1
|
Shepherdson EMF, Elliot MA. Redefining development in Streptomyces venezuelae: integrating exploration into the classical sporulating life cycle. mBio 2024; 15:e0242423. [PMID: 38470267 PMCID: PMC11005364 DOI: 10.1128/mbio.02424-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Two growth modes have been described for the filamentous Streptomyces bacteria. Their classic developmental life cycle culminates in the formation of dormant spores, where movement to new environments is mediated through spore dispersal. In contrast, exploratory growth proceeds as a rapidly expanding vegetative mycelium that leads to extensive surface colonization and is associated with the release of volatile compounds that promote alkalinization (and reduced iron bioavailability) of its surrounding environment. Here, we report that exploratory growth in Streptomyces venezuelae can proceed in tandem with classic sporulating development in response to specific nutritional cues. Sporulating exploration is not accompanied by a rise in environmental pH but has the same iron acquisition requirements as conventional exploration. We found that mutants that were defective in their ability to sporulate were unaffected in exploration, but mutants undergoing precocious sporulation were compromised in their exploratory growth and this appeared to be mediated through premature activation of the developmental regulator WhiI. Cell envelope integrity was also found to be critical for exploration, as mutations in the cell envelope stress-responsive extracytoplasmic function sigma factor SigE led to a failure to explore robustly under all exploration-promoting conditions. Finally, in expanding the known exploration-promoting conditions, we discovered that the model species Streptomyces lividans exhibited exploration capabilities, supporting the proposal that exploration is conserved across diverse streptomycetes. IMPORTANCE Streptomyces bacteria have evolved diverse developmental and metabolic strategies to thrive in dynamic environmental niches. Here, we report the amalgamation of previously disparate developmental pathways, showing that colony expansion via exploration can proceed in tandem with colony sporulation. This developmental integration extends beyond phenotype to include shared genetic elements, with sporulation-specific repressors being required for successful exploration. Comparing this new exploration mode with previously identified strategies has revealed key differences (e.g., no need for environmental alkalinization), and simultaneously allowed us to define unifying requirements for Streptomyces exploration. The "reproductive exploration" phenomenon reported here represents a unique bet-hedging strategy, with the Streptomyces colony engaging in an aggressive colonization strategy while transporting a protected genetic repository.
Collapse
Affiliation(s)
- Evan M. F. Shepherdson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Marie A. Elliot
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Fan SM, Li ZQ, Zhang SZ, Chen LY, Wei XY, Liang J, Zhao XQ, Su C. Multi-integrated approach for unraveling small open reading frames potentially associated with secondary metabolism in Streptomyces. mSystems 2023; 8:e0024523. [PMID: 37712700 PMCID: PMC10654065 DOI: 10.1128/msystems.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Due to their small size and special chemical features, small open reading frame (smORF)-encoding peptides (SEPs) are often neglected. However, they may play critical roles in regulating gene expression, enzyme activity, and metabolite production. Studies on bacterial microproteins have mainly focused on pathogenic bacteria, which are importance to systematically investigate SEPs in streptomycetes and are rich sources of bioactive secondary metabolites. Our study is the first to perform a global identification of smORFs in streptomycetes. We established a peptidogenomic workflow for non-model microbial strains and identified multiple novel smORFs that are potentially linked to secondary metabolism in streptomycetes. Our multi-integrated approach in this study is meaningful to improve the quality and quantity of the detected smORFs. Ultimately, the workflow we established could be extended to other organisms and would benefit the genome mining of microproteins with critical functions for regulation and engineering useful microorganisms.
Collapse
Affiliation(s)
- Si-Min Fan
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Ze-Qi Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Shi-Zhe Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Liang-Yu Chen
- ProteinT (Tianjin) biotechnology Co. Ltd., Tianjin, China
| | - Xi-Ying Wei
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Jian Liang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
- College of Biology and Geography, Yili Normal University, Yining, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Jiao, China
| | - Chun Su
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| |
Collapse
|
3
|
An extended catalogue of ncRNAs in Streptomyces coelicolor reporting abundant tmRNA, RNase-P RNA and RNA fragments derived from pre-ribosomal RNA leader sequences. Arch Microbiol 2022; 204:582. [PMID: 36042049 DOI: 10.1007/s00203-022-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Streptomyces coelicolor is a model organism for studying streptomycetes. This genus possesses relevant medical and economical roles, because it produces many biologically active metabolites of pharmaceutical interest, including the majority of commercialized antibiotics. In this bioinformatic study, the transcriptome of S. coelicolor has been analyzed to identify novel RNA species and quantify the expression of both annotated and novel transcripts in solid and liquid growth medium cultures at different times. The major characteristics disclosed in this study are: (i) the diffuse antisense transcription; (ii) the great abundance of transfer-messenger RNAs (tmRNA); (iii) the abundance of rnpB transcripts, paramount for the RNase-P complex; and (iv) the presence of abundant fragments derived from pre-ribosomal RNA leader sequences of unknown biological function. Overall, this study extends the catalogue of ncRNAs in S. coelicolor and suggests an important role of non-coding transcription in the regulation of biologically active molecule production.
Collapse
|
4
|
Vaňková Hausnerová V, Marvalová O, Šiková M, Shoman M, Havelková J, Kambová M, Janoušková M, Kumar D, Halada P, Schwarz M, Krásný L, Hnilicová J, Pánek J. Ms1 RNA Interacts With the RNA Polymerase Core in Streptomyces coelicolor and Was Identified in Majority of Actinobacteria Using a Linguistic Gene Synteny Search. Front Microbiol 2022; 13:848536. [PMID: 35633709 PMCID: PMC9130861 DOI: 10.3389/fmicb.2022.848536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteria employ small non-coding RNAs (sRNAs) to regulate gene expression. Ms1 is an sRNA that binds to the RNA polymerase (RNAP) core and affects the intracellular level of this essential enzyme. Ms1 is structurally related to 6S RNA that binds to a different form of RNAP, the holoenzyme bearing the primary sigma factor. 6S RNAs are widespread in the bacterial kingdom except for the industrially and medicinally important Actinobacteria. While Ms1 RNA was identified in Mycobacterium, it is not clear whether Ms1 RNA is present also in other Actinobacteria species. Here, using a computational search based on secondary structure similarities combined with a linguistic gene synteny approach, we identified Ms1 RNA in Streptomyces. In S. coelicolor, Ms1 RNA overlaps with the previously annotated scr3559 sRNA with an unknown function. We experimentally confirmed that Ms1 RNA/scr3559 associates with the RNAP core without the primary sigma factor HrdB in vivo. Subsequently, we applied the computational approach to other Actinobacteria and identified Ms1 RNA candidates in 824 Actinobacteria species, revealing Ms1 RNA as a widespread class of RNAP binding sRNAs, and demonstrating the ability of our multifactorial computational approach to identify weakly conserved sRNAs in evolutionarily distant genomes.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Marvalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Havelková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milada Kambová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Dilip Kumar
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czechia
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Exploratory Growth in Streptomyces venezuelae Involves a Unique Transcriptional Program, Enhanced Oxidative Stress Response, and Profound Acceleration in Response to Glycerol. J Bacteriol 2022; 204:e0062321. [PMID: 35254103 DOI: 10.1128/jb.00623-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploration is a recently discovered mode of growth and behavior exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signaling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in the expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source, and this response is broadly conserved across other exploration-competent species. IMPORTANCE Exploration represents an alternative growth strategy for Streptomyces bacteria and is initiated in response to other microbes or specific environmental conditions. Here, we show that entry into exploration involves comprehensive transcriptional reprogramming, with an emphasis on changes in primary metabolism and regulatory/signaling functions. Intriguingly, a number of transcription factor classes were downregulated upon entry into exploration. In contrast, respiration-associated genes were strongly induced, and this was accompanied by an enhanced oxidative stress response. Notably, our transcriptional analyses suggested that glycerol may play a role in exploration, and we found that glycerol supplementation dramatically enhanced the exploration response in many streptomycetes. This work sheds new light on the regulatory and metabolic cues that influence a fascinating new microbial behavior.
