type and CF mice. In addition to a reduced bacterial burden in the lung, POL7001-treated mice showed progressive body weight recovery and reduced levels of inflammatory markers, indicating an improvement in general condition. Pharmacokinetic studies indicated that POL7001 reached significant concentrations in the lung after pulmonary administration, with low systemic exposure. These results support the further evaluation of POL7001 as a novel therapeutic agent for the treatment of P. aeruginosa pulmonary infections.
Collapse
|
7
|
Pseudomonas aeruginosa and Achromobacter sp. clonal selection leads to successive waves of contamination of water in dental care units. Appl Environ Microbiol 2015; 81:7509-24. [PMID: 26296724 DOI: 10.1128/aem.01279-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023] Open
Abstract
Dental care unit waterlines (DCUWs) consist of complex networks of thin tubes that facilitate the formation of microbial biofilms. Due to the predilection toward a wet environment, strong adhesion, biofilm formation, and resistance to biocides, Pseudomonas aeruginosa, a major human opportunistic pathogen, is adapted to DCUW colonization. Other nonfermentative Gram-negative bacilli, such as members of the genus Achromobacter, are emerging pathogens found in water networks. We reported the 6.5-year dynamics of bacterial contamination of waterlines in a dental health care center with 61 dental care units (DCUs) connected to the same water supply system. The conditions allowed the selection and the emergence of clones of Achromobacter sp. and P. aeruginosa characterized by multilocus sequence typing, multiplex repetitive elements-based PCR, and restriction fragment length polymorphism in pulsed-field gel electrophoresis, biofilm formation, and antimicrobial susceptibility. One clone of P. aeruginosa and 2 clones of Achromobacter sp. colonized successively all of the DCUWs: the last colonization by P. aeruginosa ST309 led to the closing of the dental care center. Successive dominance of species and clones was linked to biocide treatments. Achromobacter strains were weak biofilm producers compared to P. aeruginosa ST309, but the coculture of P. aeruginosa and Achromobacter enhanced P. aeruginosa ST309 biofilm formation. Intraclonal genomic microevolution was observed in the isolates of P. aeruginosa ST309 collected chronologically and in Achromobacter sp. clone A. The contamination control was achieved by a complete reorganization of the dental health care center by removing the connecting tubes between DCUs.
Collapse
|
8
|
Marvig RL, Sommer LM, Jelsbak L, Molin S, Johansen HK. Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients. Future Microbiol 2015; 10:599-611. [DOI: 10.2217/fmb.15.3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa causes chronic airway infections in patients with cystic fibrosis (CF), and it is directly associated with the morbidity and mortality connected with this disease. The ability of P. aeruginosa to establish chronic infections in CF patients is suggested to be due to the large genetic repertoire of P. aeruginosa and its ability to genetically adapt to the host environment. Here, we review the recent work that has applied whole-genome sequencing to understand P. aeruginosa population genomics, within-host microevolution and diversity, mutational mechanisms, genetic adaptation and transmission events. Finally, we summarize the advances in relation to medical applications and laboratory evolution experiments.
Collapse
Affiliation(s)
| | - Lea M Sommer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Søren Molin
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
9
|
Sánchez D, Gomila M, Bennasar A, Lalucat J, García-Valdés E. Genome analysis of environmental and clinical P. aeruginosa isolates from sequence type-1146. PLoS One 2014; 9:e107754. [PMID: 25329302 PMCID: PMC4198096 DOI: 10.1371/journal.pone.0107754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and P49) and one clinical (SD9) isolates, with differences in their antibiotic susceptibility profiles have been sequenced and analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the highest number of differences were in “Related to phage, transposon or plasmid” and “Secreted factors” categories. The clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes) than in isolates P37 (24 genes), P47 (16 genes) and P49 (21 genes). CRISPR elements were found in all isolates and SD9 showed differences in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved, suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be considered in the adaptation processes of isolates to the host and in microevolution studies.
