1
|
Park JE, Patnaik BB, Sang MK, Song DK, Jeong JY, Hong CE, Kim YT, Shin HJ, Ziwei L, Patnaik HH, Hwang HJ, Park SY, Kang SW, Ko JH, Lee JS, Park HS, Jo YH, Han YS, Lee YS. Transcriptome sequencing of the endangered land snail Karaftohelix adamsi from the Island Ulleung: De novo assembly, annotation, valuation of fitness genes and SSR markers. Genes Genomics 2024; 46:851-870. [PMID: 38809491 DOI: 10.1007/s13258-024-01511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/08/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The Bradybaenidae snail Karaftohelix adamsi is endemic to Korea, with the species tracked from Island Ulleung in North Gyeongsang Province of South Korea. K. adamsi has been classified under the Endangered Wildlife Class II species of Korea and poses a severe risk of extinction following habitat disturbances. With no available information at the DNA (genome) or mRNA (transcriptome) level for the species, conservation by utilizing informed molecular resources seems difficult. OBJECTIVE In this study, we used the Illumina short-read sequencing and Trinity de novo assembly to draft the reference transcriptome of K. adamsi. RESULTS After assembly, 13,753 unigenes were obtained of which 10,511 were annotated to public databases (a maximum of 10,165 unigenes found homologs in PANM DB). A total of 6,351, 3,535, 358, and 3,407 unigenes were ascribed to the functional categories under KOG, GO, KEGG, and IPS, respectively. The transcripts such as the HSP 70, aquaporin, TLR, and MAPK, among others, were screened as putative functional resources for adaptation. DNA transposons were found to be thickly populated in comparison to retrotransposons in the assembled unigenes. Further, 2,164 SSRs were screened with the promiscuous presence of dinucleotide repeats such as AC/GT and AG/CT. CONCLUSION The transcriptome-guided discovery of molecular resources in K. adamsi will not only serve as a basis for functional genomics studies but also provide sustainable tools to be utilized for the protection of the species in the wild. Moreover, the development of polymorphic SSRs is valuable for the identification of species from newer habitats and cross-species genotyping.
Collapse
Affiliation(s)
- Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Chungnam, 31, Asan, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Nuapadhi, Balasore, Odisha, 756089, India
| | - Min Kyu Sang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Chungnam, 31, Asan, South Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Chungnam, 31, Asan, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Hyeon Jun Shin
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Liu Ziwei
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- PG Department of Zoology, BJB Autonomous College, Bhubaneswar, Odisha, 751014, India
| | - Hee Ju Hwang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Jung Ho Ko
- Police Science Institute, Korean National Police University, Asan, 31539, Chungnam, Korea
| | - Jun Sang Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD, 621-6 Banseok-Dong, Yuseong-Gu, Daejeon, 34069, Korea
| | - Yong Hun Jo
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, South Korea
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea.
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Chungnam, 31, Asan, South Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea.
| |
Collapse
|
2
|
Lecaudey LA, Netzer R, Wibberg D, Busche T, Bloecher N. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx. Toxicon 2024; 237:107556. [PMID: 38072317 DOI: 10.1016/j.toxicon.2023.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Cnidarians thriving in biofouling communities on aquaculture net pens represent a significant health risk for farmed finfish due to their stinging cells. The toxins coming into contact with the fish, during net cleaning, can adversely affect their behavior, welfare, and survival, with a particularly serious health risk for the gills, causing direct tissue damage such as formation of thrombi and increasing risks of secondary infections. The hydroid Ectopleura larynx is one of the most common fouling organisms in Northern Europe. However, despite its significant economic, environmental, and operational impact on finfish aquaculture, biological information on this species is scarce and its venom composition has never been investigated. In this study, we generated a whole transcriptome of E. larynx, and identified its putative expressed venom toxin proteins (predicted toxin proteins, not functionally characterized) based on in silico transcriptome annotation mining and protein sequence analysis. The results uncovered a broad and diverse repertoire of putative toxin proteins for this hydroid species. Its toxic arsenal appears to include a wide and complex selection of toxin proteins, covering a large panel of potential biological functions that play important roles in envenomation. The putative toxins identified in this species, such as neurotoxins, GTPase toxins, metalloprotease toxins, ion channel impairing toxins, hemorrhagic toxins, serine protease toxins, phospholipase toxins, pore-forming toxins, and multifunction toxins may cause various major deleterious effects in prey, predators, and competitors. These results provide valuable new insights into the venom composition of cnidarians, and venomous marine organisms in general, and offer new opportunities for further research into novel and valuable bioactive molecules for medicine, agronomics and biotechnology.
Collapse
Affiliation(s)
| | - Roman Netzer
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany; Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Nina Bloecher
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| |
Collapse
|
3
|
Dedman CJ, Barton S, Fournier M, Rickaby REM. The cellular response to ocean warming in Emiliania huxleyi. Front Microbiol 2023; 14:1177349. [PMID: 37256052 PMCID: PMC10225680 DOI: 10.3389/fmicb.2023.1177349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Marine phytoplankton contribute substantially to the global flux of carbon from the atmosphere to the deep ocean. Sea surface temperatures will inevitably increase in line with global climate change, altering the performance of marine phytoplankton. Differing sensitivities of photosynthesis and respiration to temperature, will likely shift the strength of the future oceanic carbon sink. To further clarify the molecular mechanisms driving these alterations in phytoplankton function, shotgun proteomic analysis was carried out on the globally-occurring coccolithophore Emiliania huxleyi exposed to moderate- (23°C) and elevated- (28°C) warming. Compared to the control (17°C), growth of E. huxleyi increased under elevated temperatures, with higher rates recorded under moderate- relative to elevated- warming. Proteomic analysis revealed a significant modification of the E. huxleyi cellular proteome as temperatures increased: at lower temperature, ribosomal proteins and photosynthetic machinery appeared abundant, as rates of protein translation and photosynthetic performance are restricted by low temperatures. As temperatures increased, evidence of heat stress was observed in the photosystem, characterized by a relative down-regulation of the Photosystem II oxygen evolving complex and ATP synthase. Acclimation to elevated warming (28°C) revealed a substantial alteration to carbon metabolism. Here, E. huxleyi made use of the glyoxylate cycle and succinate metabolism to optimize carbon use, maintain growth and maximize ATP production in heat-damaged mitochondria, enabling cultures to maintain growth at levels significantly higher than those recorded in the control (17°C). Based on the metabolic changes observed, we can predict that warming may benefit photosynthetic carbon fixation by E. huxleyi in the sub-optimal to optimal thermal range. Past the thermal optima, increasing rates of respiration and costs of repair will likely constrain growth, causing a possible decline in the contribution of this species to the oceanic carbon sink depending on the evolvability of these temperature thresholds.
Collapse
Affiliation(s)
- Craig J. Dedman
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Samuel Barton
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Advanced Proteomics Facility, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
4
|
Ge X, Du J, Zhang L, Qu G, Hu J. PeCLH2 Gene Positively Regulate Salt Tolerance in Transgenic Populus alba × Populus glandulosa. Genes (Basel) 2023; 14:genes14030538. [PMID: 36980811 PMCID: PMC10048402 DOI: 10.3390/genes14030538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Salt is an important environmental stress factor, which seriously affects the growth, development and distribution of plants. Chlorophyllase plays an important role in stress response. Nevertheless, little is known about the physiological and molecular mechanism of chlorophyll (Chlase, CLH) genes in plants. We cloned PeCLH2 from Populus euphratica and found that PeCLH2 was differentially expressed in different tissues, especially in the leaves of P. euphratica. To further study the role of PeCLH2 in salt tolerance, PeCLH2 overexpression and RNA interference transgenic lines were established in Populus alba × Populus glandulosa and used for salt stress treatment and physiologic indexes studies. Overexpressing lines significantly improved tolerance to salt treatment and reduced reactive oxygen species production. RNA interference lines showed the opposite. Transcriptome analysis was performed on leaves of control and transgenic lines under normal growth conditions and salt stress to predict genes regulated during salt stress. This provides a basis for elucidating the molecular regulation mechanism of PeCLH2 in response to salt stress and improving the tolerance of poplar under salt stress.
