1
|
Wataradee S, Boonserm T, Samngamnim S, Ajariyakhajorn K. Characterization of Virulence Factors and Antimicrobial Susceptibility of Streptococcus agalactiae Associated with Bovine Mastitis Cases in Thailand. Animals (Basel) 2024; 14:447. [PMID: 38338090 PMCID: PMC10854646 DOI: 10.3390/ani14030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis. The ability of S. agalactiae to cause widespread mastitis relies on bacterial virulence factors. In this study, we detected 10 virulence determinants associated with mastitis pathogenicity using conventional PCR. The antimicrobial susceptibility of 100 S. agalactiae isolates from 13 Thai dairy herds was assessed using the Kirby-Bauer disk diffusion susceptibility test. All strains had at least three virulence factors responsible for invasion, adhesion, and infection (fbsB, bibA, and cfb, respectively). The predominant virulent profile of S. agalactiae strains revealed the presence of fbsA, fbsB, bibA, cfb, and cyl (n = 96). Most strains were sensitive to penicillin, ampicillin, amoxicillin-clavulanic acid, cefotaxime, ceftiofur, erythromycin, sulfamethoxazole-trimethoprim, and vancomycin. However, all strains were resistant to aminoglycosides, including kanamycin and gentamicin attributed to the unnecessary antimicrobial use. Furthermore, we identified seven multidrug resistant (MDR) S. agalactiae strains among four dairy herds, of which, two were vancomycin resistant. Our study provides profiles for virulence factors and antimicrobial susceptibility, which are beneficial for the clinical monitoring, prevention, and control of bovine mastitis in dairy cattle in Thailand. Moreover, we emphasize the need for awareness regarding the judicious use of antimicrobials on dairy farms.
Collapse
Affiliation(s)
| | | | | | - Kittisak Ajariyakhajorn
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.W.); (T.B.); (S.S.)
| |
Collapse
|
2
|
Bhavana VH, Hillebrand GH, Gopalakrishna KP, Rapp RA, Ratner AJ, Tettelin H, Hooven TA. A group B Streptococcus indexed transposon mutant library to accelerate genetic research on an important perinatal pathogen. Microbiol Spectr 2023; 11:e0204623. [PMID: 37933989 PMCID: PMC10714824 DOI: 10.1128/spectrum.02046-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Group B Streptococcus (GBS) is a significant global cause of serious infections, most of which affect pregnant women, newborns, and infants. Studying GBS genetic mutant strains is a valuable approach for learning more about how these infections are caused and is a key step toward developing more effective preventative and treatment strategies. In this resource report, we describe a newly created library of defined GBS genetic mutants, containing over 1,900 genetic variants, each with a unique disruption to its chromosome. An indexed library of this scale is unprecedented in the GBS field; it includes strains with mutations in hundreds of genes whose potential functions in human disease remain unknown. We have made this resource freely available to the broader research community through deposition in a publicly funded bacterial maintenance and distribution repository.
Collapse
Affiliation(s)
- Venkata H. Bhavana
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gideon H. Hillebrand
- University of Pittsburgh, Graduate Program in Microbiology and Immunology, Pittsburgh, Pennsylvania, USA
| | | | - Rebekah A. Rapp
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- The Ellis School, Pittsburgh, Pennsylvania, USA
| | - Adam J. Ratner
- Department of Pediatrics, New York University, New York, New York, USA
- Department of Microbiology, New York University, New York, New York, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas A. Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, Graduate Program in Microbiology and Immunology, Pittsburgh, Pennsylvania, USA
- Richard King Mellon Institute for Pediatric Research, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Muthanna A, Desa MNM, Alsalemi W, Liyana Abd Aziz NA, Dzaraly ND, Baharin NHZ, Aziz NA, Ali MM, Nor LAM, Ismail Z, Ahmad NH, Shan CH, Azmai MNA, Amin-Nordin S. Phenotypic and genotypic comparison of pathogenic group B Streptococcus isolated from human and cultured tilapia (Oreochromis species) in Malaysia. Comp Immunol Microbiol Infect Dis 2023; 97:101993. [PMID: 37167694 DOI: 10.1016/j.cimid.2023.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Group B Streptococcus (GBS) is a major cause of several infectious diseases in humans and fish. This study was conducted to compare human and fish-derived GBS in terms of their antimicrobial susceptibility, serotype, virulence and pili genes and sequence type (ST), and to determine whether there is a potential linkage of zoonotic transmission in Malaysia. GBS isolated from humans and fish had similar phenotypic characteristics and differed in virulence gene profile, antimicrobial susceptibility, serotype and sequence type. Fish GBS isolates had lower genetic diversity and higher antibiotic susceptibility than human isolates. We report a rare detection of the potentially fish-adapted ST283 in human GBS isolates. Both human and fish ST283 shared several phenotypic and genotypic features, including virulence and pilus genes and antimicrobial susceptibility, illustrating the value of monitoring GBS within the One Health scope. In this study, two human GBS ST283 isolates belonging to the variant common in fish hosts were identified, raising awareness of the zoonotic potential between the different species in Malaysia.
Collapse
Affiliation(s)
- AbdulRahman Muthanna
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Wardah Alsalemi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nurul Diana Dzaraly
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nurul Hana Zainal Baharin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nur Afiza Aziz
- Department of Pathology, Sultanah Aminah Hospital, Johor Bahru, Johor, Malaysia
| | - Marlindawati Mohd Ali
- Department of Pathology, Tuanku Ja'afar Seremban Hospital, Seremban, Negeri Sembilan, Malaysia
| | | | - Zalina Ismail
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nur Hanani Ahmad
- Department of Pathology, Sungai Buloh Hospital, Sungai Buloh, Selangor, Malaysia
| | - Chua Hui Shan
- Department of Pathology, Melaka General Hospital, Melaka, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; Department of Medical Microbiology, Sultan Abdul Aziz Shah Hospital, Universiti Putra Malaysia, Persiaran MARDI - UPM, 43400, Selangor, Malaysia.
| |
Collapse
|
4
|
Preenanka R, Safeena MP. Morphological, biological and genomic characterization of lytic phages against Streptococcus agalactiae causing streptococcosis in tilapia. Microb Pathog 2023; 174:105919. [PMID: 36460145 DOI: 10.1016/j.micpath.2022.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Streptococcus agalactiae, a highly invasive pathogen causing streptococcosis, is a major disease imparting devastating effect in the aquaculture, worldwide. As bacteriophage therapy is getting more attention recently, as an alternative viable biocontrol agent to antibiotic and vaccine, this study aimed to isolate and purify obligately lytic bacteriophages and study its morphological, genetic and biological characteristics. Host range analysis of the four bacteriophages isolated in this study, such as Phage- 12 P, 15 F, 16 E and 20D exhibited 100% infectivity to S. agalactiae serotype Ia, a predominant serotype infecting fish. Morphotype of the phages was revealed by HR-TEM and found that the phage 20D belong to the family Myoviridae and the phages 12 P, 15 F, 16 E belonged to the family Siphoviridae with typical head and tail structure. Lytic potential of the phages were ascertained by multiplicity of infection and one step lytic curve and it is found that the phages exhibit high burst size at an MOI of 0.01. Random amplified polymorphic DNA revealed the genetic diversity of these four phages with distinct banding pattern. The phages were found to be lytic with the absence of genes coding for integrase, transposase and recombinase on PCR based screening. Phages exhibited stability and viability at various physic-chemical parameters such as temperature ranging from 4 to 45 °C, pH of 4-12 and salinity ranging from 0 to 6%. Thus the present study revealed that S. agalactiae specific phages such as Phage- 12 P, 15 F, 16 E and 20D are highly stable and potential to eliminate the S. agalactiae serotype Ia infecting fish. After the complete characterization of the phages by whole genome sequencing and exploring the defense function against S. agalactiae infection in vivo, it may be applied as a therapeutic agent against S. agalactiae infection in aquaculture.