Collapse
Affiliation(s)
- David Sánchez
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain
| | - Antonio Bennasar
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain; Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS-UIB) Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, Palma de Mallorca, Spain
| |
Collapse
|
10
|
Hilker R, Munder A, Klockgether J, Losada PM, Chouvarine P, Cramer N, Davenport CF, Dethlefsen S, Fischer S, Peng H, Schönfelder T, Türk O, Wiehlmann L, Wölbeling F, Gulbins E, Goesmann A, Tümmler B. Interclonal gradient of virulence in thePseudomonas aeruginosapangenome from disease and environment. Environ Microbiol 2014; 17:29-46. [DOI: 10.1111/1462-2920.12606] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Rolf Hilker
- Department of Bioinformatics and Systems Biology; University of Giessen; Gießen D-35392 Germany
| | - Antje Munder
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Jens Klockgether
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Patricia Moran Losada
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Philippe Chouvarine
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Nina Cramer
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Colin F. Davenport
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Sarah Dethlefsen
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Sebastian Fischer
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Huiming Peng
- Department of Molecular Biology; University Hospital Essen; University of Duisburg-Essen; Essen D-45122 Germany
| | - Torben Schönfelder
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Oliver Türk
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Lutz Wiehlmann
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Florian Wölbeling
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
| | - Erich Gulbins
- Department of Molecular Biology; University Hospital Essen; University of Duisburg-Essen; Essen D-45122 Germany
| | - Alexander Goesmann
- Department of Bioinformatics and Systems Biology; University of Giessen; Gießen D-35392 Germany
| | - Burkhard Tümmler
- Clinical Research Group; ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’; Hannover Medical School; OE 6710 Hannover D-30625 Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH); German Center for Lung Research; Hannover Germany
| |
Collapse
|
11
|
Ozer EA, Allen JP, Hauser AR. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics 2014; 15:737. [PMID: 25168460 PMCID: PMC4155085 DOI: 10.1186/1471-2164-15-737] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Background Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed. Results We developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103. Conclusions The P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University, 645 North Michigan Avenue, Suite 900, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
12
|
Pohl S, Klockgether J, Eckweiler D, Khaledi A, Schniederjans M, Chouvarine P, Tümmler B, Häussler S. The extensive set of accessory Pseudomonas aeruginosa genomic components. FEMS Microbiol Lett 2014; 356:235-41. [PMID: 24766399 DOI: 10.1111/1574-6968.12445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/06/2014] [Accepted: 04/18/2014] [Indexed: 11/30/2022] Open
Abstract
Up to 20% of the chromosomal Pseudomonas aeruginosa DNA belong to the so-called accessory genome. Its elements are specific for subgroups or even single strains and are likely acquired by horizontal gene transfer (HGT). Similarities of the accessory genomic elements to DNA from other bacterial species, mainly the DNA of γ- and β-proteobacteria, indicate a role of interspecies HGT. In this study, we analysed the expression of the accessory genome in 150 clinical P. aeruginosa isolates as uncovered by transcriptome sequencing and the presence of accessory genes in eleven additional isolates. Remarkably, despite the large number of P. aeruginosa strains that have been sequenced to date, we found new strain-specific compositions of accessory genomic elements and a high portion (10-20%) of genes without P. aeruginosa homologues. Although some genes were detected to be expressed/present in several isolates, individual patterns regarding the genes, their functions and the possible origin of the DNA were widespread among the tested strains. Our results demonstrate the unaltered potential to discover new traits within the P. aeruginosa population and underline that the P. aeruginosa pangenome is likely to increase with increasing sequence information.
Collapse
Affiliation(s)
- Sarah Pohl
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sall KM, Casabona MG, Bordi C, Huber P, de Bentzmann S, Attrée I, Elsen S. A gacS deletion in Pseudomonas aeruginosa cystic fibrosis isolate CHA shapes its virulence. PLoS One 2014; 9:e95936. [PMID: 24780952 PMCID: PMC4004566 DOI: 10.1371/journal.pone.0095936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/30/2014] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections), and no Type VI Secretion System (H1-T6SS). This virulence profile is due to a 426 bp deletion in the 3′ end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor.