Collapse
Affiliation(s)
- Xiaolan Ge
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China
| | - Jiujun Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-10-62888862
| |
Collapse
|
5
|
Fu JR, Zhou J, Zhang YP, Liu L. Effects of Caulerpa taxifolia on Physiological Processes and Gene Expression of Acropora hyacinthus during Thermal Stress. BIOLOGY 2022; 11:biology11121792. [PMID: 36552301 PMCID: PMC9775474 DOI: 10.3390/biology11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
An increasing ecological phase shift from coral-dominated reefs to macroalgae-dominated reefs as a result of anthropogenic impacts, such as eutrophication, sedimentation, and overfishing, has been observed in many reef systems around the world. Ocean warming is a universal threat to both corals and macroalgae, which may alter the outcome of competition between them. Therefore, in order to explore the effects of indirect and direct exposure to macroalgae on the physiological, biochemical, and genetic expression of corals at elevated temperature, the coral Acropora hyacinthus and highly invasive green algae Caulerpa taxifolia were chosen. Physiologically, the results exhibited that, between the control and direct contact treatments, the density and chlorophyll a content of zooxanthella decreased by 53.1% and 71.2%, respectively, when the coral indirectly contacted with the algae at an ambient temperature (27 °C). Moreover, the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in coral tissue were enhanced by interacting with algae. After an increase of 3 °C, the density and chlorophyll a content of the zooxanthella reduced by 84.4% and 93.8%, respectively, whereas the enzyme activities of SOD and CAT increased 2.3- and 3.1-fold. However, only the zooxanthellae density and pigment content decreased when Caulerpa taxifolia was co-cultured with Acropora hyacinthus at 30 °C. Molecularly, different from the control group, the differentially expressed genes (DEGs) such as Rab family, ATG family, and Casp7 genes were significantly enriched in the endocytosis, autophagy, and apoptosis pathways, regardless of whether Acropora hyacinthus was directly or indirectly exposed to Caulerpa taxifolia at 27 °C. Under thermal stress without algae interaction, the DEGs were significantly enriched in the microbial immune signal transduction pathways, such as the Toll-like receptor signaling pathway and TNF signaling pathway, while multiple cellular immunity (IFI47, TRAF family) and oxidative stress (CAT, SODC, HSP70) genes were upregulated. Inversely, compared with corals without interaction with algae at 30 °C, the DEGs of the corals that interacted with Caulerpa taxifolia at 30 °C were remarkably enriched in apoptosis and the NOD-like receptor signaling pathway, including the transcription factors such as the Casp family and TRAF family. In conclusion, the density and chlorophyll a content of zooxanthella maintained a fading tendency induced by the macroalgae at ambient temperatures. The oxidative stress and immune response levels of the coral was elevated at 30 °C, but the macroalgae alleviated the negative effects triggered by thermal stress.
Collapse
Affiliation(s)
- Jian-Rong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Ping Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Ocean Science and Engineering, Zhanjiang 524025, China
- Correspondence:
| |
Collapse
|
6
|
Ninkuu V, Yan J, Zhang L, Fu Z, Yang T, Li S, Li B, Duan J, Ren J, Li G, Yang X, Zeng H. Hrip1 mediates rice cell wall fortification and phytoalexins elicitation to confer immunity against Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:980821. [PMID: 36212323 PMCID: PMC9546723 DOI: 10.3389/fpls.2022.980821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Magnaporthe oryzae is a potent fungus that adversely affects rice yield. Combinatorial techniques of prevention, toxic chemicals, and fungicide are used to remedy rice blast infection. We reported the role of Hrip1 in cell death elicitation and expression of systematic acquired resistance that could potentially stifle M. oryzae infection. In this study, transcriptome and metabolomic techniques were used to investigate the mechanism by which Hrip1 reprogramed the transcriptome of rice seedlings to confer immunity against M. oryzae. Our results showed that Hrip1 induces cell wall thickening and phytoalexin elicitation to confer immunity against M. oryzae infection. Hrip1 activates key lignin biosynthetic genes and myeloblastosis transcription factors that act as molecular switches for lignin production. Lignin content was increased by 68.46% and more after 48 h onwards in Hrip1-treated seedlings compared to the control treatment. Further analysis of cell wall morphology using the transmission electron microscopy technique revealed over 100% cell wall robustness. Hrip1 also induced the expression of 24 diterpene synthases. These include class I and II terpene synthases, cytochrome P450 subfamilies (OsCYP76M and OsCYP71Z), and momilactones synthases. The relationship between the expression of these genes and metabolic elicitation was analyzed using ultra-performance liquid chromatography-tandem mass spectrometry. Enhanced amounts of momilactones A and B, oryzalactone, and phytocassane A and G were detected in the Hrip1-treated leaves. We also identified seven benzoxazinoid genes (BX1-BX7) that could improve rice immunity. Our findings show that Hrip1 confers dual immunity by leveraging lignin and phytoalexins for physical and chemical resistance. This study provides novel insights into the mechanisms underlying Hrip1-treated plant immunity.
Collapse
|
7
|
Wang S, Wu R, Lu J, Jiang Y, Huang T, Cai YD. Protein-protein interaction networks as miners of biological discovery. Proteomics 2022; 22:e2100190. [PMID: 35567424 DOI: 10.1002/pmic.202100190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Protein-protein interactions (PPIs) form the basis of a myriad of biological pathways and mechanism, such as the formation of protein-complexes or the components of signaling cascades. Here, we reviewed experimental methods for identifying PPI pairs, including yeast two-hybrid, mass spectrometry, co-localization, and co-immunoprecipitation. Furthermore, a range of computational methods leveraging biochemical properties, evolution history, protein structures and more have enabled identification of additional PPIs. Given the wealth of known PPIs, we reviewed important network methods to construct and analyze networks of PPIs. These methods aid biological discovery through identifying hub genes and dynamic changes in the network, and have been thoroughly applied in various fields of biological research. Lastly, we discussed the challenges and future direction of research utilizing the power of PPI networks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Steven Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Runxin Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiaqi Lu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Yijia Jiang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
The Natterin Proteins Diversity: A Review on Phylogeny, Structure, and Immune Function. Toxins (Basel) 2021; 13:toxins13080538. [PMID: 34437409 PMCID: PMC8402412 DOI: 10.3390/toxins13080538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Since the first record of the five founder members of the group of Natterin proteins in the venom of the medically significant fish Thalassophryne nattereri, new sequences have been identified in other species. In this work, we performed a detailed screening using available genome databases across a wide range of species to identify sequence members of the Natterin group, sequence similarities, conserved domains, and evolutionary relationships. The high-throughput tools have enabled us to dramatically expand the number of members within this group of proteins, which has a remote origin (around 400 million years ago) and is spread across Eukarya organisms, even in plants and primitive Agnathans jawless fish. Overall, the survey resulted in 331 species presenting Natterin-like proteins, mainly fish, and 859 putative genes. Besides fish, the groups with more species included in our analysis were insects and birds. The number and variety of annotations increased the knowledge of the obtained sequences in detail, such as the conserved motif AGIP in the pore-forming loop involved in the transmembrane barrel insertion, allowing us to classify them as important constituents of the innate immune defense system as effector molecules activating immune cells by interacting with conserved intracellular signaling mechanisms in the hosts.