Collapse
|
6
|
Pinatel E, Calcagnile M, Talà A, Damiano F, Siculella L, Peano C, De Benedetto GE, Pennetta A, De Bellis G, Alifano P. Interplay between non-coding RNA transcription, stringent phenotype and antibiotic production in Streptomyces. J Biotechnol 2022:S0168-1656(22)00029-3. [PMID: 35182607 DOI: 10.1016/j.jbiotec.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces, and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: i.) the wild type strain; ii.) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; iii.) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Institute of Genetic and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
| | | | - Antonio Pennetta
- Department of Cultural Heritage, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
7
|
Global Chromosome Topology and the Two-Component Systems in Concerted Manner Regulate Transcription in Streptomyces. mSystems 2021; 6:e0114221. [PMID: 34783581 PMCID: PMC8594442 DOI: 10.1128/msystems.01142-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacterial gene expression is controlled at multiple levels, with chromosome supercoiling being one of the most global regulators. Global DNA supercoiling is maintained by the orchestrated action of topoisomerases. In Streptomyces, mycelial soil bacteria with a complex life cycle, topoisomerase I depletion led to elevated chromosome supercoiling, changed expression of a significant fraction of genes, delayed growth, and blocked sporulation. To identify supercoiling-induced sporulation regulators, we searched for Streptomyces coelicolor transposon mutants that were able to restore sporulation despite high chromosome supercoiling. We established that transposon insertion in genes encoding a novel two-component system named SatKR reversed the sporulation blockage resulting from topoisomerase I depletion. Transposition in satKR abolished the transcriptional induction of the genes within the so-called supercoiling-hypersensitive cluster (SHC). Moreover, we found that activated SatR also induced the same set of SHC genes under normal supercoiling conditions. We determined that the expression of genes in this region impacted S. coelicolor growth and sporulation. Interestingly, among the associated products is another two-component system (SitKR), indicating the potential for cascading regulatory effects driven by the SatKR and SitKR two-component systems. Thus, we demonstrated the concerted activity of chromosome supercoiling and a hierarchical two-component signaling system that impacts gene activity governing Streptomyces growth and sporulation. IMPORTANCEStreptomyces microbes, soil bacteria with complex life cycle, are the producers of a broad range of biologically active compounds (e.g., antibiotics). Streptomyces bacteria respond to various environmental signals using a complex transcriptional regulation mechanism. Understanding regulation of their gene expression is crucial for Streptomyces application as industrial organisms. Here, on the basis of the results of extensive transcriptomics analyses, we describe the concerted gene regulation by global DNA supercoiling and novel two-component system. Our data indicate that regulated genes encode growth and sporulation regulators. Thus, we demonstrate that Streptomyces bacteria link the global regulatory strategies to adjust life cycle to unfavorable conditions.
Collapse
|
8
|
6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor. Microorganisms 2021; 9:microorganisms9102004. [PMID: 34683325 PMCID: PMC8539372 DOI: 10.3390/microorganisms9102004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript (scr3559) that affects both development and antibiotic production in Streptomyces coelicolor. Its expression is enhanced during the transition to stationary phase. Strains that over-expressed the scr3559 gene region exhibited a shortened exponential growth phase in comparison with a control strain; accelerated aerial mycelium formation and spore maturation; alongside an elevated production of actinorhodin and undecylprodigiosin. These observations were supported by LC-MS analyses of other produced metabolites, including: germicidins, desferrioxamines, and coelimycin. A subsequent microarray differential analysis revealed increased expression of genes associated with the described morphological and physiological changes. Structural and functional similarities between the scr3559 transcript and 6S RNA, and its possible employment in regulating secondary metabolite production are discussed.
Collapse
|
9
|
Interplay between Non-Coding RNA Transcription, Stringent/Relaxed Phenotype and Antibiotic Production in Streptomyces ambofaciens. Antibiotics (Basel) 2021; 10:antibiotics10080947. [PMID: 34438997 PMCID: PMC8388888 DOI: 10.3390/antibiotics10080947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, “relaxed” phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a “stringent” RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
|
10
|
Liu X, Ma Y, Wang J. Genetic variation and function: revealing potential factors associated with microbial phenotypes. BIOPHYSICS REPORTS 2021; 7:111-126. [PMID: 37288143 PMCID: PMC10235906 DOI: 10.52601/bpr.2021.200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/09/2021] [Indexed: 06/09/2023] Open
Abstract
Innovations in sequencing technology have generated voluminous microbial and host genomic data, making it possible to detect these genetic variations and analyze the function influenced by them. Recently, many studies have linked such genetic variations to phenotypes through association or comparative analysis, which have further advanced our understanding of multiple microbial functions. In this review, we summarized the application of association analysis in microbes like Mycobacterium tuberculosis, focusing on screening of microbial genetic variants potentially associated with phenotypes such as drug resistance, pathogenesis and novel drug targets etc.; reviewed the application of additional comparative genomic or transcriptomic methods to identify genetic factors associated with functions in microbes; expanded the scope of our study to focus on host genetic factors associated with certain microbes or microbiome and summarized the recent host genetic variations associated with microbial phenotypes, including susceptibility and load after infection of HIV, presence/absence of different taxa, and quantitative traits of microbiome, and lastly, discussed the challenges that may be encountered and the apparent or potential viable solutions. Gene-function analysis of microbe and microbiome is still in its infancy, and in order to unleash its full potential, it is necessary to understand its history, current status, and the challenges hindering its development.
Collapse
Affiliation(s)
- Xiaolin Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Menendez-Gil P, Toledo-Arana A. Bacterial 3'UTRs: A Useful Resource in Post-transcriptional Regulation. Front Mol Biosci 2021; 7:617633. [PMID: 33490108 PMCID: PMC7821165 DOI: 10.3389/fmolb.2020.617633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bacterial messenger RNAs (mRNAs) are composed of 5′ and 3′ untranslated regions (UTRs) that flank the coding sequences (CDSs). In eukaryotes, 3′UTRs play key roles in post-transcriptional regulatory mechanisms. Shortening or deregulation of these regions is associated with diseases such as cancer and metabolic disorders. Comparatively, little is known about the functions of 3′UTRs in bacteria. Over the past few years, 3′UTRs have emerged as important players in the regulation of relevant bacterial processes such as virulence, iron metabolism, and biofilm formation. This MiniReview is an update for the different 3′UTR-mediated mechanisms that regulate gene expression in bacteria. Some of these include 3′UTRs that interact with the 5′UTR of the same transcript to modulate translation, 3′UTRs that are targeted by specific ribonucleases, RNA-binding proteins and small RNAs (sRNAs), and 3′UTRs that act as reservoirs of trans-acting sRNAs, among others. In addition, recent findings regarding a differential evolution of bacterial 3′UTRs and its impact in the species-specific expression of orthologous genes are also discussed.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
12
|
Tsigkinopoulou A, Takano E, Breitling R. Unravelling the γ-butyrolactone network in Streptomyces coelicolor by computational ensemble modelling. PLoS Comput Biol 2020; 16:e1008039. [PMID: 32649676 PMCID: PMC7384680 DOI: 10.1371/journal.pcbi.1008039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/27/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic production is coordinated in the Streptomyces coelicolor population through the use of diffusible signaling molecules of the γ-butyrolactone (GBL) family. The GBL regulatory system involves a small, and not completely defined two-gene network which governs a potentially bi-stable switch between the “on” and “off” states of antibiotic production. The use of this circuit as a tool for synthetic biology has been hampered by a lack of mechanistic understanding of its functionality. We here present the creation and analysis of a versatile and adaptable ensemble model of the Streptomyces GBL system (detailed information on all model mechanisms and parameters is documented in http://www.systemsbiology.ls.manchester.ac.uk/wiki/index.php/Main_Page). We use the model to explore a range of previously proposed mechanistic hypotheses, including transcriptional interference, antisense RNA interactions between the mRNAs of the two genes, and various alternative regulatory activities. Our results suggest that transcriptional interference alone is not sufficient to explain the system’s behavior. Instead, antisense RNA interactions seem to be the system's driving force, combined with an aggressive scbR promoter. The computational model can be used to further challenge and refine our understanding of the system’s activity and guide future experimentation. Streptomyces species are Gram-positive soil-dwelling bacteria, which are known as a prolific source of secondary metabolites, such as antibiotics. Antibiotic production is coordinated in the bacterial population through the use of diffusible signalling molecules of the γ-butyrolactone (GBL) family. The GBL regulatory system involves a small, yet complex two-gene network, the mechanism of which has not yet been completely defined. The complete elucidation of this system could potentially lead to the ability to design reliable and sensitive engineered cellular switches. We therefore designed a versatile model of the GBL system in order to investigate the feasibility of various hypothesized mechanisms. The ensemble modelling analysis that we performed revealed that antisense RNA interactions seem to be the system’s driving force, together with an aggressive scbR promoter. Transcriptional interference is also significant; however, it is not sufficient to explain the system’s behavior by itself. Finally, the model indicates key experiments, which could completely elucidate the role of the system and the interactions of its components and potentially lead to the design of reliable and sensitive systems with significant applications as orthologous regulatory circuits in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Areti Tsigkinopoulou
- DTU Biosustain, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Manchester Institute of Biotechnology, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Eriko Takano
- Manchester Institute of Biotechnology, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition. mBio 2020; 11:mBio.00625-20. [PMID: 32291305 PMCID: PMC7157823 DOI: 10.1128/mbio.00625-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria. Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics.