Collapse
Affiliation(s)
- Khady Mayebine Sall
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Maria Guillermina Casabona
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Christophe Bordi
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR 7255 CNRS - Aix Marseille University, Marseille, France
| | - Philippe Huber
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Sophie de Bentzmann
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR 7255 CNRS - Aix Marseille University, Marseille, France
| | - Ina Attrée
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Sylvie Elsen
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
- * E-mail:
| |
Collapse
|
14
|
Lucchetti-Miganeh C, Redelberger D, Chambonnier G, Rechenmann F, Elsen S, Bordi C, Jeannot K, Attrée I, Plésiat P, de Bentzmann S. Pseudomonas aeruginosa Genome Evolution in Patients and under the Hospital Environment. Pathogens 2014; 3:309-40. [PMID: 25437802 PMCID: PMC4243448 DOI: 10.3390/pathogens3020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF) or those hospitalized in intensive care units (ICU). It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.
Collapse
Affiliation(s)
| | - David Redelberger
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | - Gaël Chambonnier
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | | | - Sylvie Elsen
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble 38054, France.
| | - Christophe Bordi
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | - Katy Jeannot
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon 25030, France.
| | - Ina Attrée
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble 38054, France.
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon 25030, France.
| | - Sophie de Bentzmann
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| |
Collapse
|
15
|
Sharma P, Gupta SK, Rolain JM. Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution. Expert Rev Anti Infect Ther 2014; 12:343-55. [PMID: 24502835 DOI: 10.1586/14787210.2014.887441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) airways harbor a wide variety of new and/or emerging multidrug resistant bacteria which impose a heavy burden on patients. These bacteria live in close proximity with one another, which increases the frequency of lateral gene transfer. The exchange and movement of mobile genetic elements and genomic islands facilitate the spread of genes between genetically diverse bacteria, which seem to be advantageous to the bacterium as it allows adaptation to the new niches of the CF lungs. Niche adaptation is one of the major evolutionary forces shaping bacterial genome composition and in CF the chronic strains adapt and become less virulent. The purpose of this review is to shed light on CF bacterial genome alterations. Next-generation sequencing technology is an exciting tool that may help us to decipher the genome architecture and the evolution of bacteria colonizing CF lungs.
Collapse
Affiliation(s)
- Poonam Sharma
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergents, CNRS-IRD, UMR 7278, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, 27 Bd Jean-Moulin, Marseille Cedex 05 13385, France
| | | | | |
Collapse
|
16
|
Jeukens J, Boyle B, Kukavica-Ibrulj I, Ouellet MM, Aaron SD, Charette SJ, Fothergill JL, Tucker NP, Winstanley C, Levesque RC. Comparative genomics of isolates of a Pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients. PLoS One 2014; 9:e87611. [PMID: 24505294 PMCID: PMC3914812 DOI: 10.1371/journal.pone.0087611] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/23/2013] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is the main cause of fatal chronic lung infections among individuals suffering from cystic fibrosis (CF). During the past 15 years, particularly aggressive strains transmitted among CF patients have been identified, initially in Europe and more recently in Canada. The aim of this study was to generate high-quality genome sequences for 7 isolates of the Liverpool epidemic strain (LES) from the United Kingdom and Canada representing different virulence characteristics in order to: (1) associate comparative genomics results with virulence factor variability and (2) identify genomic and/or phenotypic divergence between the two geographical locations. We performed phenotypic characterization of pyoverdine, pyocyanin, motility, biofilm formation, and proteolytic activity. We also assessed the degree of virulence using the Dictyostelium discoideum amoeba model. Comparative genomics analysis revealed at least one large deletion (40-50 kb) in 6 out of the 7 isolates compared to the reference genome of LESB58. These deletions correspond to prophages, which are known to increase the competitiveness of LESB58 in chronic lung infection. We also identified 308 non-synonymous polymorphisms, of which 28 were associated with virulence determinants and 52 with regulatory proteins. At the phenotypic level, isolates showed extensive variability in production of pyocyanin, pyoverdine, proteases and biofilm as well as in swimming motility, while being predominantly avirulent in the amoeba model. Isolates from the two continents were phylogenetically and phenotypically undistinguishable. Most regulatory mutations were isolate-specific and 29% of them were predicted to have high functional impact. Therefore, polymorphism in regulatory genes is likely to be an important basis for phenotypic diversity among LES isolates, which in turn might contribute to this strain's adaptability to varying conditions in the CF lung.