Collapse
|
9
|
Costa-Leonardo AM, da Silva IB, Janei V, Poiani SB, Dos Santos-Pinto JRA, Esteves FG, Palma MS. Salivary glands in workers of Ruptitermes spp. (Blattaria, Isoptera, Termitidae, Apicotermitinae): a morphological and preoteomic approach. Cell Tissue Res 2021; 385:603-621. [PMID: 33961129 DOI: 10.1007/s00441-021-03469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Salivary glands are omnipresent in termites and occur in all developmental stages and castes. They function to produce, store, and secrete compounds, ranging from a feeding function to defensive mechanisms. Here, we provide a complete morphological overview of the salivary glands in the soldierless species Ruptitermes reconditus and R. xanthochiton, and the first proteomic profile of the salivary glands in a Neotropical Apicotermitinae representative, R. reconditus. Salivary glands from both species were composed of several acini, roughly spherical structures composed of two types of central cells (type I and II) and peripheral parietal cells, as well as transporting ducts and two salivary reservoirs. Central cells were richly supplied with electron-lucent secretory vesicles and rough endoplasmic reticulum, a feature of protein-secreting cells. Parietal cells of Ruptitermes spp. had conspicuous characteristics such as electron-lucent secretory vesicles surrounded by mitochondria and well-developed microvilli. Moreover, different individuals showed variation in the secretory cycle of salivary acini, which may be related to polyethism. Ultrastructural analysis evidenced a high synthesis of secretion and also the occurrence of lysosomes and autophagic structures in central cells. Proteomic analysis of the salivary glands revealed 483 proteins divided into functional groups, highlighting toxins/defensins and compounds related to alarm communication and colony asepsis. Soldierless termites are quite successful, especially due to morphological adaptations of the workers, including unknown modifications of exocrine glands. Thus, according to our morphological and proteomic findings, we discuss the potential roles of the salivary gland secretion in different social aspects of the sampled species.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil. .,Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| | - Iago Bueno da Silva
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Vanelize Janei
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Silvana Beani Poiani
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Franciele Grego Esteves
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Mario Sérgio Palma
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
10
|
Picciani N, Kerlin JR, Jindrich K, Hensley NM, Gold DA, Oakley TH. Light modulated cnidocyte discharge predates the origins of eyes in Cnidaria. Ecol Evol 2021; 11:3933-3940. [PMID: 33976785 PMCID: PMC8093662 DOI: 10.1002/ece3.7280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/06/2020] [Accepted: 01/20/2021] [Indexed: 11/07/2022] Open
Abstract
Complex biological traits often originate by integrating previously separate parts, but the organismal functions of these precursors are challenging to infer. If we can understand the ancestral functions of these precursors, it could help explain how they persisted and how they facilitated the origins of complex traits. Animal eyes are some of the best studied complex traits, and they include many parts, such as opsin-based photoreceptor cells, pigment cells, and lens cells. Eye evolution is understood through conceptual models that argue these parts gradually came together to support increasingly sophisticated visual functions. Despite the well-accepted logic of these conceptual models, explicit comparative studies to identify organismal functions of eye precursors are lacking. Here, we investigate how precursors functioned before they became part of eyes in Cnidaria, a group formed by sea anemones, corals, and jellyfish. Specifically, we test whether ancestral photoreceptor cells regulated the discharge of cnidocytes, the expensive single-use cells with various functions including prey capture, locomotion, and protection. Similar to a previous study of Hydra, we show an additional four distantly related cnidarian groups discharge significantly more cnidocytes when exposed to dim blue light compared with bright blue light. Our comparative analyses support the hypothesis that the cnidarian ancestor was capable of modulating cnidocyte discharge with light, which we speculate uses an opsin-based phototransduction pathway homologous to that previously described in Hydra. Although eye precursors might have had other functions like regulating timing of spawning, our findings are consistent with the hypothesis that photoreceptor cells which mediate cnidocyte discharge predated eyes, perhaps facilitating the prolific origination of eyes in Cnidaria.
Collapse
Affiliation(s)
- Natasha Picciani
- Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraCAUSA
- Present address:
Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Jamie R. Kerlin
- Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraCAUSA
- Present address:
Department of BiologyCalifornia State UniversityNorthridgeCAUSA
| | | | - Nicholai M. Hensley
- Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraCAUSA
| | - David A. Gold
- Department of Earth and Planetary SciencesUniversity of California at DavisDavisCAUSA
| | - Todd H. Oakley
- Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
11
|
van Oppen MJH, Medina M. Coral evolutionary responses to microbial symbioses. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190591. [PMID: 32772672 PMCID: PMC7435167 DOI: 10.1098/rstb.2019.0591] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
This review explores how microbial symbioses may have influenced and continue to influence the evolution of reef-building corals (Cnidaria; Scleractinia). The coral holobiont comprises a diverse microbiome including dinoflagellate algae (Dinophyceae; Symbiodiniaceae), bacteria, archaea, fungi and viruses, but here we focus on the Symbiodiniaceae as knowledge of the impact of other microbial symbionts on coral evolution is scant. Symbiosis with Symbiodiniaceae has extended the coral's metabolic capacity through metabolic handoffs and horizontal gene transfer (HGT) and has contributed to the ecological success of these iconic organisms. It necessitated the prior existence or the evolution of a series of adaptations of the host to attract and select the right symbionts, to provide them with a suitable environment and to remove disfunctional symbionts. Signatures of microbial symbiosis in the coral genome include HGT from Symbiodiniaceae and bacteria, gene family expansions, and a broad repertoire of oxidative stress response and innate immunity genes. Symbiosis with Symbiodiniaceae has permitted corals to occupy oligotrophic waters as the algae provide most corals with the majority of their nutrition. However, the coral-Symbiodiniaceae symbiosis is sensitive to climate warming, which disrupts this intimate relationship, causing coral bleaching, mortality and a worldwide decline of coral reefs. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, 3010 Victoria, Australia
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, 4810 Queensland, Australia
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA 16802, USA
| |
Collapse
|
12
|
Gacesa R, Hung JYH, Bourne DG, Long PF. Horizontal transfer of a natterin-like toxin encoding gene within the holobiont of the reef building coral Acropora digitifera (Cnidaria: Anthozoa: Scleractinia) and across multiple animal linages. JOURNAL OF VENOM RESEARCH 2020; 10:7-12. [PMID: 32566125 PMCID: PMC7284397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022]
Abstract
Phylogenetic evidence is provided for horizontal transfer of a natterin-like toxin encoding gene from fungi into the genome of the coral Acropora digitifera. Sequencing analysis of the coral tissues supported that a fungal taxon predicted to be the most likely gene donor was represented in the coral microbiome. Further bioinformatics data suggested widespread recruitment of the natterin-like gene into venomous terrestrial invertebrates, and repositioning of this gene to non-toxic functions in non-venomous teleost fish.
Collapse
Affiliation(s)
- Ranko Gacesa
- 1School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Julia Yun-hsuan Hung
- 2College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David G Bourne
- 2College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia,3Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Paul F Long
- 1School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom,4Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof Lineu Prestes, 580, B16, 05508-000 São Paulo, SP, Brazil,Correspondence to: Paul Long, , Tel/Fax: 00 44 (0)20 7848 4842
| |
Collapse
|
13
|
Transcriptome Analysis Reveals Key Pathways and Hormone Activities Involved in Early Microtuber Formation of Dioscorea opposita. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8057929. [PMID: 32258146 PMCID: PMC7086419 DOI: 10.1155/2020/8057929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Chinese yam (Dioscorea opposita) is an important tuberous crop used for both food and medicine. Despite a long history of cultivation, the understanding of D. opposita genetics and molecular biology remains scant, which has limited its genetic improvement. This work presents a de novo transcriptome sequencing analysis of microtuber formation in D. opposita. We assembled cDNA libraries from different stages during the process of microtuber formation, designated as initial explants (EXP), axillary bud proliferation after three weeks (BUD), and microtuber visible after four weeks (MTV). More differentially expressed genes (DEGs) and pathways were identified between BUD vs. EXP than in MTV vs. BUD, indicating that proliferation of the axillary bud is the key stage of microtuber induction. Gene classification and pathway enrichment analysis showed that microtuber formation is tightly coordinated with primary metabolism, such as amino acid biosynthesis, ribosomal component biosynthesis, and starch and sucrose metabolism. The formation of the microtuber is regulated by a variety of plant hormones, including ABA. Combined with analysis of physiological data, we suggest that ABA positively regulates tuberization in D. opposita. This study will serve as an empirical foundation for future molecular studies and for the propagation of D. opposita germplasm in field crops.