Collapse
Affiliation(s)
- R Preenanka
- Faculty of Ocean Science and Technology (FOST), Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, 682 506, Kerala, India.
| | - Muhammed P Safeena
- Department of Aquatic Animal Health Management (AAHM), Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, 682 506, Kerala, India.
| |
Collapse
|
5
|
Genomic Traits Associated with Virulence and Antimicrobial Resistance of Invasive Group B Streptococcus Isolates with Reduced Penicillin Susceptibility from Elderly Adults. Microbiol Spectr 2022; 10:e0056822. [PMID: 35639001 PMCID: PMC9241772 DOI: 10.1128/spectrum.00568-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate genomic traits underlying the antimicrobial resistance and virulence of multidrug-resistant (MDR) group B streptococci with reduced penicillin susceptibility (PRGBS) recovered from elderly patients with bloodstream infections, which remain poorly characterized. The pangenome was found to be open, with the predicted pan- and core genome sizes being 3,531 and 1,694 genes, respectively. Accessory and unique genes were enriched for the Clusters of Orthologous Groups (COG) categories L, Replication, recombination, and repair, and K, Transcription. All MDR PRGBS isolates retained a core virulence gene repertoire (bibA, fbsA/-B/-C, cspA, cfb, hylB, scpB, lmb, and the cyl operon), supporting an invasive ability similar to that of the other invasive GBS, penicillin-susceptible GBS (PSGBS), and noninvasive PRGBS isolates. The putative sequence type 1 (ST1)-specific AlpST-1 virulence gene was also retained among the serotype Ia/ST1 PRGBS isolates. In addition to tet(M) and erm(B), mef(A)-msr(D) elements or the high-level gentamicin resistance gene aac(6′)-aph(2″), which are both rare in PSGBS, were detected among those MDR PRGBS isolates. In the core single-nucleotide polymorphism (SNP) phylogenetic tree, all invasive ST1 PRGBS isolates with serotypes Ia and III were placed together in a clade with a recombination rate of 3.97, which was 36 times higher than the value found for a clade formed by serotype V/ST1 PSGBS isolates derived mostly from human blood. ST1 has been the predominant sequence type among the PRGBS isolates in Japan, and serotypes Ia and III have been very rare among the ST1 PSGBS isolates. Thus, these lineages that mostly consisted of serotypes Ia/ST1 and III/ST1 PRGBS could possibly emerge through recombination within the ST1 populations. IMPORTANCEStreptococcus agalactiae, or group B Streptococcus (GBS), is recognized as the leading cause of neonatal invasive infections. However, an increasing incidence of invasive GBS infections among nonpregnant adults, particularly the elderly and those with underlying diseases, has been observed. There is a trend toward the increasing occurrence of penicillin nonsusceptibility among GBS clinical isolates, from 4.8% in 2008 to 5.8% in 2020 in Japan. Also, in the United States, the frequency of adult invasive GBS isolates suggestive of β-lactam nonsusceptibility increased from 0.7% in 2015 to 1.0% in 2016. In adults, mortality has been significantly higher among patients with bacteremia than among those without bacteremia. Our study revealed that invasive GBS with reduced penicillin susceptibility (PRGBS) isolates harbor major virulence and resistance genes known among GBS, highlighting the need for large population-based genomic surveillance studies to better understand the clinical relevance of invasive PRGBS isolates.
Collapse
|
6
|
Liu G, Zhang S, Gao T, Mao Z, Shen Y, Pan Z, Guo C, Yu Y, Yao H. Identification of a novel broad-spectrum endolysin, Ply0643, with high antibacterial activity in mouse models of streptococcal bacteriaemia and mastitis. Res Vet Sci 2021; 143:41-49. [PMID: 34973538 DOI: 10.1016/j.rvsc.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
Streptococcal infections are very common in humans and animals, and they are usually treated with antibiotics. Multidrug-resistant Streptococcus strains have continuously emerged in recent years, prompting the search for alternatives to antibiotics. The use of endolysins encoded by phages has presented a promising alternative approach to treatment. In this study, a novel prophage endolysin, Ply0643, was identified from the prophage S. a 04. At an optimal concentration (30 μg/mL), rPly0643 exhibited broad and strong lysosomal enzyme activity against 66 Streptococcus strains from different sources while also maintaining high lytic activity over a wide pH range (pH 6-10) and a broad range of temperatures (28 °C-45 °C). Two in vivo treatments of rPly0643 (total 0.8 mg/mouse) significantly protected mice (80%) from lethal bacteriaemia with Streptococcus suis, and single treatments of rPly0643 (0.1 mg/gland) significantly reduced Streptococcus agalactiae concentrations and inflammation in murine mammary glands. These findings collectively demonstrate that Ply0643 exhibits good bactericidal activity both in vitro and in vivo, and therefore represents a useful antibacterial agent for combatting streptococcal infections.
Collapse
Affiliation(s)
- Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| | - Shiyu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Tingting Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zhao Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yanling Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Changming Guo
- Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
7
|
Srisapoome P, Thummabancha K, Wongpanya R. Molecular Characterization and Defense Functions of the Nile Tilapia ( Oreochromis niloticus) DnaJ B9b and DnaJ C3a Genes in Response to Pathogenic Bacteria under High-Temperature Stress Conditions. Biomolecules 2021; 11:biom11101509. [PMID: 34680142 PMCID: PMC8533496 DOI: 10.3390/biom11101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
DnaJ proteins or heat shock protein 40s (HSP40s) form one of the largest heat shock protein families. In this study, 2 cDNAs encoding Nile tilapia (Oreochromis niloticus) DnaJ proteins (On-DnaJ B9b and On-DnaJ C3a) were successfully cloned and characterized. The structures and organizations of these two genes are first reported in the present study. On-DnaJ B9b is approximately 2.1 kb long and contains 2 exons and 1 intron, while On-DnaJ C3a is approximately 12 kb long and contains 12 exons and 11 introns. Under normal conditions, On-DnaJ B9b mRNA is highly expressed in gonad and trunk kidney tissues, while On-DnaJ C3a transcripts are abundantly expressed in gills, intestine, liver, and trunk kidney tissues. Following pathogenic infections, the expression of both genes is induced in the liver, spleen and head kidney tissues of Nile tilapia that were infected with two virulent pathogenic bacteria, Streptococcus agalactiae and Flavobacterium columnare. Silencing of these two genes was first carried out, and the results clearly indicated their crucial roles under both heat and bacterial stress conditions. The fundamental knowledge obtained from this study indicates the characteristic basic biofunctions of heat shock proteins in the regulation of intracellular proteins during infection, which involve preventing protein aggregation, promoting protein refolding, and activating unfolded protein degradation.
Collapse
Affiliation(s)
- Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2579-2924
| | - Kubpaphas Thummabancha
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
8
|
Comparative genomics of Edwardsiellaictaluri revealed four distinct host-specific genotypes and thirteen potential vaccine candidates. Genomics 2021; 113:1976-1987. [PMID: 33848586 DOI: 10.1016/j.ygeno.2021.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/31/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
Edwardsiella ictaluri has been considered an important threat for catfish aquaculture industry for more than 4 decades and an emerging pathogen of farmed tilapia but only 9 sequenced genomes were publicly available. We hereby report two new complete genomes of E. ictaluri originated from diseased hybrid red tilapia (Oreochromis sp.) and striped catfish (Pangasianodon hypophthalmus) in Southeast Asia. E. ictaluri species has an open pan-genome consisting of 2615 core genes and 5592 pan genes. Phylogenetic analysis using core genome MLST (cgMLST) and ANI values consistently placed E. ictaluri isolates into 4 host-specific genotypes. Presence of unique genes and absence of certain genes from each genotype provided potential biomarkers for further development of genotyping scheme. Vaccine candidates with high antigenic, solubility and secretion probabilities were identified in silico from the core genes. Microevolution within the species is brought about by bacteriophages and insertion elements and possibly drive host adaptation.