Collapse
|
14
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
15
|
Engel F, Ossipova E, Jakobsson PJ, Vockenhuber MP, Suess B. sRNA scr5239 Involved in Feedback Loop Regulation of Streptomyces coelicolor Central Metabolism. Front Microbiol 2020; 10:3121. [PMID: 32117084 PMCID: PMC7025569 DOI: 10.3389/fmicb.2019.03121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to transcriptional regulation, post-transcriptional regulation and the role of small non-coding RNAs (sRNAs) in streptomycetes are not well studied. Here, we focus on the highly conserved sRNA scr5239 in Streptomyces coelicolor. A proteomics approach revealed that the sRNA regulates several metabolic enzymes, among them phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the central carbon metabolism. The sRNA scr5239 represses pepck at the post-transcriptional level and thus modulates the intracellular level of phosphoenolpyruvate (PEP). The expression of scr5239 in turn is dependent on the global transcriptional regulator DasR, thus creating a feedback loop regulation of the central carbon metabolism. By post-transcriptional regulation of PEPCK and in all likelihood other targets, scr5239 adds an additional layer to the DasR regulatory network and provides a tool to control the metabolism dependent on the available carbon source.
Collapse
Affiliation(s)
- Franziska Engel
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
| | - Elena Ossipova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Michael-Paul Vockenhuber
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
- *Correspondence: Michael-Paul Vockenhuber,
| | - Beatrix Suess
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
- Beatrix Suess,
| |
Collapse
|
16
|
Mai J, Rao C, Watt J, Sun X, Lin C, Zhang L, Liu J. Mycobacterium tuberculosis 6C sRNA binds multiple mRNA targets via C-rich loops independent of RNA chaperones. Nucleic Acids Res 2019; 47:4292-4307. [PMID: 30820540 PMCID: PMC6486639 DOI: 10.1093/nar/gkz149] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are the most abundant class of post-transcriptional regulators and have been well studied in Gram-negative bacteria. Little is known about the functions and mechanisms of sRNAs in high GC Gram-positive bacteria including Mycobacterium and Streptomyces. Here, we performed an in-depth study of 6C sRNA of Mycobacterium tuberculosis, which is conserved among high GC Gram-positive bacteria. Forty-seven genes were identified as possible direct targets of 6C sRNA and 15 of them were validated using an in vivo translational lacZ fusion system. We found that 6C sRNA plays a pleotropic role and regulates genes involved in various cellular processes, including DNA replication and protein secretion. Mapping the interactions of 6C sRNA with mRNA targets panD and dnaB revealed that the C-rich loops of 6C sRNA act as direct binding sites to mRNA targets. Unlike in Gram-negative bacteria where RNA binding proteins Hfq and ProQ are required, the interactions of 6C sRNA with mRNAs appear to be independent of RNA chaperones. Our findings suggest that the multiple G–C pairings between single stranded regions are sufficient to establish stable interactions between 6C sRNA and mRNA targets, providing a mechanism for sRNAs in high GC Gram-positive bacteria.
Collapse
Affiliation(s)
- Juntao Mai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xian Sun
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Šmídová K, Ziková A, Pospíšil J, Schwarz M, Bobek J, Vohradsky J. DNA mapping and kinetic modeling of the HrdB regulon in Streptomyces coelicolor. Nucleic Acids Res 2019; 47:621-633. [PMID: 30371884 PMCID: PMC6344877 DOI: 10.1093/nar/gky1018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
HrdB in streptomycetes is a principal sigma factor whose deletion is lethal. This is also the reason why its regulon has not been investigated so far. To overcome experimental obstacles, for investigating the HrdB regulon, we constructed a strain whose HrdB protein was tagged by an HA epitope. ChIP-seq experiment, done in 3 repeats, identified 2137 protein-coding genes organized in 337 operons, 75 small RNAs, 62 tRNAs, 6 rRNAs and 3 miscellaneous RNAs. Subsequent kinetic modeling of regulation of protein-coding genes with HrdB alone and with a complex of HrdB and a transcriptional cofactor RbpA, using gene expression time series, identified 1694 genes that were under their direct control. When using the HrdB-RbpA complex in the model, an increase of the model fidelity was found for 322 genes. Functional analysis revealed that HrdB controls the majority of gene groups essential for the primary metabolism and the vegetative growth. Particularly, almost all ribosomal protein-coding genes were found in the HrdB regulon. Analysis of promoter binding sites revealed binding motif at the -10 region and suggested the possible role of mono- or di-nucleotides upstream of the -10 element.
Collapse
Affiliation(s)
- Klára Šmídová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, 12800 Prague, Czechia
| | - Alice Ziková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
| | - Jiří Pospíšil
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
| | - Marek Schwarz
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
| | - Jan Bobek
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, 12800 Prague, Czechia
- Chemistry Department, Faculty of Science, J. E. Purkinje University, 40096 Ústí nad Labem, Czechia
| | - Jiri Vohradsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
- To whom correspondence should be addressed. Tel: +420 241 062 513;
| |
Collapse
|
18
|
Szafran MJ, Gongerowska M, Małecki T, Elliot M, Jakimowicz D. Transcriptional Response of Streptomyces coelicolor to Rapid Chromosome Relaxation or Long-Term Supercoiling Imbalance. Front Microbiol 2019; 10:1605. [PMID: 31354687 PMCID: PMC6637917 DOI: 10.3389/fmicb.2019.01605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Negative DNA supercoiling allows chromosome condensation and facilitates DNA unwinding, which is required for the occurrence of DNA transaction processes, i.e., DNA replication, transcription and recombination. In bacteria, changes in chromosome supercoiling impact global gene expression; however, the limited studies on the global transcriptional response have focused mostly on pathogenic species and have reported various fractions of affected genes. Furthermore, the transcriptional response to long-term supercoiling imbalance is still poorly understood. Here, we address the transcriptional response to both novobiocin-induced rapid chromosome relaxation or long-term topological imbalance, both increased and decreased supercoiling, in environmental antibiotic-producing bacteria belonging to the Streptomyces genus. During the Streptomyces complex developmental cycle, multiple copies of GC-rich linear chromosomes present in hyphal cells undergo profound topological changes, from being loosely condensed in vegetative hyphae, to being highly compacted in spores. Moreover, changes in chromosomal supercoiling have been suggested to be associated with the control of antibiotic production and environmental stress response. Remarkably, in S. coelicolor, a model Streptomyces species, topoisomerase I (TopA) is solely responsible for the removal of negative DNA supercoils. Using a S. coelicolor strain in which topA transcription is under the control of an inducible promoter, we identified genes involved in the transcriptional response to long-term supercoiling imbalance. The affected genes are preferentially organized in several clusters, and a supercoiling-hypersensitive cluster (SHC) was found to be located in the core of the S. coelicolor chromosome. The transcripts affected by long-term topological imbalance encompassed genes encoding nucleoid-associated proteins, DNA repair proteins and transcriptional regulators, including multiple developmental regulators. Moreover, using a gyrase inhibitor, we identified those genes that were directly affected by novobiocin, and found this was correlated with increased AT content in their promoter regions. In contrast to the genes affected by long-term supercoiling changes, among the novobiocin-sensitive genes, a significant fraction encoded for proteins associated with membrane transport or secondary metabolite synthesis. Collectively, our results show that long-term supercoiling imbalance globally regulates gene transcription and has the potential to impact development, secondary metabolism and DNA repair, amongst others.