Collapse
|
14
|
Doonan LB, Hartigan A, Okamura B, Long PF. Stress-Free Evolution: The Nrf-Coordinated Oxidative Stress Response in Early Diverging Metazoans. Integr Comp Biol 2020; 59:799-810. [PMID: 31120488 DOI: 10.1093/icb/icz055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Environmental stress from ultraviolet radiation, elevated temperatures or metal toxicity can lead to reactive oxygen species in cells, leading to oxidative DNA damage, premature aging, neurodegenerative diseases, and cancer. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activates many cytoprotective proteins within the nucleus to maintain homeostasis during oxidative stress. In vertebrates, Nrf2 levels are regulated by the Kelch-family protein Keap1 (Kelch-like ECH-associated protein 1) in the absence of stress according to a canonical redox control pathway. Little, however, is known about the redox control pathway used in early diverging metazoans. Our study examines the presence of known oxidative stress regulatory elements within non-bilaterian metazoans including free living and parasitic cnidarians, ctenophores, placozoans, and sponges. Cnidarians, with their pivotal position as the sister phylum to bilaterians, play an important role in understanding the evolutionary history of response to oxidative stress. Through comparative genomic and transcriptomic analysis our results show that Nrf homologs evolved early in metazoans, whereas Keap1 appeared later in the last common ancestor of cnidarians and bilaterians. However, key Nrf-Keap1 interacting domains are not conserved within the cnidarian lineage, suggesting this important pathway evolved with the radiation of bilaterians. Several known downstream Nrf targets are present in cnidarians suggesting that cnidarian Nrf plays an important role in oxidative stress response even in the absence of Keap1. Comparative analyses of key oxidative stress sensing and response proteins in early diverging metazoans thus provide important insights into the molecular basis of how these lineages interact with their environment and suggest a shared evolutionary history of regulatory pathways. Exploration of these pathways may prove important for the study of cancer therapeutics and broader research in oxidative stress, senescence, and the functional responses of early diverging metazoans to environmental change.
Collapse
Affiliation(s)
- Liam B Doonan
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Ashlie Hartigan
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.,Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Paul F Long
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
15
|
Kitahara MV, Jaimes‐Becerra A, Gamero‐Mora E, Padilla G, Doonan LB, Ward M, Marques AC, Morandini AC, Long PF. Reciprocal transplantation of the heterotrophic coral Tubastraea coccinea (Scleractinia: Dendrophylliidae) between distinct habitats did not alter its venom toxin composition. Ecol Evol 2020; 10:1794-1803. [PMID: 32128117 PMCID: PMC7042732 DOI: 10.1002/ece3.5959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Tubastraea coccinea is an azooxanthellate coral species recorded in the Indian and Atlantic oceans and is presently widespread in the southwestern Atlantic with an alien status for Brazil. T. coccinea outcompete other native coral species by using a varied repertoire of biological traits. For example, T. coccinea has evolved potent venom capable of immobilizing and digesting zooplankton prey. Diversification and modification of venom toxins can provide potential adaptive benefits to individual fitness, yet acquired alteration of venom composition in cnidarians is poorly understood as the adaptive flexibility affecting toxin composition in these ancient lineages has been largely ignored. We used quantitative high-throughput proteomics to detect changes in toxin expression in clonal fragments of specimens collected and interchanged from two environmentally distinct and geographically separate study sites. Unexpectedly, despite global changes in protein expression, there were no changes in the composition and abundance of toxins from coral fragments recovered from either site, and following clonal transplantation between sites. There were also no apparent changes to the cnidome (cnidae) and gross skeletal or soft tissue morphologies of the specimens. These results suggest that the conserved toxin complexity of T. coccinea co-evolved with innovation of the venom delivery system, and its morphological development and phenotypic expression are not modulated by habitat pressures over short periods of time. The adaptive response of the venom trait to specific predatory regimes, however, necessitates further consideration.
Collapse
Affiliation(s)
- Marcelo V. Kitahara
- Departamento de Ciências do MarUniversidade Federal de São PauloSantosBrazil
- Centro de Biologia Marinha (CEBIMar)Universidade de São PauloSão SebastiãoBrazil
| | - Adrian Jaimes‐Becerra
- Departamento de ZoologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Edgar Gamero‐Mora
- Departamento de ZoologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Gabriel Padilla
- Departmento de MicrobiologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Liam B. Doonan
- School of Cancer & Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | | - Antonio C. Marques
- Departamento de ZoologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - André C. Morandini
- Departamento de ZoologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Paul F. Long
- School of Cancer & Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonLondonUK
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
16
|
van Oppen MJH, Bongaerts P, Frade P, Peplow L, Boyd SE, Nim HT, Bay LK. Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol Ecol 2018; 27:2956-2971. [DOI: 10.1111/mec.14763] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Madeleine J. H. van Oppen
- Australian Institute of Marine Science; Townsville MC Qld Australia
- School of BioSciences; University of Melbourne; Parkville Vic. Australia
| | - Pim Bongaerts
- Global Change Institute; The University of Queensland; St Lucia Qld Australia
- California Academy of Sciences; San Francisco California
| | - Pedro Frade
- Centre of Marine Sciences (CCMAR); University of Algarve; Faro Portugal
| | - Lesa M. Peplow
- Australian Institute of Marine Science; Townsville MC Qld Australia
| | - Sarah E. Boyd
- Faculty of Information Technology; Monash University; Melbourne Vic. Australia
| | - Hieu T. Nim
- Faculty of Information Technology; Monash University; Melbourne Vic. Australia
- Australian Regenerative Medicine Institute; Monash University; Melbourne Vic. Australia
| | - Line K. Bay
- Australian Institute of Marine Science; Townsville MC Qld Australia
| |
Collapse
|
17
|
van de Water JAJM, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, van Oppen MJH. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol 2018; 27:1065-1080. [PMID: 29334418 DOI: 10.1111/mec.14489] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Global increases in coral disease prevalence have been linked to ocean warming through changes in coral-associated bacterial communities, pathogen virulence and immune system function. However, the interactive effects of temperature and pathogens on the coral holobiont are poorly understood. Here, we assessed three compartments of the holobiont (host, Symbiodinium and bacterial community) of the coral Montipora aequituberculata challenged with the pathogen Vibrio coralliilyticus and the commensal bacterium Oceanospirillales sp. under ambient (27°C) and elevated (29.5 and 32°C) seawater temperatures. Few visual signs of bleaching and disease development were apparent in any of the treatments, but responses were detected in the holobiont compartments. V. coralliilyticus acted synergistically and negatively impacted the photochemical efficiency of Symbiodinium at 32°C, while Oceanospirillales had no significant effect on photosynthetic efficiency. The coral, however, exhibited a minor response to the bacterial challenges, with the response towards V. coralliilyticus being significantly more pronounced, and involving the prophenoloxidase-activating system and multiple immune system-related genes. Elevated seawater temperatures did not induce shifts in the coral-associated bacterial community, but caused significant gene expression modulation in both Symbiodinium and the coral host. While Symbiodinium exhibited an antiviral response and upregulated stress response genes, M. aequituberculata showed regulation of genes involved in stress and innate immune response processes, including immune and cytokine receptor signalling, the complement system, immune cell activation and phagocytosis, as well as molecular chaperones. These observations show that M. aequituberculata is capable of maintaining a stable bacterial community under elevated seawater temperatures and thereby contributes to preventing disease development.