Collapse
|
9
|
The Novel Streptococcal Transcriptional Regulator XtgS Negatively Regulates Bacterial Virulence and Directly Represses PseP Transcription. Infect Immun 2020; 88:IAI.00035-20. [PMID: 32690636 DOI: 10.1128/iai.00035-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/04/2020] [Indexed: 01/14/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) has received continuous attention for its involvement in invasive infections and its broad host range. Transcriptional regulators have an important impact on bacterial adaptation to various environments. Research on transcriptional regulators will shed new light on GBS pathogenesis. In this study, we identified a novel XRE-family transcriptional regulator encoded on the GBS genome, designated XtgS. Our data demonstrate that XtgS inactivation significantly increases bacterial survival in host blood and animal challenge test, suggesting that it is a negative regulator of GBS pathogenicity. Further transcriptomic analysis and quantitative reverse transcription-PCR (qRT-PCR) mainly indicated that XtgS significantly repressed transcription of its upstream gene pseP Based on electrophoretic mobility shift and lacZ fusion assays, we found that an XtgS homodimer directly binds a palindromic sequence in the pseP promoter region. Meanwhile, the PseP and XtgS combination naturally coexists in diverse Streptococcus genomes and has a strong association with sequence type, serotype diversification and host adaptation of GBS. Therefore, this study reveals that XtgS functions as a transcriptional regulator that negatively affects GBS virulence and directly represses PseP expression, and it provides new insights into the relationships between transcriptional regulator and genome evolution.
Collapse
|
10
|
Shen Y, Liang W, Lin Y, Yang H, Chen X, Feng P, Zhang B, Zhu J, Zhang Y, Luo H. Single molecule real-time sequencing and RNA-seq unravel the role of long non-coding and circular RNA in the regulatory network during Nile tilapia (Oreochromis niloticus) infection with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 104:640-653. [PMID: 32544555 DOI: 10.1016/j.fsi.2020.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The tilapia aquaculture industry is facing heavy economic losses due to Streptococcus agalactiae (S. agalactiae) infections. While progress has been made in past years, the lack of a high-quality tilapia genome and transcript annotations makes systematic and comprehensive exploration for a non-coding RNA regulatory network associated with the infection process unfeasible, and it stunts further research focused on disease defense and treatment. Herein, single molecular real time sequencing (SMRT-Seq) and RNA-seq data were utilized to generate a high-quality transcript annotation. In addition, Changes in mRNA and non-coding RNA expression were also analyzed during a S. agalactiae infection in tilapia. FINDINGS In total, 16.79 Gb of clean data were obtained by sequencing on six SMRT cells, with 712,294 inserts (326,645 full-length non-chimeric reads and 354,188 non-full-length reads). A total of 197,952 consensus transcripts were obtained. Additionally, 55,857 transcript sequences were acquired, with 12,297 previously annotated and 43,560 newly identified transcripts. To further examine the immune response in Oreochromis niloticus following a S. agalactiae infection, a total of 470.62 Gb of clean data was generated by sequencing a library containing 18 S. agalactiae infected tilapia samples. Of the identified genes, 9911 were newly exploited, of which 7102 were functional annotated. Furthermore, 7874 mRNAs, 1281 long non-coding RNAs (out of 21,860 long non-coding RNAs), and 61 circular RNAs (out of 1026 circular RNAs) were found to be differentially expressed during infection, with the 1026 circRNAs not previously identified in tilapia. Moreover, k-means clustering and WGCNA analyses revealed that the immune response of tilapia to a S. agalactiae infection can be divided into three stages: cytokines driven rapid immune response, energy metabolism promotion, and the production of lysosomes and phagosomes. During this response, the head kidney and spleen have synergistic effects, while maintaining independent characteristics. Finally, lncRNA-mRNA (trans and cis), lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks were constructed and revealed that non-coding RNA is involved in the regulation of immune-related genes. CONCLUSIONS This study generated a greatly-improved transcript annotation for tilapia using long-read PacBio sequencing technology, and revealed the presence of a regulatory network comprised of non-coding RNAs in Nile tilapia infected with S. agalactiae.
Collapse
Affiliation(s)
- Yudong Shen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wanwen Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Huizan Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Bin Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Jiajie Zhu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China.
| | - Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
11
|
Zhang Z, Li Y, Hu M, Yu A. Genome reanalysis to decipher resistome, virulome, and attenuated characters of attenuated Streptococcus agalactiae strain HZAUSC001. Microb Pathog 2020; 147:104416. [PMID: 32745666 DOI: 10.1016/j.micpath.2020.104416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Streptococcus agalactiae is a serious pathogen causing severe anthropozoonosis in a broad range of hosts, from aquatic animals to mammals, including humans. S. agalactiae HZAUSC001 was isolated from a moribund tilapia fish exhibiting classic clinical symptoms of streptococcosis in Zhanjiang, Guangdong, China. And it was identified as the etiological factor resulting in fish disease, but was notable because it exhibited attenuated virulence. Here, the genome of S. agalactiae HZAUSC001 was re-analyzed; we assessed the resistome and virulome and deciphered the attenuated characters of HZAUSC001. The S. agalactiae HZAUSC001 genome was assembled into one chromosome with a GC-content of 35.37% and 1972 predicted open reading frames (ORFs). Phylogenetic analysis indicated that it is evolutionarily similar to piscine GBS strains GD201008-001 and ZQ0910. After re-analyzing the published genomic sequence of HZAUSC001, we identified 38 virulence factor genes and one antibiotic-resistance gene. Note that three previously noted virulence genes, bca (C protein alpha-antigen), cpbA (choline-binding protein A) and esp (enterococcal surface protein), were absent in the virulence-attenuated strain S. agalactiae HZAUSC001 but present in the highly virulent strain S. agalactiae GD201008-001. We speculate that the absence of these three virulence genes may be associated with the attenuated traits of the HZAUSC001 strain. Collectively, our study supports that HZAUSC001 may be an excellent candidate for development of an attenuated vaccine, and our results contribute to further understanding of GBS epidemiology and surveillance targets.
Collapse
Affiliation(s)
- Ze Zhang
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Yuhui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minqiang Hu
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Angen Yu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
12
|
Su Y, Liu C, Deng Y, Cheng C, Ma H, Guo Z, Feng J. Molecular typing of Streptococcus agalactiae isolates of serotype Ia from tilapia in southern China. FEMS Microbiol Lett 2020; 366:5531764. [PMID: 31299078 DOI: 10.1093/femsle/fnz154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/11/2019] [Indexed: 01/23/2023] Open
Abstract
Streptococcus agalactiae is an important pathogen of tilapia causing enormous economic losses worldwide. In this study, multilocus sequence typing indicated that 75 S. agalactiae isolates from tilapia in southern China belonged to sequence type-7, as well as belonging to serotype Ia, as confirmed by multiplex PCR assay. The putative-virulence gene profiles and genetic variation of these strains were determined by three sets of multiplex PCR and multi-virulence locus sequencing typing (MVLST), respectively. Analysis of putative-virulence gene profiles showed that each strain harbored 18 putative-virulence genes but lacked lmb and scpB. Three putative-virulence genes (srr-1, bibA and fbsA) were further selected for MVLST analysis. Our data showed that the strains had 14 MVLST types (1-14) and clustered in three groups (Groups I-Ⅲ). The period of time during 2013 and 2014 was an important turning point for the differentiation of the putative-virulence genes of S. agalactiae, as type 1 within Group Ⅱ became the predominant MVLST type. There were significant differences in MVLST types of S. agalactiae isolated from different tilapia farming regions. MVLST assay may improve the discriminatory power and is suitable for understanding the epidemiology of S. agalactiae serotype Ia and screening multivalent vaccine candidate strains.