Collapse
Affiliation(s)
- Marcin Jan Szafran
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Martyna Gongerowska
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Tomasz Małecki
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Marie Elliot
- Department of Biology, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Dagmara Jakimowicz
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
19
|
Multi-level regulation of coelimycin synthesis in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2019; 103:6423-6434. [PMID: 31250060 PMCID: PMC6667686 DOI: 10.1007/s00253-019-09975-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/03/2022]
Abstract
Despite being a yellow pigment visible to the human eye, coelimycin (CPK) remained to be an undiscovered secondary metabolite for over 50 years of Streptomyces research. Although the function of this polyketide is still unclear, we now know that its "cryptic" nature is attributed to a very complex and precise mechanism of cpk gene cluster regulation in the model actinomycete S. coelicolor A3(2). It responds to the stringent culture density and timing of the transition phase by the quorum-sensing butanolide system and to the specific nutrient availability/uptake signals mediated by the global (pleiotropic) regulators; many of which are two-component signal transduction systems. The final effectors of this regulation cascade are predicted to be two cluster-situated Streptomyces antibiotic regulatory proteins (SARPs) putatively activating the expression of type I polyketide synthase (PKS I) genes. After its synthesis, unstable, colorless antibiotic coelimycin A reacts with specific compounds in the medium losing its antibacterial properties and giving rise to yellow coelimycins P1 and P2. Here we review the current knowledge on coelimycin synthesis regulation in Streptomyces coelicolor A3(2). We focus on the regulatory feedback loop which interconnects the butanolide system with other cpk cluster-situated regulators. We also present the effects exerted on cpk genes expression by the global, pleiotropic regulators, and the regulatory connections between cpk and other biosynthetic gene clusters.
Collapse
|
20
|
Gehrke EJ, Zhang X, Pimentel-Elardo SM, Johnson AR, Rees CA, Jones SE, Hindra, Gehrke SS, Turvey S, Boursalie S, Hill JE, Carlson EE, Nodwell JR, Elliot MA. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. eLife 2019; 8:47691. [PMID: 31215866 PMCID: PMC6584129 DOI: 10.7554/elife.47691] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Lsr2 is a nucleoid-associated protein conserved throughout the actinobacteria, including the antibiotic-producing Streptomyces. Streptomyces species encode paralogous Lsr2 proteins (Lsr2 and Lsr2-like, or LsrL), and we show here that of the two, Lsr2 has greater functional significance. We found that Lsr2 binds AT-rich sequences throughout the chromosome, and broadly represses gene expression. Strikingly, specialized metabolic clusters were over-represented amongst its targets, and the cryptic nature of many of these clusters appears to stem from Lsr2-mediated repression. Manipulating Lsr2 activity in model species and uncharacterized isolates resulted in the production of new metabolites not seen in wild type strains. Our results suggest that the transcriptional silencing of biosynthetic clusters by Lsr2 may protect Streptomyces from the inappropriate expression of specialized metabolites, and provide global control over Streptomyces’ arsenal of signaling and antagonistic compounds.
Collapse
Affiliation(s)
- Emma J Gehrke
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Xiafei Zhang
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | | | - Andrew R Johnson
- Department of Chemistry, Indiana University, Bloomington, United States
| | - Christiaan A Rees
- Geisel School of Medicine and Thayer School of Engineering, Dartmouth College, Hanover, United States
| | - Stephanie E Jones
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Hindra
- Department of Biology, McMaster University, Hamilton, Canada
| | - Sebastian S Gehrke
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Sonya Turvey
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Suzanne Boursalie
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Jane E Hill
- Geisel School of Medicine and Thayer School of Engineering, Dartmouth College, Hanover, United States
| | - Erin E Carlson
- Department of Chemistry, Indiana University, Bloomington, United States.,Department of Chemistry, University of Minnesota, Minneapolis, United States
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| |
Collapse
|
21
|
Šetinová D, Šmídová K, Pohl P, Musić I, Bobek J. RNase III-Binding-mRNAs Revealed Novel Complementary Transcripts in Streptomyces. Front Microbiol 2018; 8:2693. [PMID: 29379487 PMCID: PMC5775266 DOI: 10.3389/fmicb.2017.02693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/26/2017] [Indexed: 12/03/2022] Open
Abstract
cis-Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In Streptomyces, the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in Streptomyces have found a number of asRNAs. Apart from this, hundreds of mRNAs have been shown to bind RNase III, the double strand-specific endoribonuclease. In this study, we tested 17 mRNAs that have been previously co-precipitated with RNase III for antisense expression. Our RACE mapping showed that all of these mRNAs possess cognate asRNA. Additional tests for antisense expression uncovered as-adpA, as-rnc, as3983, as-sigB, as-sigH, and as-sigR RNAs. Northern blots detected the expression profiles of 18 novel transcripts. Noteworthy, we also found that only a minority of asRNAs respond to the absence of RNase III enzyme by increasing their cellular levels. Our findings suggest that antisense expression is widespread in Streptomyces, including genes of such important developmental regulators, as AdpA, RNase III, and sigma factors.
Collapse
Affiliation(s)
- Dita Šetinová
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, Prague, Czechia
| | - Klára Šmídová
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, Prague, Czechia
| | - Pavel Pohl
- Chemistry Department, Faculty of Science, J. E. Purkinje University, Ústí nad Labem, Czechia
| | - Inesa Musić
- Chemistry Department, Faculty of Science, J. E. Purkinje University, Ústí nad Labem, Czechia
| | - Jan Bobek
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, Prague, Czechia.,Chemistry Department, Faculty of Science, J. E. Purkinje University, Ústí nad Labem, Czechia.,Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
22
|
Abstract
Non-coding regulatory RNAs fine-tune gene expression post-transcriptionally. In the streptomycetes, rpfA - encoding a muralytic enzyme required for establishing and exiting dormancy - is flanked by non-coding regulatory RNA elements both upstream (riboswitch) and downstream [antisense small RNA (sRNA)]. In Streptomyces coelicolor, the upstream riboswitch decreases rpfA transcript abundance in response to the second messenger cyclic di-AMP, itself involved in cell wall metabolism and dormancy. There is, however, no obvious expression platform associated with this riboswitch and consequently, its mechanism of action is entirely unknown. Using in vitro transcription assays, we discovered that the rpfA riboswitch promoted premature transcription termination in response to cyclic di-AMP. Through an extensive mutational analysis, we determined that attenuation required ligand binding and involved an unusual extended stem-loop region unique to a subset of rpfA riboswitches in the actinobacteria. At the other end of the rpfA gene, an antisense sRNA, termed Scr3097, is expressed opposite the predicted rpfA terminator. Using northern blotting, we found that Scr3097 accumulation mirrored that of the rpfA mRNA. In liquid culture, we detected Scr3097 exclusively in exponential-phase cells, and in plate-grown culture, we observed the sRNA primarily in differentiating cultures. Using mutational analyses, we found that the sRNA increased rpfA mRNA abundance in cells. Taken together, our work revealed multiple regulatory RNAs controlling rpfA expression in the streptomycetes.