Collapse
Affiliation(s)
- Julie Jeukens
- Institute for integrative and systems biology (IBIS), University Laval, Quebec City, Quebec, Canada
| | - Brian Boyle
- Institute for integrative and systems biology (IBIS), University Laval, Quebec City, Quebec, Canada
| | - Irena Kukavica-Ibrulj
- Institute for integrative and systems biology (IBIS), University Laval, Quebec City, Quebec, Canada
| | - Myriam M. Ouellet
- Institute for integrative and systems biology (IBIS), University Laval, Quebec City, Quebec, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Shawn D. Aaron
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Steve J. Charette
- Institute for integrative and systems biology (IBIS), University Laval, Quebec City, Quebec, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Joanne L. Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Roger C. Levesque
- Institute for integrative and systems biology (IBIS), University Laval, Quebec City, Quebec, Canada
| |
Collapse
|
17
|
Tümmler B, Wiehlmann L, Klockgether J, Cramer N. Advances in understanding Pseudomonas. F1000PRIME REPORTS 2014; 6:9. [PMID: 24592321 PMCID: PMC3913036 DOI: 10.12703/p6-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa, the type species of pseudomonads, is an opportunistic pathogen that colonizes a wide range of niches. Current genome sequencing projects are producing previously inconceivable detail about the population biology and evolution of P. aeruginosa. Its pan-genome has a larger genetic repertoire than the human genome, which explains the broad metabolic capabilities of P. aeruginosa and its ubiquitous distribution in aquatic habitats. P. aeruginosa may persist in the airways of individuals with cystic fibrosis for decades. The ongoing whole-genome analyses of serial isolates from cystic fibrosis patients provide the so far singular opportunity to monitor the microevolution of a bacterial pathogen during chronic infection over thousands of generations. Although the evolution in cystic fibrosis lungs is neutral overall, some pathoadaptive mutations are selected during the within-host evolutionary process. Even a single mutation may be sufficient to generate novel complex traits provided that predisposing mutational events have previously occurred in the clonal lineage.
Collapse
|
18
|
Stewart L, Ford A, Sangal V, Jeukens J, Boyle B, Kukavica-Ibrulj I, Caim S, Crossman L, Hoskisson PA, Levesque R, Tucker NP. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog Dis 2013; 71:20-5. [PMID: 24167005 DOI: 10.1111/2049-632x.12107] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen particularly associated with the inherited disease cystic fibrosis (CF). Pseudomonas aeruginosa is well known to have a large and adaptable genome that enables it to colonise a wide range of ecological niches. Here, we have used a comparative genomics approach to identify changes that occur during infection of the CF lung. We used the mucoid phenotype as an obvious marker of host adaptation and compared these genomes to analyse SNPs, indels and islands within near-isogenic pairs. To commence the correction of the natural bias towards clinical isolates in genomics studies and to widen our understanding of the genomic diversity of P. aeruginosa, we included four environmental isolates in our analysis. Our data suggest that genome plasticity plays an important role in chronic infection and that the strains sequenced in this study are representative of the two major phylogenetic groups as determined by core genome SNP analysis.
Collapse
Affiliation(s)
- Lewis Stewart
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
De Soyza A, Hall AJ, Mahenthiralingam E, Drevinek P, Kaca W, Drulis-Kawa Z, Stoitsova SR, Toth V, Coenye T, Zlosnik JEA, Burns JL, Sá-Correia I, De Vos D, Pirnay JP, Kidd TJ, Reid D, Manos J, Klockgether J, Wiehlmann L, Tümmler B, McClean S, Winstanley C. Developing an international Pseudomonas aeruginosa reference panel. Microbiologyopen 2013; 2:1010-23. [PMID: 24214409 PMCID: PMC3892346 DOI: 10.1002/mbo3.141] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.
Collapse
Affiliation(s)
- Anthony De Soyza
- Institute of Cellular Medicine, Newcastle University, Newcastle, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|