Collapse
Affiliation(s)
- Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Chan Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China.,College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| |
Collapse
|
13
|
Arginine Deiminase and Biotin Metabolism Signaling Pathways Play an Important Role in Human-Derived Serotype V, ST1 Streptococcus agalactiae Virulent Strain upon Infected Tilapia. Animals (Basel) 2020; 10:ani10050849. [PMID: 32423070 PMCID: PMC7278441 DOI: 10.3390/ani10050849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Patients who were infected with Streptococcus agalactiae (ST1) were mainly associated with asymptomatic carriage. However, the invasive diseases in non-pregnant adults caused by S. agalactiae (serotype V, ST1) have increased recently. We have previously reported that human-derived S. agalactiae (serotype V, ST1) could infect tilapia with virulence and pathologic characteristics similar to highly virulent tilapia-derived S. agalactiae (ST7) strains. The potential risk of cross-species infection cannot be ignored. Therefore, our research provided a multi-omics analysis of the human-derived serotype V ST1 S. agalactiae strains, which were virulent and non-virulent to tilapia and provided a more comprehensive understanding of the virulence mechanism. Abstract Our previous study showed that human-derived Streptococcus agalactiae (serotype V) could infect tilapia, but the mechanism underlying the cross-species infection remains unrecognized. In this study, a multi-omics analysis was performed on human-derived S. agalactiae strain NNA048 (virulent to tilapia, serotype V, ST1) and human-derived S. agalactiae strain NNA038 (non-virulent to tilapia, serotype V, ST1). The results showed that 907 genes (504 up/403 down) and 89 proteins (51 up/38 down) were differentially expressed (p < 0.05) between NNA038 and NNA048. Among them, 56 genes (proteins) were altered with similar trends at both mRNA and protein levels. Functional annotation of them showed that the main differences were enriched in the arginine deiminase system signaling pathway and biotin metabolism signaling pathway: gdhA, glnA, ASL, ADI, OTC, arcC, FabF, FabG, FabZ, BioB and BirA genes may have been important factors leading to the pathogenicity differences between NNA038 and NNA048. We aimed to provide a comprehensive analysis of the human-derived serotype V ST1 S. agalactiae strains, which were virulent and non-virulent to tilapia, and provide a more comprehensive understanding of the virulence mechanism.
Collapse
|
14
|
Wang Q, Ji W, Xu Z. Current use and development of fish vaccines in China. FISH & SHELLFISH IMMUNOLOGY 2020; 96:223-234. [PMID: 31821845 DOI: 10.1016/j.fsi.2019.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
In the past decades, the aquaculture industry made great progress in China, which contributes more than 70% yield of the world's farmed fish. Along with the rapid growth of fish production, increased emergence and outbreak of numbers of diseases pose harm to the aquaculture industry and food safety. From the efficient, safe, environmental and ethical aspects, vaccines is definitely the most appropriate and focused method to control different kinds of fish diseases. In China, researchers have done huge works on the fish vaccines, and so far six domestic aquatic vaccine products along with one imported aquatic vaccine have obtained the national veterinary medicine certificate. More critically, some new vaccines have also entered the field experiment stage and showed broad market prospects. In the present review, authors summarize seven aquatic vaccines, including the live vaccine against grass carp hemorrhagic disease, the inactivated vaccine against Aeromonas hydrophila sepsis in fish, the live vaccine against Edwardsiella tarda in turbot, the anti-idiotypic antibody vaccine against Vibrio alginolyticus, V. parahaemolyticus, and E. tarda in Japanese flounder, the cell-cultured inactivated vaccine against grass carp hemorrhagic disease, the inactivated vaccine against fish infectious spleen and kidney necrosis virus (ISKNV), and the genetically engineered live vaccine against V. anguillarum in turbot. Moreover, different delivery routes of fish vaccines are also compared in this review, along with differential fish immune response after vaccination. All these efforts will ultimately benefit the healthy and sustainable development of aquaculture industry in China.
Collapse
Affiliation(s)
- Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Ji
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
15
|
Deng X, Zhao X, Liang Y, Zhang L, Jiang J, Zhao G, Zhou Y. Modification of the genome topology network and its application to the comparison of group B Streptococcus genomes. BMC Genomics 2019; 20:886. [PMID: 31752672 PMCID: PMC6868693 DOI: 10.1186/s12864-019-6234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022] Open
Abstract
Background The genome topology network (GTN) is a new approach for studying the phylogenetics of bacterial genomes by analysing their gene order. The previous GTN tool gives a phylogenetic tree and calculate the different degrees (DD) of various adjacent gene families with complete genome data, but it is limited to the gene family level. Result In this study, we collected 51 published complete and draft group B Streptococcus (GBS) genomes from the NCBI database as the case study data. The phylogenetic tree obtained from the GTN method assigned the genomes into six main clades. Compared with single nucleotide polymorphism (SNP)-based method, the GTN method exhibited a higher resolution in two clades. The gene families located at unique node connections in these clades were associated with the clusters of orthologous groups (COG) functional categories of “[G] Carbohydrate transport and metabolism,”, “[L] Replication, recombination, and repair” and “[J] translation, ribosomal structure and biogenesis”. Thus, these genes were the major factors affecting the differentiation of these six clades in the phylogenetic tree obtained from the GTN. Conclusion The modified GTN analyzes draft genomic data and exhibits greater functionality than the previous version. The gene family clustering algorithm embedded in the GTN tool is optimized by introducing the Markov cluster algorithm (MCL) tool to assign genes to functional gene families. A bootstrap test is performed to verify the credibility of the clades when allowing users to adjust the relationships of the clades accordingly. The GTN tool gives additional evolutionary information that is a useful complement to the SNP-based method. Information on the differences in the connections between a gene and its adjacent genes in species or clades is easily obtained. The modified GTN tool can be downloaded from https://github.com/0232/Genome_topology_network
Collapse
Affiliation(s)
- Xiao Deng
- Institutes of Biology and Medical Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Xuechao Zhao
- Institutes of Biology and Medical Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Yuan Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Liang Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Jianping Jiang
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China.
| |
Collapse
|
16
|
Richards VP, Velsko IM, Alam MT, Zadoks RN, Manning SD, Pavinski Bitar PD, Hassler HB, Crestani C, Springer GH, Probert BM, Town CD, Stanhope MJ. Population Gene Introgression and High Genome Plasticity for the Zoonotic Pathogen Streptococcus agalactiae. Mol Biol Evol 2019; 36:2572-2590. [PMID: 31350563 PMCID: PMC6805230 DOI: 10.1093/molbev/msz169] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023] Open
Abstract
The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacterial populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here, we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated 12 major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of 11 populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation.
Collapse
Affiliation(s)
- Vincent P Richards
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Irina M Velsko
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Md Tauqeer Alam
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ruth N Zadoks
- Pentlands Science Park, Moredun Research Institute, Penicuik, United Kingdom
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Hayley B Hassler
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Chiara Crestani
- Pentlands Science Park, Moredun Research Institute, Penicuik, United Kingdom
| | - Garrett H Springer
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Brett M Probert
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | | | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
17
|
Liu Y, Li L, Huang T, Wu W, Liang W, Chen M. The Interaction between Phagocytes and Streptococcus agalactiae (GBS) Mediated by the Activated Complement System is the Key to GBS Inducing Acute Bacterial Meningitis of Tilapia. Animals (Basel) 2019; 9:ani9100818. [PMID: 31623233 PMCID: PMC6826838 DOI: 10.3390/ani9100818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Streptococcus agalactiae (GBS) is a serious threat to farmed tilapia, which results in high mortality and seriously hinders tilapia farming development. The pathogenic mechanism of tilapia infected with GBS which die rapidly in production remains unknown. We provided a comprehensive comparative analysis of the tilapias infected with fish-derived GBS attenuated strain YM001 and its parental virulent strain HN016. The present study indicates that the interaction between phagocytes and GBS mediated by the activated complement system is key to GBS inducing tilapia acute bacterial meningitis. The low survival ability caused by reduced β-lactam antibiotics resistance is one of the important reasons YM001 lost its pathogenicity to tilapia. Our study provided a comprehensive cognition of the mechanism of acute bacterial meningitis caused by GBS. Abstract Streptococcus agalactiae is an important pathogen for tilapia meningitis. Most of the infected tilapia die rapidly in production, when the way to study the pathogenic mechanism of bacteria on host through chronic infection in laboratory is not comprehensive and accurate enough to elucidate the real pathogenic mechanism. The objective of this study was to investigate the mechanism of acute bacterial meningitis of tilapia caused by Streptococcus agalactiae (GBS), and provide a theoretical basis for its prevention and treatment. Duel RNA-seq, proteome analysis, histopathological analysis, plasma biochemical indexes, and blood routine examination were performed on tilapias infected with fish-derived GBS attenuated strain YM001 and its parental virulent strain HN016. The results showed that the contents of white blood cell (WBC), monocytes (MON), and neutrophil (NEU) were significantly lower in the HN016 group compared to that in the YM001 group (p < 0.05). Histopathological examination showed that there were partially lesions in the examined tissues of tilapia infected by HN016, while no obvious histopathological changes occurred in the YM001 group. The differential expressed genes (DEGs) and differential expressed proteins (DEPs) between YM001 and HN016 were mainly enriched in the beta-lactam resistance pathway (oppA1, oppA2, oppB, oppC, oppD, oppF, and mrcA). The DEGs DEPs between YM001-brain and HN016-brain were mainly enriched in the complement and coagulation cascades signaling pathway (C2a, c4b, c3b, c7, CD59, ITGB2, and ITGAX). The present study indicates that the interaction between phagocytes and GBS mediated by the activated complement system is the key to GBS inducing tilapia acute bacterial meningitis. The low survival ability caused by reduced β-lactam antibiotics resistance is one of the important reasons for why YM001 lost its pathogenicity to tilapia.