Collapse
Affiliation(s)
- Renée J St-Onge
- a Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada
| | - Marie A Elliot
- a Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|
23
|
Bauer JS, Fillinger S, Förstner K, Herbig A, Jones AC, Flinspach K, Sharma C, Gross H, Nieselt K, Apel AK. dRNA-seq transcriptional profiling of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis NRRL18488 and general analysis of the transcriptome. RNA Biol 2017; 14:1617-1626. [PMID: 28665778 DOI: 10.1080/15476286.2017.1341020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
FK506 (tacrolimus) is a valuable immunosuppressant produced by several Streptomyces strains. In the genome of the wild type producer Streptomyces tsukubaensis NRRL18488, FK506 biosynthesis is encoded by a gene cluster that spans 83.5 (kb). A whole transcriptome differential shotgun sequencing (dRNA-seq) of S. tsukubaensis was performed to analyze transcription at 2 different time points; before and during active FK506 production. In total, 8,914 transcription start sites were identified in either condition, which enabled precise determination of the 5'-UTR length of the corresponding transcripts as well as the identification of 2 consensus sequence motifs in the promoter regions. The transcription start sites of all gene operons within the FK506 cluster were identified, including 3 examples of leaderless RNA transcripts. These data provide detailed insight into the transcription of the FK506 biosynthetic gene cluster to support future regulatory studies, genetic manipulation, and industrial production.
Collapse
Affiliation(s)
- Judith S Bauer
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| | - Sven Fillinger
- c Integrative Transcriptomics, Center for Bioinformatics Tübingen, University of Tübingen , Germany
| | - Konrad Förstner
- e Research Center for Infectious Diseases , University of Würzburg , Würzburg , Germany , Core Unit Systems Medicine , Institute for Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Alexander Herbig
- d Max Planck Institute for the Science of Human History , Jena , Germany
| | - Adam C Jones
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany
| | - Katrin Flinspach
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany
| | - Cynthia Sharma
- e Research Center for Infectious Diseases , University of Würzburg , Würzburg , Germany , Core Unit Systems Medicine , Institute for Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Harald Gross
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| | - Kay Nieselt
- c Integrative Transcriptomics, Center for Bioinformatics Tübingen, University of Tübingen , Germany
| | - Alexander K Apel
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| |
Collapse
|
24
|
Cousin FJ, Lynch DB, Chuat V, Bourin MJB, Casey PG, Dalmasso M, Harris HMB, McCann A, O'Toole PW. A long and abundant non-coding RNA in Lactobacillus salivarius. Microb Genom 2017; 3:e000126. [PMID: 29114404 PMCID: PMC5643018 DOI: 10.1099/mgen.0.000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/21/2017] [Indexed: 01/12/2023] Open
Abstract
Lactobacillus salivarius, found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L. salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.
Collapse
Affiliation(s)
- Fabien J Cousin
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Denise B Lynch
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Victoria Chuat
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Maxence J B Bourin
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Pat G Casey
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Marion Dalmasso
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Hugh M B Harris
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Angela McCann
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- 2APC Microbiome Institute, University College Cork, Cork, Ireland.,1School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Ren GX, Guo XP, Sun YC. Regulatory 3' Untranslated Regions of Bacterial mRNAs. Front Microbiol 2017; 8:1276. [PMID: 28740488 PMCID: PMC5502269 DOI: 10.3389/fmicb.2017.01276] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
The untranslated regions (UTRs) of mRNA contain important features that are relevant to the post-transcriptional and translational regulation of gene expression. Most studies of bacterial UTRs have focused on the 5′regions; however, 3′UTRs have recently emerged as a new class of post-transcriptional regulatory elements. 3′UTRs were found to regulate the decay and translation initiation in their own mRNAs. In addition, 3′UTRs constitute a rich reservoir of small regulatory RNAs, regulating target gene expression. In the current review, we describe several recently discovered examples of bacterial regulatory 3′UTRs, discuss their modes of action, and illustrate how they facilitate gene regulation in various environments.
Collapse
Affiliation(s)
- Gai-Xian Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
26
|
Jeong Y, Shin H, Seo SW, Kim D, Cho S, Cho BK. Elucidation of bacterial translation regulatory networks. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Xu Z, Wang Y, Chater KF, Ou HY, Xu HH, Deng Z, Tao M. Large-Scale Transposition Mutagenesis of Streptomyces coelicolor Identifies Hundreds of Genes Influencing Antibiotic Biosynthesis. Appl Environ Microbiol 2017; 83:AEM.02889-16. [PMID: 28062460 PMCID: PMC5335527 DOI: 10.1128/aem.02889-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/28/2016] [Indexed: 01/16/2023] Open
Abstract
Gram-positive Streptomyces bacteria produce thousands of bioactive secondary metabolites, including antibiotics. To systematically investigate genes affecting secondary metabolism, we developed a hyperactive transposase-based Tn5 transposition system and employed it to mutagenize the model species Streptomyces coelicolor, leading to the identification of 51,443 transposition insertions. These insertions were distributed randomly along the chromosome except for some preferred regions associated with relatively low GC content in the chromosomal core. The base composition of the insertion site and its flanking sequences compiled from the 51,443 insertions implied a 19-bp expanded target site surrounding the insertion site, with a slight nucleic acid base preference in some positions, suggesting a relative randomness of Tn5 transposition targeting in the high-GC Streptomyces genome. From the mutagenesis library, 724 mutants involving 365 genes had altered levels of production of the tripyrrole antibiotic undecylprodigiosin (RED), including 17 genes in the RED biosynthetic gene cluster. Genetic complementation revealed that most of the insertions (more than two-thirds) were responsible for the changed antibiotic production. Genes associated with branched-chain amino acid biosynthesis, DNA metabolism, and protein modification affected RED production, and genes involved in signaling, stress, and transcriptional regulation were overrepresented. Some insertions caused dramatic changes in RED production, identifying future targets for strain improvement.IMPORTANCE High-GC Gram-positive streptomycetes and related actinomycetes have provided more than 100 clinical drugs used as antibiotics, immunosuppressants, and antitumor drugs. Their genomes harbor biosynthetic genes for many more unknown compounds with potential as future drugs. Here we developed a useful genome-wide mutagenesis tool based on the transposon Tn5 for the study of secondary metabolism and its regulation. Using Streptomyces coelicolor as a model strain, we found that chromosomal insertion was relatively random, except at some hot spots, though there was evidence of a slightly preferred 19-bp target site. We then used prodiginine production as a model to systematically survey genes affecting antibiotic biosynthesis, providing a global view of antibiotic regulation. The analysis revealed 348 genes that modulate antibiotic production, among which more than half act to reduce production. These might be valuable targets in future investigations of regulatory mechanisms, for strain improvement, and for the activation of silent biosynthetic gene clusters.
Collapse
Affiliation(s)
- Zhong Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - H Howard Xu
- Department of Biological Sciences, California State University, Los Angeles, California, USA
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Grüll MP, Peña-Castillo L, Mulligan ME, Lang AS. Genome-wide identification and characterization of small RNAs in Rhodobacter capsulatus and identification of small RNAs affected by loss of the response regulator CtrA. RNA Biol 2017; 14:914-925. [PMID: 28296577 PMCID: PMC5546546 DOI: 10.1080/15476286.2017.1306175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are involved in the control of numerous cellular processes through various regulatory mechanisms, and in the past decade many studies have identified sRNAs in a multitude of bacterial species using RNA sequencing (RNA-seq). Here, we present the first genome-wide analysis of sRNA sequencing data in Rhodobacter capsulatus, a purple nonsulfur photosynthetic alphaproteobacterium. Using a recently developed bioinformatics approach, sRNA-Detect, we detected 422 putative sRNAs from R. capsulatus RNA-seq data. Based on their sequence similarity to sRNAs in a sRNA collection, consisting of published putative sRNAs from 23 additional bacterial species, and RNA databases, the sequences of 124 putative sRNAs were conserved in at least one other bacterial species; and, 19 putative sRNAs were assigned a predicted function. We bioinformatically characterized all putative sRNAs and applied machine learning approaches to calculate the probability of a nucleotide sequence to be a bona fide sRNA. The resulting quantitative model was able to correctly classify 95.2% of sequences in a validation set. We found that putative cis-targets for antisense and partially overlapping sRNAs were enriched with protein-coding genes involved in primary metabolic processes, photosynthesis, compound binding, and with genes forming part of macromolecular complexes. We performed differential expression analysis to compare the wild type strain to a mutant lacking the response regulator CtrA, an important regulator of gene expression in R. capsulatus, and identified 18 putative sRNAs with differing levels in the two strains. Finally, we validated the existence and expression patterns of four novel sRNAs by Northern blot analysis.