Collapse
Affiliation(s)
- Jeroen A J M van de Water
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,Département de Biologie Marine, Centre Scientifique de Monaco, Monaco, Principauté de Monaco
| | - Maryam Chaib De Mares
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Groves B Dixon
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jean-Baptiste Raina
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - Bette L Willis
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Madeleine J H van Oppen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
18
|
Frazier M, Helmkampf M, Bellinger MR, Geib SM, Takabayashi M. De novo metatranscriptome assembly and coral gene expression profile of Montipora capitata with growth anomaly. BMC Genomics 2017; 18:710. [PMID: 28893194 PMCID: PMC5594617 DOI: 10.1186/s12864-017-4090-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Scleractinian corals are a vital component of coral reef ecosystems, and of significant cultural and economic value worldwide. As anthropogenic and natural stressors are contributing to a global decline of coral reefs, understanding coral health is critical to help preserve these ecosystems. Growth anomaly (GA) is a coral disease that has significant negative impacts on coral biology, yet our understanding of its etiology and pathology is lacking. In this study we used RNA-seq along with de novo metatranscriptome assembly and homology assignment to identify coral genes that are expressed in three distinct coral tissue types: tissue from healthy corals (“healthy”), GA lesion tissue from diseased corals (“GA-affected”) and apparently healthy tissue from diseased corals (“GA-unaffected”). We conducted pairwise comparisons of gene expression among these three tissue types to identify genes and pathways that help us to unravel the molecular pathology of this coral disease. Results The quality-filtered de novo-assembled metatranscriptome contained 76,063 genes, of which 13,643 were identified as putative coral genes. Overall gene expression profiles of coral genes revealed high similarity between healthy tissue samples, in contrast to high variance among diseased samples. This indicates GA has a variety of genetic effects at the colony level, including on seemingly healthy (GA-unaffected) tissue. A total of 105 unique coral genes were found differentially expressed among tissue types. Pairwise comparisons revealed the greatest number of differentially expressed genes between healthy and GA-affected tissue (93 genes), followed by healthy and GA-unaffected tissue (33 genes), and GA-affected and -unaffected tissue (7 genes). The putative function of these genes suggests GA is associated with changes in the activity of genes involved in developmental processes and activation of the immune system. Conclusion This is one of the first transcriptome-level studies to investigate coral GA, and the first metatranscriptome assembly for the M. capitata holobiont. The gene expression data, metatranscriptome assembly and methodology developed through this study represent a significant addition to the molecular information available to further our understanding of this coral disease. Electronic supplementary material The online version of this article (10.1186/s12864-017-4090-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Frazier
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA
| | - Martin Helmkampf
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA
| | - M Renee Bellinger
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA
| | - Scott M Geib
- United States Department of Agriculture, Agriculture Research Service, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St, Hilo, HI, 96720, USA
| | - Misaki Takabayashi
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA. .,Marine Science Department, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA.
| |
Collapse
|
19
|
Gacesa R, Zucko J, Petursdottir SK, Gudmundsdottir EE, Fridjonsson OH, Diminic J, Long PF, Cullum J, Hranueli D, Hreggvidsson GO, Starcevic A. MEGGASENSE - The Metagenome/Genome Annotated Sequence Natural Language Search Engine: A Platform for
the Construction of Sequence Data Warehouses. Food Technol Biotechnol 2017; 55:251-257. [PMID: 28867956 DOI: 10.17113/ftb.55.02.17.4749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The MEGGASENSE platform constructs relational databases of DNA or protein sequences. The default functional analysis uses 14 106 hidden Markov model (HMM) profiles based on sequences in the KEGG database. The Solr search engine allows sophisticated queries and a BLAST search function is also incorporated. These standard capabilities were used to generate the SCATT database from the predicted proteome of Streptomyces cattleya. The implementation of a specialised metagenome database (AMYLOMICS) for bioprospecting of carbohydrate-modifying enzymes is described. In addition to standard assembly of reads, a novel 'functional' assembly was developed, in which screening of reads with the HMM profiles occurs before the assembly. The AMYLOMICS database incorporates additional HMM profiles for carbohydrate-modifying enzymes and it is illustrated how the combination of HMM and BLAST analyses helps identify interesting genes. A variety of different proteome and metagenome databases have been generated by MEGGASENSE.
Collapse
Affiliation(s)
- Ranko Gacesa
- SemGen Ltd., Lanište 5/D, HR-10 000 Zagreb, Croatia.,Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building,
Stamford Street, London SE1 9NH, UK
| | - Jurica Zucko
- SemGen Ltd., Lanište 5/D, HR-10 000 Zagreb, Croatia.,Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6,
HR-10 000 Zagreb, Croatia
| | | | | | | | - Janko Diminic
- SemGen Ltd., Lanište 5/D, HR-10 000 Zagreb, Croatia.,Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6,
HR-10 000 Zagreb, Croatia
| | - Paul F Long
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building,
Stamford Street, London SE1 9NH, UK.,Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building,
Stamford Street, London SE1 9NH, UK
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049,
DE-67653 Kaiserslautern, Germany
| | - Daslav Hranueli
- SemGen Ltd., Lanište 5/D, HR-10 000 Zagreb, Croatia.,Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6,
HR-10 000 Zagreb, Croatia
| | - Gudmundur O Hreggvidsson
- Matis Ltd., Vínlandsleið 12, IS-113 Reykjavík, Iceland.,Faculty of Life and Environmental Sciences, University of Iceland, Sturlugötu 7,
IS-101 Reykjavík, Iceland
| | - Antonio Starcevic
- SemGen Ltd., Lanište 5/D, HR-10 000 Zagreb, Croatia.,Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6,
HR-10 000 Zagreb, Croatia
| |
Collapse
|
20
|
Morgan MB, Edge SE, Venn AA, Jones RJ. Developing transcriptional profiles in Orbicella franksi exposed to copper: Characterizing responses associated with a spectrum of laboratory-controlled environmental conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:60-76. [PMID: 28599170 DOI: 10.1016/j.aquatox.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/23/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, School of Mathematics and Natural Sciences, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA.
| | - Sara E Edge
- Hawaii Pacific University, 45-045 Kamehameha Hwy, Kaneohe, HI, 96744, USA
| | - Alexander A Venn
- Marine Biology Department et Laboratoire International Associé 647 "BIOSENSIB", Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco
| | - Ross J Jones
- Australian Institute of Marine Science (AIMS), Perth, 6009, Australia
| |
Collapse
|
21
|
Identification of long non-coding RNAs in two anthozoan species and their possible implications for coral bleaching. Sci Rep 2017; 7:5333. [PMID: 28706206 PMCID: PMC5509713 DOI: 10.1038/s41598-017-02561-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/13/2017] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play regulatory roles in a diverse range of biological processes and are associated with the outcomes of various diseases. The majority of studies about lncRNAs focus on model organisms, with lessened investigation in non-model organisms to date. Herein, we have undertaken an investigation on lncRNA in two zoanthids (cnidarian): Protolpalythoa varibilis and Palythoa caribaeorum. A total of 11,206 and 13,240 lncRNAs were detected in P. variabilis and P. caribaeorum transcriptome, respectively. Comparison using NONCODE database indicated that the majority of these lncRNAs is taxonomically species-restricted with no identifiable orthologs. Even so, we found cases in which short regions of P. caribaeorum’s lncRNAs were similar to vertebrate species’ lncRNAs, and could be associated with lncRNA conserved regulatory functions. Consequently, some high-confidence lncRNA-mRNA interactions were predicted based on such conserved regions, therefore revealing possible involvement of lncRNAs in posttranscriptional processing and regulation in anthozoans. Moreover, investigation of differentially expressed lncRNAs, in healthy colonies and colonial individuals undergoing natural bleaching, indicated that some up-regulated lncRNAs in P. caribaeorum could posttranscriptionally regulate the mRNAs encoding proteins of Ras-mediated signal transduction pathway and components of innate immune-system, which could contribute to the molecular response of coral bleaching.
Collapse
|
22
|
Thurber RV, Payet JP, Thurber AR, Correa AMS. Virus-host interactions and their roles in coral reef health and disease. Nat Rev Microbiol 2017; 15:205-216. [PMID: 28090075 DOI: 10.1038/nrmicro.2016.176] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.