Collapse
Affiliation(s)
- Yu Liu
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| | - Liping Li
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| | - Ting Huang
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| | - Wende Wu
- Guangxi University, Daxuedong Road NO.100, Nanning 530004, China.
| | - Wanwen Liang
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| | - Ming Chen
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| |
Collapse
|
18
|
Liu Y, Li L, Huang T, Wang R, Liang W, Yang Q, Lei A, Chen M. Comparative multi-omics systems analysis reveal the glycolysis / gluconeogenesis signal pathway play an important role in virulence attenuation in fish-derived GBS YM001. PLoS One 2019; 14:e0221634. [PMID: 31449567 PMCID: PMC6709914 DOI: 10.1371/journal.pone.0221634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023] Open
Abstract
Streptococcus agalactiae(GBS) is a seriously threat to the farmed tilapia, and oral vaccination was considered to be the most desirable means which requires deep understanding of virulence mechanism of the fish-derived GBS. Our previous genome study of the fish-derived attenuated strain YM001 showed that there were two large deletions in YM001 compared to its parental virulent strain HN016. In this study, a combined transcriptomic and proteomic analysis was performed on YM001 and HN016 strains, and the important genes were verified by RT-qPCR in bacteria strains and infected-tilapia tissues. Overall, we have shown that a total of 958 genes and 331 proteins were significantly differential expressed between YM001 and HN016. By functional annotation of these DEGs and DEPs, genes that were enriched in pentose phosphate pathway(pgm, ptsG, pgi pfkA, fbaA and FBP3) and pyruvate metabolism pathway(pdhA, pdhB, pdhC and pdhD) were identifed as important candidate genes for leads low growth ability in attenuated strain, which may be an important reasons leading virulence attenuation in the end. The expression levels the candidate genes in pentose phosphate pathway and pyruvate metabolism pathway were significant differential expressed in tilapia’ brain and spleen when infected with YM001 and HN016. Our study indicated that the pentose phosphate pathway and pyruvate metabolism pathway that affecting the growth of the strain may be one of the important reasons for the virulence attenuation in HN016.
Collapse
Affiliation(s)
- Yu Liu
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Liping Li
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Ting Huang
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Rui Wang
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Wanwen Liang
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Qiong Yang
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Aiying Lei
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Ming Chen
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
- * E-mail:
| |
Collapse
|
19
|
Delamare-Deboutteville J, Kawasaki M, Zoccola E, Heath CM, Bowater RO, Barnes AC. Interactions of head-kidney leucocytes from giant grouper, Epinephelus lanceolatus, with pathogenic Streptococcus agalactiae strains from marine and terrestrial origins. FISH & SHELLFISH IMMUNOLOGY 2019; 90:250-263. [PMID: 31026501 DOI: 10.1016/j.fsi.2019.04.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is emerging as a genetically diverse species infecting farmed and wild fish, including commercially and culturally important groupers. To better understand how S. agalactiae are pathogenic in fish, we investigated interactions between isolates from fish and terrestrial hosts and the cellular immune system of Queensland grouper Epinephelus lanceolatus using flow cytometry. Adherent head-kidney leucocytes (HKL) from Queensland grouper displayed two main cell populations with distinct forward and side scatter by flow cytometry. The population of smaller and less complex cells (P1) was composed of monocytes, lymphocytes and thrombocytes, while the population of primarily larger and more complex cells (P2) comprised predominantly of macrophages and neutrophils. The cells in P2 had higher phagocytic index and capacity when incubated with fluorescent latex beads. HKL were activated by phorbol myristate acetate (PMA) but were unresponsive to lipopolysaccharide (LPS) and peptidoglycan (PTG), suggesting the absence of specific receptors on the surface of these cells for these ligands or a requirement for intermediates. In in vitro phagocytosis assays, all fish isolates of GBS activated a respiratory burst in P2 indicated by significant production of intracellular reactive oxygen species (ROS). Similarly, dog and cat isolates of different serotype and sequence type also induced ROS production in grouper HKL. However, human, crocodile and bovine isolates of GBS did not elicit significant ROS in HKL although they coincided with the highest phagocytic index. This suggests that these strains are capable of quenching ROS production. Terrestrial isolates significantly increased mortality of Queensland grouper leucocytes in vitro, aligned with a more diverse repertoire of cellular toxins in these strains. Opsonisation of a marine strain and terrestrial strain of GBS with antiserum raised against the marine strain resulted in an increase in ROS production by HKL in both cases although there was low antigenic cross reactivity between the two strains by flow cytometry, reflecting their diverse serotypes (Ib vs III). However, pre-incubation of either strain with normal serum from grouper also increased ROS production of HKL suggesting other opsonins may be involved. Based on these results it appears that piscine and terrestrial GBS isolates have contrasting strategies when interacting with the cellular immune system of Queensland grouper; the former seemingly evading phagocytosis, whilst the latter are readily phagocytosed but counteract ROS production.
Collapse
Affiliation(s)
- Jérôme Delamare-Deboutteville
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland, 4072, Australia
| | - Minami Kawasaki
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland, 4072, Australia
| | - Emmanuelle Zoccola
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland, 4072, Australia
| | - Candice M Heath
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland, 4072, Australia
| | - Rachel O Bowater
- Biosecurity Queensland (North Region), Department of Agriculture and Fisheries, Townsville, Queensland, Australia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
20
|
Chen SL. Genomic Insights Into the Distribution and Evolution of Group B Streptococcus. Front Microbiol 2019; 10:1447. [PMID: 31316488 PMCID: PMC6611187 DOI: 10.3389/fmicb.2019.01447] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a bacteria with truly protean biology. It infects a variety of hosts, among which the most commonly studied are humans, cattle, and fish. GBS holds a singular position in the history of bacterial genomics, as it was the substrate used to describe one of the first major conceptual advances of comparative genomics, the idea of the pan-genome. In this review, I describe a brief history of GBS and the major contributions of genomics to understanding its genome plasticity and evolution as well as its molecular epidemiology, focusing on the three hosts mentioned above. I also discuss one of the major recent paradigm shifts in our understanding of GBS evolution and disease burden: foodborne GBS can cause invasive infections in humans.