Collapse
Affiliation(s)
- Marc P Grüll
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Lourdes Peña-Castillo
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada.,b Department of Computer Science , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Martin E Mulligan
- c Department of Biochemistry , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Andrew S Lang
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
29
|
Sahni A, Hajjari M, Raheb J, Foroughmand AM, Asgari M. Cloning and over expression of non-coding RNA rprA in E.coli and its resistance to Kanamycin without osmotic shock. Bioinformation 2017; 13:21-24. [PMID: 28479746 PMCID: PMC5405089 DOI: 10.6026/97320630013021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 11/23/2022] Open
Abstract
Recent reports have indicated that small RNAs have key roles in the response of the E.coli to stress and also in the regulating of virulence factors. It seems that some small non-coding RNAs are involved in multidrug resistance. Previous studies have indicated that rprA can increase the tolerance to Kanamycin in RcsB-deficient Escherichia coli K-12 following osmotic shock. The current study aims to clone and over-express the non-coding RNA rprA in E.coli and investigate its effect on the bacterial resistance to Kanamycin without any osmotic shock. For this purpose, rprA gene was amplified by the PCR and then cloned into the PET-28a (+) vector. The recombinant plasmid was transformed into wild type E.coli BL21 (DE3). The over expression was induced by IPTG and confirmed by qRT-PCR. The resistance to the kanamycin was then measured in different times by spectrophotometry. The statistical analysis showed that the rprA can increase the resistance to Kanamycin in Ecoli K12. The interaction between rprA and rpoS was reviewed and analyzed by in silico methods. The results showed that the bacteria with over-expressed rprA were more resistant to Kanamycin. The present study is an important step to prove the role of non-coding RNA rprA in bacterial resistance. The data can be the basis for future works and can also help to develop and deliver next-generation antibiotics.
Collapse
Affiliation(s)
- Azita Sahni
- Nour Danesh Institute of Higher Education, Department of Biology, Isfahan, Iran
| | - Mohammadreza Hajjari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jamshid Raheb
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Morteza Asgari
- Nour Danesh Institute of Higher Education, Department of Biology, Isfahan, Iran
| |
Collapse
|
30
|
Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor, as shown by targeting of the lipoprotein signal peptidase gene. Sci Rep 2016; 6:29495. [PMID: 27404047 PMCID: PMC4941574 DOI: 10.1038/srep29495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023] Open
Abstract
Bacterial lipoproteins are extracellular proteins tethered to cell membranes by covalently attached lipids. Deleting the lipoprotein signal peptidase (lsp) gene in Streptomyces coelicolor results in growth and developmental defects that cannot be restored by reintroducing lsp. This led us to hypothesise that lsp is essential and that the lsp mutant we isolated previously had acquired compensatory secondary mutations. Here we report resequencing of the genomes of wild-type M145 and the cis-complemented ∆lsp mutant (BJT1004) to map and identify these secondary mutations but we show that they do not increase the efficiency of disrupting lsp and are not lsp suppressors. We provide evidence that they are induced by introducing the cosmid St4A10∆lsp, as part of ReDirect PCR mutagenesis protocol, which transiently duplicates a number of important cell division genes. Disruption of lsp using a suicide vector (which does not result in gene duplication) still results in growth and developmental delays and we conclude that loss of Lsp function results in developmental defects due to the loss of all lipoproteins from the cell membrane. Significantly, our results also indicate the use of cosmid libraries for the genetic manipulation of bacteria can lead to phenotypes not necessarily linked to the gene(s) of interest.
Collapse
|
31
|
The Regulatory Roles of ncRNA Rli60 in Adaptability of Listeria monocytogenes to Environmental Stress and Biofilm Formation. Curr Microbiol 2016; 73:77-83. [PMID: 27032404 DOI: 10.1007/s00284-016-1028-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
Listeria monocytogenes is a facultative anaerobic Gram-positive bacterium. It is well adapted to external environments and able to infect both humans and animals. To understand the impacts of ncRNA Rli60 on the adaptability of L. monocytogenes to environmental stresses and biofilm formation, a rli60 deletion strain of L. monocytogenes (LM-Δrli60) was constructed using splicing by overlap extension PCR (SOE-PCR) and homologous recombination and then compared it with wild-type strain L. monocytogenes EGD-e in the aspects of adaptability to environmental stresses by measuring their growth under stresses of different temperatures, and acidic, alkaline, hypertonic and alcoholic conditions, and capability of biofilm formation by using crystal violet staining, as well as the transcriptional levels of genes (gltB and gltC) related to the biofilm formation by real-time quantitative PCR (qRT-PCR). The results showed that (1) the growth of LM-Δrli60 strain was significantly slower under environmental stresses of low temperature (30 °C), high temperature (42 °C), as well as alkaline and alcoholic conditions, (2) the amount of biofilm formed by LM-Δrli60 was attenuated, and (3) the transcriptional levels of gltB and gltC genes at 24 h and 48 h in LM-Δrli60 revealed a significant reduction. Overall, the results confirmed that ncRNA Rli60 plays important roles in regulating the adaptability of L. monocytogenes to environmental stresses and biofilm formation possibly through impacting the expression of gltB and gltC genes.
Collapse
|
32
|
Lloréns-Rico V, Cano J, Kamminga T, Gil R, Latorre A, Chen WH, Bork P, Glass JI, Serrano L, Lluch-Senar M. Bacterial antisense RNAs are mainly the product of transcriptional noise. SCIENCE ADVANCES 2016; 2:e1501363. [PMID: 26973873 PMCID: PMC4783119 DOI: 10.1126/sciadv.1501363] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/05/2016] [Indexed: 05/30/2023]
Abstract
cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome.
Collapse
Affiliation(s)
- Verónica Lloréns-Rico
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Jaime Cano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Tjerko Kamminga
- MSD Animal Health, Bioprocess Technology and Support, 5830 AB Boxmeer, Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University, 6700 EJ Wageningen, Netherlands
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, 46980 Paterna, València, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, 46980 Paterna, València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)—Salud Pública, 46020 Valencia, Spain
| | - Wei-Hua Chen
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Max Delbrück Centre (MDC) for Molecular Medicine, 13125 Berlin, Germany
| | - John I. Glass
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| |
Collapse
|
33
|
Schroeder CLC, Narra HP, Rojas M, Sahni A, Patel J, Khanipov K, Wood TG, Fofanov Y, Sahni SK. Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 2015; 16:1075. [PMID: 26679185 PMCID: PMC4683814 DOI: 10.1186/s12864-015-2293-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023] Open
Abstract
Background Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either “junk DNA” or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs, whose biogenesis is predominantly attributed to either the intergenic regions (trans-acting) or to the antisense strand of an open reading frame (cis-acting), are now appreciated to be among the most important post-transcriptional regulators of bacterial virulence and growth. We hypothesize that intergenic regions in rickettsial species encode for small, non-coding RNAs (sRNAs) involved in the regulation of its transcriptome, leading to altered virulence and adaptation depending on the host niche. Results We employed a combination of bioinformatics and in vitro approaches to explore the presence of sRNAs in a number of species within Genus Rickettsia. Using the sRNA Identification Protocol using High-throughput Technology (SIPHT) web interface, we predicted over 1,700 small RNAs present in the intergenic regions of 16 different strains representing 13 rickettsial species. We further characterized novel sRNAs from typhus (R. prowazekii and R. typhi) and spotted fever (R. rickettsii and R. conorii) groups for their promoters and Rho-independent terminators using Bacterial Promoter Prediction Program (BPROM) and TransTermHP prediction algorithms, respectively. Strong σ70 promoters were predicted upstream of all novel small RNAs, indicating the potential for transcriptional activity. Next, we infected human microvascular endothelial cells (HMECs) with R. prowazekii for 3 h and 24 h and performed Next Generation Sequencing to experimentally validate the expression of 26 sRNA candidates predicted in R. prowazekii. Reverse transcriptase PCR was also used to further verify the expression of six putative novel sRNA candidates in R. prowazekii. Conclusions Our results yield clear evidence for the expression of novel R. prowazekii sRNA candidates during infection of HMECs. This is the first description of novel small RNAs for a highly pathogenic species of Rickettsia, which should lead to new insights into rickettsial virulence and adaptation mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2293-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Casey L C Schroeder
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Hema P Narra
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Mark Rojas
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Jignesh Patel
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Kamil Khanipov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Yuriy Fofanov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Sanjeev K Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
34
|
A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin. Appl Environ Microbiol 2015; 82:467-77. [PMID: 26519385 DOI: 10.1128/aem.02517-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/25/2015] [Indexed: 01/29/2023] Open
Abstract
Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development.