Collapse
Affiliation(s)
- Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jérôme P Payet
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.,College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Andrew R Thurber
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.,College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Adrienne M S Correa
- BioSciences Department, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
23
|
Rising levels of atmospheric oxygen and evolution of Nrf2. Sci Rep 2016; 6:27740. [PMID: 27297177 PMCID: PMC4906274 DOI: 10.1038/srep27740] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/24/2016] [Indexed: 01/21/2023] Open
Abstract
In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the 'Great Oxygenation Event'. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.5 Ga during the Paleoproterozoic when photosynthetic oxygen was being absorbed into the oceans. A subsequent significant divergence in Nrf2 is seen during the split between fungi and the Metazoa approximately 1.0-1.2 Ga, at a time when oceanic ventilation released free oxygen to the atmosphere, but with most being absorbed by methane oxidation and oxidative weathering of land surfaces until approximately 800 Ma. Atmospheric oxygen levels thereafter accumulated giving rise to metazoan success known as the Cambrian explosion commencing at ~541 Ma. Atmospheric O2 levels then rose in the mid Paleozoic (359-252 Ma), and Nrf2 diverged once again at the division between mammals and non-mammalian vertebrates during the Permian-Triassic boundary (~252 Ma). Understanding Nrf2 evolution as an effective antioxidant response may have repercussions for improved human health.
Collapse
|
24
|
Murphy JWA, Richmond RH. Changes to coral health and metabolic activity under oxygen deprivation. PeerJ 2016; 4:e1956. [PMID: 27114888 PMCID: PMC4841221 DOI: 10.7717/peerj.1956] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022] Open
Abstract
On Hawaiian reefs, the fast-growing, invasive algae Gracilaria salicornia overgrows coral heads, restricting water flow and light, thereby smothering corals. Field data shows hypoxic conditions (dissolved oxygen (DO2) < 2 mg/L) occurring underneath algal mats at night, and concurrent bleaching and partial tissue loss of shaded corals. To analyze the impact of nighttime oxygen-deprivation on coral health, this study evaluated changes in coral metabolism through the exposure of corals to chronic hypoxic conditions and subsequent analyses of lactate, octopine, alanopine, and strombine dehydrogenase activities, critical enzymes employed through anaerobic respiration. Following treatments, lactate and octopine dehydrogenase activities were found to have no significant response in activities with treatment and time. However, corals subjected to chronic nighttime hypoxia were found to exhibit significant increases in alanopine dehydrogenase activity after three days of exposure and strombine dehydrogenase activity starting after one overnight exposure cycle. These findings provide new insights into coral metabolic shifts in extremely low-oxygen environments and point to ADH and SDH assays as tools for quantifying the impact of hypoxia on coral health.
Collapse
Affiliation(s)
- James W A Murphy
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa , Honolulu, HI , United States
| | - Robert H Richmond
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa , Honolulu, HI , United States
| |
Collapse
|
25
|
Reyes-Bermudez A, Villar-Briones A, Ramirez-Portilla C, Hidaka M, Mikheyev AS. Developmental Progression in the Coral Acropora digitifera Is Controlled by Differential Expression of Distinct Regulatory Gene Networks. Genome Biol Evol 2016; 8:851-70. [PMID: 26941230 PMCID: PMC4824149 DOI: 10.1093/gbe/evw042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/20/2022] Open
Abstract
Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis duringAcropora digitifera's development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression inA. digitiferais regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages.
Collapse
Affiliation(s)
- Alejandro Reyes-Bermudez
- Okinawa Institute of Science and Technology, Okinawa, Japan School of Natural Sciences, Ryukyus University, Okinawa, Japan
| | | | | | - Michio Hidaka
- School of Natural Sciences, Ryukyus University, Okinawa, Japan
| | | |
Collapse
|
26
|
Marsh AG, Hoadley KD, Warner ME. Distribution of CpG Motifs in Upstream Gene Domains in a Reef Coral and Sea Anemone: Implications for Epigenetics in Cnidarians. PLoS One 2016; 11:e0150840. [PMID: 26950882 PMCID: PMC4780780 DOI: 10.1371/journal.pone.0150840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/20/2016] [Indexed: 12/26/2022] Open
Abstract
Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of temperature acclimation genes in a Scleractinian coral Acropora hyacinthus. We wondered what unique characteristics of these genes determined their coordinate expression in response to temperature acclimation, and whether or not other corals and cnidarians would likewise possess these features. Here, we focus on cytosine methylation as an epigenetic DNA modification that is responsive to environmental stressors. We identify common conserved patterns of cytosine-guanosine dinucleotide (CpG) motif frequencies in upstream promoter domains of different functional gene groups in two cnidarian genomes: a coral (Acropora digitifera) and an anemone (Nematostella vectensis). Our analyses show that CpG motif frequencies are prominent in the promoter domains of functional genes associated with environmental adaptation, particularly those identified in A. hyacinthus. Densities of CpG sites in upstream promoter domains near the transcriptional start site (TSS) are 1.38x higher than genomic background levels upstream of -2000 bp from the TSS. The increase in CpG usage suggests selection to allow for DNA methylation events to occur more frequently within 1 kb of the TSS. In addition, observed shifts in CpG densities among functional groups of genes suggests a potential role for epigenetic DNA methylation within promoter domains to impact functional gene expression responses in A. digitifera and N. vectensis. Identifying promoter epigenetic sequence motifs among genes within specific functional groups establishes an approach to describe integrated cellular responses to environmental stress in reef corals and potential roles of epigenetics on survival and fitness in the face of global climate change.
Collapse
Affiliation(s)
- Adam G. Marsh
- Marine Biosciences, School of Marine Science and Policy, University of Delaware, Lewes, DE, United States of America
- Center for Bioinformatics and Computational Biology/Delaware Biotechnology Institute/University of Delaware, Newark, DE, United States of America
- * E-mail:
| | - Kenneth D. Hoadley
- Marine Biosciences, School of Marine Science and Policy, University of Delaware, Lewes, DE, United States of America
| | - Mark E. Warner
- Marine Biosciences, School of Marine Science and Policy, University of Delaware, Lewes, DE, United States of America
| |
Collapse
|
27
|
Dimond JL, Roberts SB. Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change. Mol Ecol 2016; 25:1895-904. [DOI: 10.1111/mec.13414] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/26/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Affiliation(s)
- James L. Dimond
- School of Aquatic and Fishery Sciences; University of Washington; 1122 Boat Street Seattle WA 98105 USA
| | - Steven B. Roberts
- School of Aquatic and Fishery Sciences; University of Washington; 1122 Boat Street Seattle WA 98105 USA
| |
Collapse
|
28
|
Anderson DA, Walz ME, Weil E, Tonellato P, Smith MC. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 2016; 4:e1616. [PMID: 26925311 PMCID: PMC4768675 DOI: 10.7717/peerj.1616] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/01/2016] [Indexed: 12/16/2022] Open
Abstract
Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.
Collapse
Affiliation(s)
- David A Anderson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America; Department of Marine Sciences, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico, United States of America
| | - Marcus E Walz
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin , United States of America
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico at Mayagüez , Mayagüez, Puerto Rico , United States of America
| | - Peter Tonellato
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America; Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Matthew C Smith
- School of Freshwater Sciences, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin , United States of America
| |
Collapse
|
29
|
Gacesa R, Chung R, Dunn SR, Weston AJ, Jaimes-Becerra A, Marques AC, Morandini AC, Hranueli D, Starcevic A, Ward M, Long PF. Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia). BMC Genomics 2015; 16:774. [PMID: 26464356 PMCID: PMC4604070 DOI: 10.1186/s12864-015-1976-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Methods Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available (https://github.com/rgacesa/HHCompare). Results A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Conclusions Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1976-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranko Gacesa
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Ray Chung
- Proteomics Facility, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Simon R Dunn
- Coral Reefs Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Andrew J Weston
- Mass Spectrometry Laboratory, UCL School of Pharmacy, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Adrian Jaimes-Becerra
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matao, Trav. 14, 101, 05508-090, São Paulo, SP, Brazil
| | - Antonio C Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matao, Trav. 14, 101, 05508-090, São Paulo, SP, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hypólito do Rego, km. 131,5, 11600-000, São Sebastião, Brazil
| | - André C Morandini
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matao, Trav. 14, 101, 05508-090, São Paulo, SP, Brazil
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Malcolm Ward
- Proteomics Facility, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Paul F Long
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK. .,Department of Chemistry, King's College London, Strand, London, WC2R 2LS, UK. .,Brazil Institute, King's College London, Strand, London, WC2R 2LS, UK. .,Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Lutz A, Raina JB, Motti CA, Miller DJ, van Oppen MJH. Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora. PLoS One 2015; 10:e0139290. [PMID: 26426118 PMCID: PMC4591267 DOI: 10.1371/journal.pone.0139290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction.