Collapse
Affiliation(s)
- Swaine L Chen
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Group, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Tavares GC, Pereira FL, Barony GM, Rezende CP, da Silva WM, de Souza GHMF, Verano-Braga T, de Carvalho Azevedo VA, Leal CAG, Figueiredo HCP. Delineation of the pan-proteome of fish-pathogenic Streptococcus agalactiae strains using a label-free shotgun approach. BMC Genomics 2019; 20:11. [PMID: 30616502 PMCID: PMC6323687 DOI: 10.1186/s12864-018-5423-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae (GBS) is a major pathogen of Nile tilapia, a global commodity of the aquaculture sector. The aims of this study were to evaluate protein expression in the main genotypes of GBS isolated from diseased fishes in Brazil using a label-free shotgun nano-liquid chromatography-ultra definition mass spectrometry (nanoLC-UDMSE) approach and to compare the differential abundance of proteins identified in strains isolated from GBS-infected fishes and humans. RESULTS A total of 1070 protein clusters were identified by nanoLC-UDMSE in 5 fish-adapted GBS strains belonging to sequence types ST-260 and ST-927 and the non-typeable (NT) lineage and 1 human GBS strain (ST-23). A total of 1065 protein clusters corresponded to the pan-proteome of fish-adapted GBS strains; 989 of these were identified in all fish-adapted GBS strains (core proteome), and 62 were shared by at least two strains (accessory proteome). Proteins involved in the stress response and in the regulation of gene expression, metabolism and virulence were detected, reflecting the adaptive ability of fish-adapted GBS strains in response to stressor factors that affect bacterial survival in the aquatic environment and bacterial survival and multiplication inside the host cell. Measurement of protein abundance among different hosts showed that 5 and 26 proteins were exclusively found in the human- and fish-adapted GBS strains, respectively; the proteins exclusively identified in fish isolates were mainly related to virulence factors. Furthermore, 215 and 269 proteins were up- and down-regulated, respectively, in the fish-adapted GBS strains in comparison to the human isolate. CONCLUSIONS Our study showed that the core proteome of fish-adapted GBS strains is conserved and demonstrated high similarity of the proteins expressed by fish-adapted strains to the proteome of the human GBS strain. This high degree of proteome conservation of different STs suggests that, a monovalent vaccine may be effective against these variants.
Collapse
Affiliation(s)
- Guilherme Campos Tavares
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Luiz Pereira
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Morais Barony
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiana Perdigão Rezende
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wanderson Marques da Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Augusto Gomes Leal
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique César Pereira Figueiredo
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,School of Veterinary, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| |
Collapse
|
22
|
Genetic Diversity of Streptococcus agalactiae from Multiple Host Species in China. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.73994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Zhang Z, Lan J, Li Y, Hu M, Yu A, Zhang J, Wei S. The pathogenic and antimicrobial characteristics of an emerging Streptococcus agalactiae serotype IX in Tilapia. Microb Pathog 2018; 122:39-45. [DOI: 10.1016/j.micpath.2018.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 10/16/2022]
|
24
|
Microevolution of Streptococcus agalactiae ST-261 from Australia Indicates Dissemination via Imported Tilapia and Ongoing Adaptation to Marine Hosts or Environment. Appl Environ Microbiol 2018; 84:AEM.00859-18. [PMID: 29915111 DOI: 10.1128/aem.00859-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) causes disease in a wide range of animals. The serotype Ib lineage is highly adapted to aquatic hosts, exhibiting substantial genome reduction compared with terrestrial conspecifics. Here, we sequence genomes from 40 GBS isolates, including 25 isolates from wild fish and captive stingrays in Australia, six local veterinary or human clinical isolates, and nine isolates from farmed tilapia in Honduras, and compared them with 42 genomes from public databases. Phylogenetic analysis based on nonrecombinant core-genome single nucleotide polymorphisms (SNPs) indicated that aquatic serotype Ib isolates from Queensland were distantly related to local veterinary and human clinical isolates. In contrast, Australian aquatic isolates are most closely related to a tilapia isolate from Israel, differing by only 63 core-genome SNPs. A consensus minimum spanning tree based on core-genome SNPs indicates the dissemination of sequence type 261 (ST-261) from an ancestral tilapia strain, which is congruent with several introductions of tilapia into Australia from Israel during the 1970s and 1980s. Pangenome analysis identified 1,440 genes as core, with the majority being dispensable or strain specific, with non-protein-coding intergenic regions (IGRs) divided among core and strain-specific genes. Aquatic serotype Ib strains have lost many virulence factors during adaptation, but six adhesins were well conserved across the aquatic isolates and might be critical for virulence in fish and for targets in vaccine development. The close relationship among recent ST-261 isolates from Ghana, the United States, and China with the Israeli tilapia isolate from 1988 implicates the global trade in tilapia seed for aquaculture in the widespread dissemination of serotype Ib fish-adapted GBS.IMPORTANCEStreptococcus agalactiae (GBS) is a significant pathogen of humans and animals. Some lineages have become adapted to particular hosts, and serotype Ib is highly specialized to fish. Here, we show that this lineage is likely to have been distributed widely by the global trade in tilapia for aquaculture, with probable introduction into Australia in the 1970s and subsequent dissemination in wild fish populations. We report here the variability in the polysaccharide capsule among this lineage but identify a cohort of common surface proteins that may be a focus of future vaccine development to reduce the biosecurity risk in international fish trade.
Collapse
|
25
|
Guo Y, Deng X, Liang Y, Zhang L, Zhao GP, Zhou Y. The draft genomes and investigation of serotype distribution, antimicrobial resistance of group B Streptococcus strains isolated from urine in Suzhou, China. Ann Clin Microbiol Antimicrob 2018; 17:28. [PMID: 29945615 PMCID: PMC6020191 DOI: 10.1186/s12941-018-0280-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The group B Streptococcus (GBS) is a human commensal bacterium, which is capable of causing several infectious diseases in infants, and people with chronic diseases. GBS has been the most common cause of infections in urinary tract of the elders, but relatively few studies reported the urine-isolated GBS and their antimicrobial susceptibilities. Hence, we decided to investigate GBS specially isolated from urine in Suzhou, China. METHODS 27 GBS samples were isolated from urine in Suzhou, China. The PCR and agarose gel electrophoresis were used to identify the serotype distribution. Susceptibility tests were based on MIC test and Kirby-Bauer test. Genome were sequenced via Illumina Hiseq platform and assembled by SPAdes. Genomes of five isolates were sequenced and submitted to NCBI genome database. The sequencing files in fastq format were submitted to NCBI SRA database. RESULTS Five serotypes were identified. The resistant rates measured for tetracycline, erythromycin, clindamycin and fluoroquinolones were 74.1, 63.0, 44.4 and 48.1%, respectively. 18.5% of the isolates were nonsusceptible to nitrofurantoin. The resistance to tetracycline was mainly associated with the gene tetM. The erythromycin resistance was mainly associated with the genes ermB and mefE. The genes ermB and lnuB were the prevalent genes in cMLSB type. No known nitrofurantoin resistance gene was found in nitrofurantoin-nonsusceptible GBS. CONCLUSIONS Five serotypes were identified in our study. High rates of GBS isolates were resistant to tetracycline, erythromycin, clindamycin and fluoroquinolones. The genes ermB and lnuB occupied high rates in cMLSB phenotype.
Collapse
Affiliation(s)
- Yong Guo
- Institutes of Biology and Medical Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Xiao Deng
- Institutes of Biology and Medical Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Yuan Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Liang Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Guo-Ping Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China.
| |
Collapse
|
26
|
Jin T, Brefo-Mensah E, Fan W, Zeng W, Li Y, Zhang Y, Palmer M. Crystal structure of the Streptococcus agalactiae CAMP factor provides insights into its membrane-permeabilizing activity. J Biol Chem 2018; 293:11867-11877. [PMID: 29884770 DOI: 10.1074/jbc.ra118.002336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/30/2018] [Indexed: 11/06/2022] Open
Abstract
Streptococcus agalactiae is an important human opportunistic pathogen that can cause serious health problems, particularly among newborns and older individuals. S. agalactiae contains the CAMP factor, a pore-forming toxin first identified in this bacterium. The CAMP reaction is based on the co-hemolytic activity of the CAMP factor and is commonly used to identify S. agalactiae in the clinic. Closely related proteins are present also in other Gram-positive pathogens. Although the CAMP toxin was discovered more than a half century ago, no structure from this toxin family has been reported, and the mechanism of action of this toxin remains unclear. Here, we report the first structure of this toxin family, revealing a structural fold composed of 5 + 3-helix bundles. Further analysis by protein truncation and site-directed mutagenesis indicated that the N-terminal 5-helix bundle is responsible for membrane permeabilization, whereas the C-terminal 3-helix bundle is likely responsible for host receptor binding. Interestingly, the C-terminal domain inhibited the activity of both full-length toxin and its N-terminal domain. Moreover, we observed that the linker region is highly conserved and has a conserved DLXXXDXAT sequence motif. Structurally, this linker region extensively interacted with both terminal CAMP factor domains, and mutagenesis disclosed that the conserved sequence motif is required for CAMP factor's co-hemolytic activity. In conclusion, our results reveal a unique structure of this bacterial toxin and help clarify the molecular mechanism of its co-hemolytic activity.