Collapse
|
35
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
36
|
Chaudhary AK, Na D, Lee EY. Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnol Adv 2015; 33:914-30. [PMID: 26027891 DOI: 10.1016/j.biotechadv.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Due to global crises such as pollution and depletion of fossil fuels, sustainable technologies based on microbial cell-factories have been garnering great interest as an alternative to chemical factories. The development of microbial cell-factories is imperative in cutting down the overall manufacturing cost. Thus, diverse metabolic engineering strategies and engineering tools have been established to obtain a preferred genotype and phenotype displaying superior productivity. However, these tools are limited to only a handful of genes with permanent modification of a genome and significant labor costs, and this is one of the bottlenecks associated with biofactory construction. Therefore, a groundbreaking rapid and high-throughput engineering tool is needed for efficient construction of microbial cell-factories. During the last decade, copious small noncoding RNAs (ncRNAs) have been discovered in bacteria. These are involved in substantial regulatory roles like transcriptional and post-transcriptional gene regulation by modulating mRNA elongation, stability, or translational efficiency. Because of their vulnerability, ncRNAs can be used as another layer of conditional control over gene expression without modifying chromosomal sequences, and hence would be a promising high-throughput tool for metabolic engineering. Here, we review successful design principles and applications of ncRNAs for high-throughput metabolic engineering or physiological studies of diverse industrially important microorganisms.
Collapse
Affiliation(s)
- Amit Kumar Chaudhary
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
37
|
Vockenhuber MP, Heueis N, Suess B. Identification of metE as a second target of the sRNA scr5239 in Streptomyces coelicolor. PLoS One 2015; 10:e0120147. [PMID: 25785836 PMCID: PMC4365011 DOI: 10.1371/journal.pone.0120147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
While transcriptional regulation of the primary and secondary metabolism of the model organism Streptomyces coelicolor is well studied, little is still known about the role small noncoding RNAs (sRNAs) play in regulating gene expression in this organism. Here, we report the identification of a second target of the sRNA scr5239, an sRNA highly conserved in streptomycetes. The 159 nt long sRNA binds its target, the mRNA of the cobalamin independent methionine synthase metE (SCO0985), at the 5’ end of its open reading frame thereby repressing translation. We show that a high methionine level induces expression of scr5239 itself. This leads, in a negative feedback loop, to the repression of methionine biosynthesis. In contrast to the first reported target of this sRNA, the agarase dagA, this interaction seems to be conserved in a wide number of streptomycetes.
Collapse
Affiliation(s)
| | - Nona Heueis
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
- * E-mail: (BS); (MPV)
| |
Collapse
|
38
|
St-Onge RJ, Haiser HJ, Yousef MR, Sherwood E, Tschowri N, Al-Bassam M, Elliot MA. Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces. Mol Microbiol 2015; 96:779-95. [PMID: 25682701 DOI: 10.1111/mmi.12971] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 11/29/2022]
Abstract
Peptidoglycan degradative enzymes have important roles at many stages during the bacterial life cycle, and it is critical that these enzymes be stringently regulated to avoid compromising the integrity of the cell wall. How this regulation is exerted is of considerable interest: promoter-based control and protein-protein interactions are known to be employed; however, other regulatory mechanisms are almost certainly involved. In the actinobacteria, a class of muralytic enzymes - the 'resuscitation-promoting factors' (Rpfs) - orchestrates the resuscitation of dormant cells. In this study, we have taken a holistic approach to exploring the mechanisms governing RpfA function using the model bacterium Streptomyces coelicolor and have uncovered unprecedented multilevel regulation that is coordinated by three second messengers. Our studies show that RpfA is subject to transcriptional control by the cyclic AMP receptor protein, riboswitch-mediated transcription attenuation in response to cyclic di-AMP, and growth stage-dependent proteolysis in response to ppGpp accumulation. Furthermore, our results suggest that these control mechanisms are likely applicable to cell wall lytic enzymes in other bacteria.
Collapse
Affiliation(s)
- Renée J St-Onge
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Henry J Haiser
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mary R Yousef
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Emma Sherwood
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Natalia Tschowri
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Mahmoud Al-Bassam
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
39
|
|
40
|
Rudolph MM, Vockenhuber MP, Suess B. Conditional Control of Gene Expression by Synthetic Riboswitches in Streptomyces coelicolor. Methods Enzymol 2015; 550:283-99. [DOI: 10.1016/bs.mie.2014.10.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Resuscitation-promoting factors are cell wall-lytic enzymes with important roles in the germination and growth of Streptomyces coelicolor. J Bacteriol 2014; 197:848-60. [PMID: 25512314 DOI: 10.1128/jb.02464-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.
Collapse
|
42
|
Romero DA, Hasan AH, Lin YF, Kime L, Ruiz-Larrabeiti O, Urem M, Bucca G, Mamanova L, Laing EE, van Wezel GP, Smith CP, Kaberdin VR, McDowall KJ. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing. Mol Microbiol 2014; 94:963-987. [PMID: 25266672 PMCID: PMC4681348 DOI: 10.1111/mmi.12810] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2014] [Indexed: 12/12/2022]
Abstract
Streptomyces coelicolor is a model for studying bacteria renowned as the foremost source of natural products used clinically. Post-genomic studies have revealed complex patterns of gene expression and links to growth, morphological development and individual genes. However, the underlying regulation remains largely obscure, but undoubtedly involves steps after transcription initiation. Here we identify sites involved in RNA processing and degradation as well as transcription within a nucleotide-resolution map of the transcriptional landscape. This was achieved by combining RNA-sequencing approaches suited to the analysis of GC-rich organisms. Escherichia coli was analysed in parallel to validate the methodology and allow comparison. Previously, sites of RNA processing and degradation had not been mapped on a transcriptome-wide scale for E. coli. Through examples, we show the value of our approach and data sets. This includes the identification of new layers of transcriptional complexity associated with several key regulators of secondary metabolism and morphological development in S. coelicolor and the identification of host-encoded leaderless mRNA and rRNA processing associated with the generation of specialized ribosomes in E. coli. New regulatory small RNAs were identified for both organisms. Overall the results illustrate the diversity in mechanisms used by different bacterial groups to facilitate and regulate gene expression.
Collapse
Affiliation(s)
- David A Romero
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Ayad H Hasan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Yu-fei Lin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Olatz Ruiz-Larrabeiti
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHULeioa, Spain
| | - Mia Urem
- Institute of Biology, Sylvius Laboratories, Leiden UniversityLeiden, NL-2300 RA, The Netherlands
| | - Giselda Bucca
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Lira Mamanova
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, CB10 1SA, UK
| | - Emma E Laing
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Gilles P van Wezel
- Institute of Biology, Sylvius Laboratories, Leiden UniversityLeiden, NL-2300 RA, The Netherlands
| | - Colin P Smith
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHULeioa, Spain
- IKERBASQUE, Basque Foundation for Science48011, Bilbao, Spain
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| |
Collapse
|
43
|
Development, antibiotic production, and ribosome assembly in Streptomyces venezuelae are impacted by RNase J and RNase III deletion. J Bacteriol 2014; 196:4253-67. [PMID: 25266378 DOI: 10.1128/jb.02205-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA metabolism is a critical but frequently overlooked control element affecting virtually every cellular process in bacteria. RNA processing and degradation is mediated by a suite of ribonucleases having distinct cleavage and substrate specificity. Here, we probe the role of two ribonucleases (RNase III and RNase J) in the emerging model system Streptomyces venezuelae. We show that each enzyme makes a unique contribution to the growth and development of S. venezuelae and further affects the secondary metabolism and antibiotic production of this bacterium. We demonstrate a connection between the action of these ribonucleases and translation, with both enzymes being required for the formation of functional ribosomes. RNase III mutants in particular fail to properly process 23S rRNA, form fewer 70S ribosomes, and show reduced translational processivity. The loss of either RNase III or RNase J additionally led to the appearance of a new ribosomal species (the 100S ribosome dimer) during exponential growth and dramatically sensitized these mutants to a range of antibiotics.