Collapse
Affiliation(s)
- Adrian Lutz
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Jean-Baptiste Raina
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David J. Miller
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation. Toxicol Appl Pharmacol 2015. [DOI: 10.1016/j.taap.2015.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Bertucci A, Forêt S, Ball EE, Miller DJ. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcification in corals. Mol Ecol 2015. [PMID: 26198296 DOI: 10.1111/mec.13328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evolutionary success of reef-building corals is often attributed to their symbiotic relationship with photosynthetic dinoflagellates of the genus Symbiodinium, but metabolic interactions between the partners and the molecular bases of light-enhanced calcification (LEC) are not well understood. Here, the metabolic bases of the interaction between the coral Acropora millepora and its dinoflagellate symbiont were investigated by comparing gene expression levels under light and dark conditions at the whole transcriptome level. Among the 497 differentially expressed genes identified, a suite of genes involved in cholesterol transport was found to be upregulated under light conditions, confirming the significance of this compound in the coral symbiosis. Although ion transporters likely to have roles in calcification were not differentially expressed in this study, expression levels of many genes associated with skeletal organic matrix composition and organization were higher in light conditions. This implies that the rate of organic matrix synthesis is one factor limiting calcification at night. Thus, LEC during the day is likely to be a consequence of increases in both matrix synthesis and the supply of precursor molecules as a result of photosynthetic activity.
Collapse
Affiliation(s)
- A Bertucci
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
| | - S Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia.,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia
| | - E E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia.,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia
| | - D J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia.,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, 4811, Australia
| |
Collapse
|
33
|
Dixon GB, Davies SW, Aglyamova GA, Meyer E, Bay LK, Matz MV. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes. Science 2015; 348:1460-2. [PMID: 26113720 DOI: 10.1126/science.1261224] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection.
Collapse
Affiliation(s)
- Groves B Dixon
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Sarah W Davies
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Galina A Aglyamova
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, 3106 Cordley Hall, Corvallis, OR 97331, USA
| | - Line K Bay
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia.
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Wright RM, Aglyamova GV, Meyer E, Matz MV. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 2015; 16:371. [PMID: 25956907 PMCID: PMC4425862 DOI: 10.1186/s12864-015-1540-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corals are capable of launching diverse immune defenses at the site of direct contact with pathogens, but the molecular mechanisms of this activity and the colony-wide effects of such stressors remain poorly understood. Here we compared gene expression profiles in eight healthy Acropora hyacinthus colonies against eight colonies exhibiting tissue loss commonly associated with white syndromes, all collected from a natural reef environment near Palau. Two types of tissues were sampled from diseased corals: visibly affected and apparently healthy. RESULTS Tag-based RNA-Seq followed by weighted gene co-expression network analysis identified groups of co-regulated differentially expressed genes between all health states (disease lesion, apparently healthy tissues of diseased colonies, and fully healthy). Differences between healthy and diseased tissues indicate activation of several innate immunity and tissue repair pathways accompanied by reduced calcification and the switch towards metabolic reliance on stored lipids. Unaffected parts of diseased colonies, although displaying a trend towards these changes, were not significantly different from fully healthy samples. Still, network analysis identified a group of genes, suggestive of altered immunity state, that were specifically up-regulated in unaffected parts of diseased colonies. CONCLUSIONS Similarity of fully healthy samples to apparently healthy parts of diseased colonies indicates that systemic effects of white syndromes on A. hyacinthus are weak, which implies that the coral colony is largely able to sustain its physiological performance despite disease. The genes specifically up-regulated in unaffected parts of diseased colonies, instead of being the consequence of disease, might be related to the originally higher susceptibility of these colonies to naturally occurring white syndromes.
Collapse
Affiliation(s)
- Rachel M Wright
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, USA.
| | - Galina V Aglyamova
- Department of Integrative Biology, The University of Texas at Austin, Austin, USA.
| | - Eli Meyer
- Department of Zoology, Oregon State University, Corvallis, USA.
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, USA.
| |
Collapse
|
35
|
Rosic N, Ling EYS, Chan CKK, Lee HC, Kaniewska P, Edwards D, Dove S, Hoegh-Guldberg O. Unfolding the secrets of coral-algal symbiosis. ISME JOURNAL 2015; 9:844-56. [PMID: 25343511 DOI: 10.1038/ismej.2014.182] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/05/2014] [Accepted: 08/25/2014] [Indexed: 11/09/2022]
Abstract
Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef-building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30,000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and <2% of sequences having bacterial or other foreign origin. We report 1053 genes, orthologous among four Symbiodinium clades, that share a high level of sequence identity to known proteins from the SwissProt (SP) database. Approximately 80% of the transcripts aligning to the 1053 SP genes were unique to Symbiodinium species and did not align to other dinoflagellates and unrelated eukaryotic transcriptomes/genomes. Six pathways were common to all four Symbiodinium clades including the phosphatidylinositol signaling system and inositol phosphate metabolism pathways. The list of Symbiodinium transcripts common to all four clades included conserved genes such as heat shock proteins (Hsp70 and Hsp90), calmodulin, actin and tubulin, several ribosomal, photosynthetic and cytochrome genes and chloroplast-based heme-containing cytochrome P450, involved in the biosynthesis of xanthophylls. Antioxidant genes, which are important in stress responses, were also preserved, as were a number of calcium-dependent and calcium/calmodulin-dependent protein kinases that may play a role in the establishment of symbiosis. Our findings disclose new knowledge about the genetic uniqueness of symbiotic dinoflagellates and provide a list of homologous genes important for the foundation of coral-algal symbiosis.
Collapse
Affiliation(s)
- Nedeljka Rosic
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Edmund Yew Siang Ling
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Chon-Kit Kenneth Chan
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Hong Ching Lee
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paulina Kaniewska
- 1] School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia [2] Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David Edwards
- 1] School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia [2] School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia [3] Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Sophie Dove
- 1] School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia [2] ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia
| | - Ove Hoegh-Guldberg
- 1] School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia [2] ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia [3] Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
36
|
Weston AJ, Dunlap WC, Beltran VH, Starcevic A, Hranueli D, Ward M, Long PF. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress. Mol Cell Proteomics 2015; 14:585-95. [PMID: 25561505 PMCID: PMC4349979 DOI: 10.1074/mcp.m114.043125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 08/08/2014] [Indexed: 11/06/2022] Open
Abstract
Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as "symbiont shuffling" of Symbiodinium clades in response to environmental stress.