Collapse
Affiliation(s)
- Tengchuan Jin
- From the Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China,
| | - Eric Brefo-Mensah
- the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Weirong Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai 201400, China, and
| | - Weihong Zeng
- From the Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yajuan Li
- From the Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuzhu Zhang
- the Healthy Processed Foods Research Unit, United States Department of Agriculture Agricultural Research Service, Western Regional Research Center, Albany, California 94706
| | - Michael Palmer
- the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
27
|
Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution. PLoS One 2018; 13:e0195994. [PMID: 29694430 PMCID: PMC5919020 DOI: 10.1371/journal.pone.0195994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022] Open
Abstract
Zymomonas mobilis has the special Entner-Doudoroff (ED) pathway and it has excellent industrial characteristics, including low cell mass formation, high-specific productivity,ethanol yield, notable ethanol tolerance and wide pH range, a relatively small genome size. In this study, the genome sequences of NRRL B-14023 and NRRL B-12526 were sequenced and compared with other strains to explore their evolutionary relationships and the genetic basis of Z. mobilis. The comparative genomic analyses revealed that the 8 strains share a conserved core chromosomal backbone. ZM4, NRRL B-12526, NRRL B-14023, NCIMB 11163 and NRRL B-1960 share 98% sequence identity across the whole genome sequences. Highly similar plasmids and CRISPR repeats were detected in these strains. A whole-genome phylogenetic tree of the 8 strains indicated that NRRL B-12526, NRRL B-14023 and ATCC 10988 had a close evolutionary relationship with the strain ZM4. Furthermore, strains ATCC29191 and ATCC29192 had distinctive CRISPR with a far distant relationship. The size of the pan-genome was 1945 genes, including 1428 core genes and 517 accessory genes. The genomes of Z. mobilis were highly conserved; particularly strains ZM4, NRRL B-12526, NRRL B-14023, NCIMB 11163 and NRRL B-1960 had a close genomic relationship. This comparative study of Z. mobilis presents a foundation for future functional analyses and applications.
Collapse
|
28
|
Botelho ACN, Ferreira AFM, Fracalanzza SEL, Teixeira LM, Pinto TCA. A Perspective on the Potential Zoonotic Role of Streptococcus agalactiae: Searching for a Missing Link in Alternative Transmission Routes. Front Microbiol 2018; 9:608. [PMID: 29643850 PMCID: PMC5882794 DOI: 10.3389/fmicb.2018.00608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/15/2018] [Indexed: 01/03/2023] Open
Affiliation(s)
| | | | | | | | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Li L, Wang R, Huang Y, Huang T, Luo F, Huang W, Yang X, Lei A, Chen M, Gan X. High Incidence of Pathogenic Streptococcus agalactiae ST485 Strain in Pregnant/Puerperal Women and Isolation of Hyper-Virulent Human CC67 Strain. Front Microbiol 2018; 9:50. [PMID: 29467722 PMCID: PMC5808242 DOI: 10.3389/fmicb.2018.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/10/2018] [Indexed: 01/02/2023] Open
Abstract
Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia.
Collapse
Affiliation(s)
- Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China.,Bacteria Laboratory, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China.,Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yan Huang
- Bacteria Laboratory, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Fuguang Luo
- Liuzhou's Aquaculture Technology Extending Station, Liuzhou, China
| | - Weiyi Huang
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiuying Yang
- School of Public Health, National Medical College of Right Rivers, Baise, China
| | - Aiying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China.,Bacteria Laboratory, Guangxi Center for Disease Control and Prevention, Nanning, China.,Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xi Gan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| |
Collapse
|
30
|
Ip M, Ang I, Fung K, Liyanapathirana V, Luo MJ, Lai R. Hypervirulent Clone of Group B Streptococcus Serotype III Sequence Type 283, Hong Kong, 1993-2012. Emerg Infect Dis 2018; 22:1800-3. [PMID: 27648702 PMCID: PMC5038432 DOI: 10.3201/eid2210.151436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We describe a hypervirulent clone of group B Streptococcus serotype III, subtype 4, sequence type 283, that caused invasive disease with a predilection for meningitis in Hong Kong during 1993–2012. The organism is associated with high mortality and increased summer prevalence and is linked to diseased fish from freshwater fish farms.
Collapse
|
31
|
Kayansamruaj P, Pirarat N, Katagiri T, Hirono I, Rodkhum C. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia ( Oreochromis sp.) farms in Thailand. J Vet Diagn Invest 2018; 26:488-495. [PMID: 24842288 DOI: 10.1177/1040638714534237] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus spp. were recovered from diseased tilapia in Thailand during 2009-2010 ( n = 33), and were also continually collected from environmental samples (sediment and water) from tilapia farms for 9 months in 2011 ( n = 25). The relative percent recovery of streptococci from environmental samples was 13-67%. All streptococcal isolates were identified as S. agalactiae (group B streptococci [GBS]) by a species-specific polymerase chain reaction. In molecular characterization assays, 4 genotypic categories comprised of 1) molecular serotypes, 2) the infB allele, 3) virulence gene profiling patterns ( cylE, hylB, scpB, lmb, cspA, dltA, fbsA, fbsB, bibA, gap, and pili backbone-encoded genes), and 4) randomly amplified polymorphic DNA (RAPD) fingerprinting patterns, were used to describe the genotypic diversity of the GBS isolates. There was only 1 isolate identified as molecular serotype III, while the others were serotype Ia. Most GBS serotype Ia isolates had an identical infB allele and virulence gene profiling patterns, but a large diversity was established by RAPD analysis with diversity tending to be geographically dependent. Experimental infection of Nile tilapia ( Oreochromis niloticus) revealed that the GBS serotype III isolate was nonpathogenic in the fish, while all 5 serotype Ia isolates (3 fish and 2 environmental isolates) were pathogenic, with a median lethal dose of 6.25-7.56 log10 colony-forming units. In conclusion, GBS isolates from tilapia farms in Thailand showed a large genetic diversity, which was associated with the geographical origins of the bacteria.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Departments of Veterinary Microbiology (Kayansamruaj, Rodkhum) Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Departments of Veterinary Pathology (Pirarat), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Laboratories of Fish Health Management (Katagiri) Tokyo University of Marine Science and Technology, Tokyo, Japan.,Laboratories of Genome Science (Hirono), Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Nopadon Pirarat
- Departments of Veterinary Microbiology (Kayansamruaj, Rodkhum) Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Departments of Veterinary Pathology (Pirarat), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Laboratories of Fish Health Management (Katagiri) Tokyo University of Marine Science and Technology, Tokyo, Japan.,Laboratories of Genome Science (Hirono), Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Takayuki Katagiri
- Departments of Veterinary Microbiology (Kayansamruaj, Rodkhum) Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Departments of Veterinary Pathology (Pirarat), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Laboratories of Fish Health Management (Katagiri) Tokyo University of Marine Science and Technology, Tokyo, Japan.,Laboratories of Genome Science (Hirono), Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Departments of Veterinary Microbiology (Kayansamruaj, Rodkhum) Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Departments of Veterinary Pathology (Pirarat), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Laboratories of Fish Health Management (Katagiri) Tokyo University of Marine Science and Technology, Tokyo, Japan.,Laboratories of Genome Science (Hirono), Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Channarong Rodkhum
- Departments of Veterinary Microbiology (Kayansamruaj, Rodkhum) Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Departments of Veterinary Pathology (Pirarat), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Laboratories of Fish Health Management (Katagiri) Tokyo University of Marine Science and Technology, Tokyo, Japan.,Laboratories of Genome Science (Hirono), Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
32
|
Bodi Winn C, Bakthavatchalu V, Esmail MY, Feng Y, Dzink-Fox J, Richey L, Perkins SE, Nordberg EK, Fox JG. Isolation and molecular characterization of group B Streptococcus from laboratory Long-Evans rats ( Rattus norvegicus) with and without invasive group B streptococcal disease. J Med Microbiol 2018; 67:97-109. [PMID: 29160197 DOI: 10.1099/jmm.0.000627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose. Group B Streptococcus (S. agalactiae, GBS) is a Gram-positive opportunistic pathogen that inhabits the respiratory, urogenital and gastrointestinal tracts of humans and animals. Maternal colonization of GBS is a risk factor for a spectrum of clinical diseases in humans and a principle cause of neonatal meningitis and septicaemia.Methodology. We describe polymicrobial sepsis including GBS in two gravid adult female Long-Evans rats experiencing acute mortality from a colony of long-term breeding pairs. Fluorescent in situ hybridization confirmed GBS association with pathological changes in affected tissues, including the heart and uterus.Results. Characterization of seven GBS strains obtained from clinically affected and non-affected animals indicated similar antibiotic resistance and susceptibility patterns to that of human strains of GBS. The rat strains have virulence factors known to contribute to pathogenicity, and shared serotypes with human invasive isolates. Phylogenetic analyses revealed that one rat-derived GBS strain was more closely related to human-derived strains than other rat-derived strains, strengthening the notion that interspecies transmission is possible.Conclusions. To our knowledge, this is the first investigation of genotypic and phenotypic features of rat-derived GBS strains and their comparison to human- and other animal-derived GBS strains. Since GBS commonly colonizes commercially available rats, its exclusion as a potential pathogen for immunocompromised or stressed animals is recommended.