Collapse
|
44
|
Rische-Grahl T, Weber L, Remes B, Förstner KU, Klug G. RNase J is required for processing of a small number of RNAs in Rhodobacter sphaeroides. RNA Biol 2014; 11:855-64. [PMID: 24922065 PMCID: PMC4179960 DOI: 10.4161/rna.29440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
All bacteria contain multiple exoribonucleases to ensure a fast breakdown of different RNA molecules, either for maturation or for complete degradation to the level of mononucleotides. This efficient RNA degradation plays pivotal roles in the post-transcriptional gene regulation, in RNA processing and maturation as well as in RNA quality control mechanisms and global adaption to stress conditions. Besides different 3'-to-5' exoribonucleases mostly with overlapping functions in vivo many bacteria additionally possess the 5'-to-3' exoribonuclease, RNase J, to date the only known bacterial ribonuclease with this activity. An RNA-seq approach was applied to identify specific targets of RNase J in the α-proteobacterium Rhodobacter sphaeroides. Only few transcripts were strongly affected by the lack of RNase J implying that its function is mostly required for specific processing/degradation steps in this bacterium. The accumulation of diverse RNA fragments in the RNase J deletion mutant points to RNA features that apparently cannot be targeted by the conventional 3'-exoribonucleases in Gram-negative bacteria.
Collapse
Affiliation(s)
- Tom Rische-Grahl
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Lennart Weber
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Bernhard Remes
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Konrad U Förstner
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Research Center for Infectious Diseases, University of Würzburg, 97080 Würzburg, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| |
Collapse
|
45
|
Sallet E, Gouzy J, Schiex T. EuGene-PP: a next-generation automated annotation pipeline for prokaryotic genomes. Bioinformatics 2014; 30:2659-61. [PMID: 24880686 DOI: 10.1093/bioinformatics/btu366] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED It is now easy and increasingly usual to produce oriented RNA-Seq data as a prokaryotic genome is being sequenced. However, this information is usually just used for expression quantification. EuGene-PP is a fully automated pipeline for structural annotation of prokaryotic genomes integrating protein similarities, statistical information and any oriented expression information (RNA-Seq or tiling arrays) through a variety of file formats to produce a qualitatively enriched annotation including coding regions but also (possibly antisense) non-coding genes and transcription start sites. AVAILABILITY AND IMPLEMENTATION EuGene-PP is an open-source software based on EuGene-P integrating a Galaxy configuration. EuGene-PP can be downloaded at eugene.toulouse.inra.fr.
Collapse
Affiliation(s)
- Erika Sallet
- Laboratoire Interactions Plantes Micro-organismes (LIPM) UMR441/2594, INRA/CNRS, F-31320 and INRA, Unité de Mathématiques et Informatique Appliques de Toulouse, UR 875, Castanet-Tolosan F-31326, France
| | - Jérôme Gouzy
- Laboratoire Interactions Plantes Micro-organismes (LIPM) UMR441/2594, INRA/CNRS, F-31320 and INRA, Unité de Mathématiques et Informatique Appliques de Toulouse, UR 875, Castanet-Tolosan F-31326, France
| | - Thomas Schiex
- Laboratoire Interactions Plantes Micro-organismes (LIPM) UMR441/2594, INRA/CNRS, F-31320 and INRA, Unité de Mathématiques et Informatique Appliques de Toulouse, UR 875, Castanet-Tolosan F-31326, France
| |
Collapse
|
46
|
Abstract
Streptomycetes are Gram-positive, GC-rich, soil dwelling bacteria, occurring ubiquitary throughout nature. They undergo extensive morphological changes from spores to filamentous mycelia and produce a plethora of secondary metabolites. Owing to their complex life cycle, streptomycetes require efficient regulatory machinery for the control of gene expression. Therefore, they possess a large diversity of regulators. Within this review we summarize the current knowledge about the importance of small non-coding RNA for the control of gene expression in these organisms.
Collapse
Affiliation(s)
- Nona Heueis
- Department of Biology; Technical University Darmstadt; Darmstadt, Germany
| | | | - Beatrix Suess
- Department of Biology; Technical University Darmstadt; Darmstadt, Germany
| |
Collapse
|
47
|
Complex intra-operonic dynamics mediated by a small RNA in Streptomyces coelicolor. PLoS One 2014; 9:e85856. [PMID: 24465751 PMCID: PMC3896431 DOI: 10.1371/journal.pone.0085856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Streptomyces are predominantly soil-dwelling bacteria that are best known for their multicellular life cycle and their prodigious metabolic capabilities. They are also renowned for their regulatory capacity and flexibility, with each species encoding >60 sigma factors, a multitude of transcription factors, and an increasing number of small regulatory RNAs. Here, we describe our characterization of a conserved small RNA (sRNA), scr4677. In the model species Streptomyces coelicolor, this sRNA is located in the intergenic region separating SCO4677 (an anti-sigma factor-encoding gene) and SCO4676 (a putative regulatory protein-encoding gene), close to the SCO4676 translation start site in an antisense orientation. There appears to be considerable genetic interplay between these different gene products, with wild type expression of scr4677 requiring function of the anti-sigma factor SCO4677, and scr4677 in turn influencing the abundance of SCO4676-associated transcripts. The scr4677-mediated effects were independent of RNase III (a double stranded RNA-specific nuclease), with RNase III having an unexpectedly positive influence on the level of SCO4676-associated transcripts. We have shown that both SCO4676 and SCO4677 affect the production of the blue-pigmented antibiotic actinorhodin under specific growth conditions, and that this activity appears to be independent of scr4677.
Collapse
|
48
|
Kim HM, Shin JH, Cho YB, Roe JH. Inverse regulation of Fe- and Ni-containing SOD genes by a Fur family regulator Nur through small RNA processed from 3'UTR of the sodF mRNA. Nucleic Acids Res 2013; 42:2003-14. [PMID: 24234448 PMCID: PMC3919588 DOI: 10.1093/nar/gkt1071] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Superoxide dismutases (SODs) are widely distributed enzymes that convert superoxides to hydrogen peroxide and molecular oxygen, using various metals as cofactors. Many actinobacteria contain genes for both Ni-containing (sodN) and Fe-containing (sodF) SODs. In Streptomyces coelicolor, expression of the sodF and sodN genes is inversely regulated by nickel-specific Nur, a Fur-family regulator. With sufficient nickel, Nur directly represses sodF transcription, while inducing sodN indirectly. Bioinformatic search revealed that a conserved 19-nt stretch upstream of sodN matches perfectly with the sodF downstream sequence. We found that the sodF gene produced a stable small-sized RNA species (s-SodF) of ∼ 90 nt that harbors the anti-sodN sequence complementary to sodN mRNA from the 5'-end up to the ribosome binding site. Absence of nearby promoters and sensitivity to 5'-phosphate-specific exonuclease indicated that the s-SodF RNA is a likely processed product of sodF mRNA. The s-SodF RNA caused a significant decrease in the half-life of the sodN mRNA. Therefore, Nur activates sodN expression through inhibiting the synthesis of sodF mRNA, from which inhibitory s-SodF RNA is generated. This reveals a novel mechanism by which antagonistic regulation of one gene is achieved by small RNA processed from the 3'UTR of another gene's mRNA.
Collapse
Affiliation(s)
- Hae Mi Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|