Collapse
Affiliation(s)
- Andrew J Weston
- From the ‡King's College London Proteomics Facility, Institute of Psychiatry, London SE5 8AF, UK
| | - Walter C Dunlap
- §Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville, Queensland,4810 Australia. ‖Institute of Pharmaceutical Science, Kings College, Strand, London WC2R 2LS, United Kingdom
| | - Victor H Beltran
- §Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville, Queensland,4810 Australia. ¶ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811 Australia
| | - Antonio Starcevic
- ‡‡Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Daslav Hranueli
- ‡‡Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Malcolm Ward
- From the ‡King's College London Proteomics Facility, Institute of Psychiatry, London SE5 8AF, UK
| | - Paul F Long
- ‖Institute of Pharmaceutical Science, Kings College, Strand, London WC2R 2LS, United Kingdom, **Department of Chemistry, King's College Strand, London WC2R 2LS, United Kingdom, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| |
Collapse
|
37
|
Brekhman V, Malik A, Haas B, Sher N, Lotan T. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC Genomics 2015; 16:74. [PMID: 25757467 PMCID: PMC4334923 DOI: 10.1186/s12864-015-1320-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/04/2015] [Indexed: 11/11/2022] Open
Abstract
Background The moon jellyfish Aurelia aurita is a widespread scyphozoan species that forms large seasonal blooms. Here we provide the first comprehensive view of the entire complex life of the Aurelia Red Sea strain by employing transcriptomic profiling of each stage from planula to mature medusa. Results A de novo transcriptome was assembled from Illumina RNA-Seq data generated from six stages throughout the Aurelia life cycle. Transcript expression profiling yielded clusters of annotated transcripts with functions related to each specific life-cycle stage. Free-swimming planulae were found highly enriched for functions related to cilia and microtubules, and the drastic morphogenetic process undergone by the planula while establishing the future body of the polyp may be mediated by specifically expressed Wnt ligands. Specific transcripts related to sensory functions were found in the strobila and the ephyra, whereas extracellular matrix functions were enriched in the medusa due to high expression of transcripts such as collagen, fibrillin and laminin, presumably involved in mesoglea development. The CL390-like gene, suggested to act as a strobilation hormone, was also highly expressed in the advanced strobila of the Red Sea species, and in the medusa stage we identified betaine-homocysteine methyltransferase, an enzyme that may play an important part in maintaining equilibrium of the medusa’s bell. Finally, we identified the transcription factors participating in the Aurelia life-cycle and found that 70% of these 487 identified transcription factors were expressed in a developmental-stage-specific manner. Conclusions This study provides the first scyphozoan transcriptome covering the entire developmental trajectory of the life cycle of Aurelia. It highlights the importance of numerous stage-specific transcription factors in driving morphological and functional changes throughout this complex metamorphosis, and is expected to be a valuable resource to the community. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1320-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, 31905, Haifa, Israel.
| | - Brian Haas
- Broad Institute of Massachusetts, Institute of Technology and Harvard, Cambridge, Massachusetts, USA.
| | - Noa Sher
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel. .,Bioinformatics Service Unit, University of Haifa, 31905, Haifa, Israel.
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| |
Collapse
|
38
|
Pope MA, Spence E, Seralvo V, Gacesa R, Heidelberger S, Weston AJ, Dunlap WC, Shick JM, Long PF. O-Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413. Chembiochem 2015; 16:320-7. [PMID: 25487723 DOI: 10.1002/cbic.201402516] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 11/09/2022]
Abstract
The parent core structure of mycosporine-like amino acids (MAAs) is 4-deoxygadusol, which, in cyanobacteria, is derived from conversion of the pentose phosphate pathway intermediate sedoheptulose 7-phosphate by the enzymes 2-epi-5-epivaliolone synthase (EVS) and O-methyltransferase (OMT). Yet, deletion of the EVS gene from Anabaena variabilis ATCC 29413 was shown to have little effect on MAA production, thus suggesting that its biosynthesis is not exclusive to the pentose phosphate pathway. Herein, we report how, using pathway-specific inhibitors, we demonstrated unequivocally that MAA biosynthesis occurs also via the shikimate pathway. In addition, complete in-frame gene deletion of the OMT gene from A. variabilis ATCC 29413 reveals that, although biochemically distinct, the pentose phosphate and shikimate pathways are inextricably linked to MAA biosynthesis in this cyanobacterium. Furthermore, proteomic data reveal that the shikimate pathway is the predominate route for UV-induced MAA biosynthesis.
Collapse
Affiliation(s)
- Matthew A Pope
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH (UK)
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 2015; 4:176. [PMID: 25621279 PMCID: PMC4286716 DOI: 10.3389/fcimb.2014.00176] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/04/2014] [Indexed: 01/18/2023] Open
Abstract
In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health-not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.
Collapse
Affiliation(s)
- Janelle R. Thompson
- Civil and Environmental Engineering Department, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Hanny E. Rivera
- Civil and Environmental Engineering Department, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Biology, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| | - Collin J. Closek
- Department of Biology, Pennsylvania State UniversityUniversity Park, PA, USA
| | - Mónica Medina
- Department of Biology, Pennsylvania State UniversityUniversity Park, PA, USA
| |
Collapse
|
40
|
Hemond EM, Kaluziak ST, Vollmer SV. The genetics of colony form and function in Caribbean Acropora corals. BMC Genomics 2014; 15:1133. [PMID: 25519925 PMCID: PMC4320547 DOI: 10.1186/1471-2164-15-1133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Results Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct “staghorn” versus “elkhorn” morphologies of these two sister species. Conclusions The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1133) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Dixon GB, Bay LK, Matz MV. Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora. BMC Genomics 2014; 15:1109. [PMID: 25511458 PMCID: PMC4378018 DOI: 10.1186/1471-2164-15-1109] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022] Open
Abstract
Background In invertebrates, genes belonging to dynamically regulated functional categories appear to be less methylated than “housekeeping” genes, suggesting that DNA methylation may modulate gene expression plasticity. To date, however, experimental evidence to support this hypothesis across different natural habitats has been lacking. Results Gene expression profiles were generated from 30 pairs of genetically identical fragments of coral Acropora millepora reciprocally transplanted between distinct natural habitats for 3 months. Gene expression was analyzed in the context of normalized CpG content, a well-established signature of historical germline DNA methylation. Genes with weak methylation signatures were more likely to demonstrate differential expression based on both transplant environment and population of origin than genes with strong methylation signatures. Moreover, the magnitude of expression differences due to environment and population were greater for genes with weak methylation signatures. Conclusions Our results support a connection between differential germline methylation and gene expression flexibility across environments and populations. Studies of phylogenetically basal invertebrates such as corals will further elucidate the fundamental functional aspects of gene body methylation in Metazoa. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1109) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Groves B Dixon
- Institute for Cell and Molecular Biology, University of Texas Austin, Austin, USA.
| | | | | |
Collapse
|
42
|
Shpirer E, Chang ES, Diamant A, Rubinstein N, Cartwright P, Huchon D. Diversity and evolution of myxozoan minicollagens and nematogalectins. BMC Evol Biol 2014; 14:205. [PMID: 25262812 PMCID: PMC4195985 DOI: 10.1186/s12862-014-0205-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Myxozoa are a diverse group of metazoan parasites with a very simple organization, which has for decades eluded their evolutionary origin. Their most prominent and characteristic feature is the polar capsule: a complex intracellular structure of the myxozoan spore, which plays a role in host infection. Striking morphological similarities have been found between myxozoan polar capsules and nematocysts, the stinging structures of cnidarians (corals, sea anemones and jellyfish) leading to the suggestion that Myxozoa and Cnidaria share a more recent common ancestry. This hypothesis has recently been supported by phylogenomic evidence and by the identification of a nematocyst specific minicollagen gene in the myxozoan Tetracapsuloides bryosalmonae. Here we searched genomes and transcriptomes of several myxozoan taxa for the presence of additional cnidarian specific genes and characterized these genes within a phylogenetic context. Results Illumina assemblies of transcriptome or genome data of three myxozoan species (Enteromyxum leei, Kudoa iwatai, and Sphaeromyxa zaharoni) and of the enigmatic cnidarian parasite Polypodium hydriforme (Polypodiozoa) were mined using tBlastn searches with nematocyst-specific proteins as queries. Several orthologs of nematogalectins and minicollagens were identified. Our phylogenetic analyses indicate that myxozoans possess three distinct minicollagens. We found that the cnidarian repertoire of nematogalectins is more complex than previously thought and we identified additional members of the nematogalectin family. Cnidarians were found to possess four nematogalectin/ nematogalectin-related genes, while in myxozoans only three genes could be identified. Conclusions Our results demonstrate that myxozoans possess a diverse array of genes that are taxonomically restricted to Cnidaria. Characterization of these genes provide compelling evidence that polar capsules and nematocysts are homologous structures and that myxozoans are highly degenerate cnidarians. The diversity of minicollagens was higher than previously thought, with the presence of three minicollagen genes in myxozoans. Our phylogenetic results suggest that the different myxozoan sequences are the results of ancient divergences within Cnidaria and not of recent specializations of the polar capsule. For both minicollagen and nematogalectin, our results show that myxozoans possess less gene copies than their cnidarian counter parts, suggesting that the polar capsule gene repertoire was simplified with their reduced body plan. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0205-0) contains supplementary material, which is available to authorized users.
Collapse
|