Collapse
Affiliation(s)
- Caroline Bodi Winn
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michael Y Esmail
- Division of Laboratory Animal Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren Richey
- Division of Laboratory Animal Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Scott E Perkins
- Division of Laboratory Animal Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Eric K Nordberg
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Lin HC, Lu JJ, Lin LC, Ho CM, Hwang KP, Liu YC, Chen CJ. Identification of a proteomic biomarker associated with invasive ST1, serotype VI Group B Streptococcus by MALDI-TOF MS. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 52:81-89. [PMID: 29317173 DOI: 10.1016/j.jmii.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Group B Streptococcus (GBS) is an important invasive pathogen in neonates, pregnant women and the elderly. Serotype VI GBS, which has been rarely reported globally, has emerged as a significant pathogen in Asia. However, traditional serologic latex agglutination (LA) methods may fail to type isolates that lack of or low expression of CPS. METHODS A total of 104 GBS strains were analyzed by MALDI-TOF MS. Multiplex PCR and multilocus sequence typing (MLST) were also performed to confirm their strains. The protein markers were purified with gel electrophoresis and LC-column, followed by identification with nanoLC-MS/MS analysis. RESULTS Protein peak of 6251-Da was appeared in most (20/24, 92%) serotypes VI (94% ST-1 or single locus variant of ST-1), and protein peak of 6891-Da was appeared in most serotypes III (15/18, 83%) and Ib (19/23, 83%) strains. The protein peak of 6251-Da and 6891-Da were identified as CsbD family protein and UPF0337 protein gbs0600, respectively. CONCLUSIONS The protein peak of 6251 Da may play a role of emergence of ST-1 clone, serotype VI GBS in central Taiwan and could be useful in rapid identifying invasive serotype VI from III isolates, which is hardly achieved by LA.
Collapse
Affiliation(s)
- Hsiao-Chuan Lin
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Pediatric Infectious Diseases, China Medical University Children's Hospital, Taichung, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang-Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Mao Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kao-Pin Hwang
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Pediatric Infectious Diseases, China Medical University Children's Hospital, Taichung, Taiwan
| | - Yu-Ching Liu
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
34
|
Large-scale genomic analyses reveal the population structure and evolutionary trends of Streptococcus agalactiae strains in Brazilian fish farms. Sci Rep 2017; 7:13538. [PMID: 29051505 PMCID: PMC5648781 DOI: 10.1038/s41598-017-13228-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Streptococcus agalactiae is a major pathogen and a hindrance on tilapia farming worldwide. The aims of this work were to analyze the genomic evolution of Brazilian strains of S. agalactiae and to establish spatial and temporal relations between strains isolated from different outbreaks of streptococcosis. A total of 39 strains were obtained from outbreaks and their whole genomes were sequenced and annotated for comparative analysis of multilocus sequence typing, genomic similarity and whole genome multilocus sequence typing (wgMLST). The Brazilian strains presented two sequence types, including a newly described ST, and a non-typeable lineage. The use of wgMLST could differentiate each strain in a single clone and was used to establish temporal and geographical correlations among strains. Bayesian phylogenomic analysis suggests that the studied Brazilian population was co-introduced in the country with their host, approximately 60 years ago. Brazilian strains of S. agalactiae were shown to be heterogeneous in their genome sequences and were distributed in different regions of the country according to their genotype, which allowed the use of wgMLST analysis to track each outbreak event individually.
Collapse
|
35
|
Luo S, Cao Q, Ma K, Wang Z, Liu G, Lu C, Liu Y. Quantitative assessment of the blood-brain barrier opening caused by Streptococcus agalactiae hyaluronidase in a BALB/c mouse model. Sci Rep 2017; 7:13529. [PMID: 29051603 PMCID: PMC5648924 DOI: 10.1038/s41598-017-13234-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Streptococcus agalactiae is a pathogen causing meningitis in animals and humans. However, little is known about the entry of S. agalactiae into brain tissue. In this study, we developed a BALB/c mouse model based on the intravenous injection of β-galactosidase-positive Escherichia coli M5 as an indicator of blood-brain barrier (BBB) opening. Under physiological conditions, the BBB is impermeable to E. coli M5. In pathological conditions caused by S. agalactiae, E. coli M5 is capable of penetrating the brain through a disrupted BBB. The level of BBB opening can be assessed by quantitative measurement of E. coli M5 loads per gram of brain tissue. Further, we used the model to evaluate the role of S. agalactiae hyaluronidase in BBB opening. The inactivation of hylB gene encoding a hyaluronidase, HylB, resulted in significantly decreased E. coli M5 colonization, and the intravenous injection of purified HylB protein induced BBB opening in a dose-dependent manner. This finding verified the direct role of HylB in BBB invasion and traversal, and further demonstrated the practicability of the in vivo mouse model established in this study. This model will help to understand the S. agalactiae-host interactions that are involved in this bacterial traversal of the BBB and to develop efficacious strategies to prevent central nervous system infections.
Collapse
Affiliation(s)
- Su Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Cao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaofei Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
36
|
Wang R, Li L, Huang Y, Huang T, Tang J, Xie T, Lei A, Luo F, Li J, Huang Y, Shi Y, Wang D, Chen M, Mi Q, Huang W. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates. Front Microbiol 2017; 8:1933. [PMID: 29056932 PMCID: PMC5635047 DOI: 10.3389/fmicb.2017.01933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China.,Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Yin Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Jiayou Tang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Ting Xie
- Hechi Center for Animal Disease Control and Prevention, Hechi, China
| | - Aiying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Fuguang Luo
- Aquatic Animal Disease Pevention and Control Laboratory, Liuzhou's Aquaculture Technology Extending Station, Liuzhou, China
| | - Jian Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Huang
- Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Yunliang Shi
- Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Dongying Wang
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Qiang Mi
- Aquaculture Laboratory, Guangxi Aquaculture and Animal Husbandry School, Nanning, China
| | - Weiyi Huang
- Guangxi Center for Disease Control and Prevention, Nanning, China
| |
Collapse
|
37
|
Chong SM, Wong WK, Lee WY, Tan ZB, Tay YH, Teo XH, Chee LD, Fernandez CJ. Streptococcus agalactiae outbreaks in cultured golden pomfret, Trachinotus blochii (Lacépède), in Singapore. JOURNAL OF FISH DISEASES 2017; 40:971-974. [PMID: 28000924 DOI: 10.1111/jfd.12570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Affiliation(s)
- S M Chong
- Aquatic Animal Health Laboratory, Animal Health Laboratory, Laboratories Group, Animal & Plant Health Centre, The Agri-Food & Veterinary Authority of Singapore (AVA), Singapore City, Singapore
| | - W K Wong
- Bacteriology Laboratory, Animal Health Laboratory, Laboratories Group, Animal & Plant Health Centre, The Agri-Food & Veterinary Authority of Singapore (AVA), Singapore City, Singapore
| | - W Y Lee
- Bacteriology Laboratory, Animal Health Laboratory, Laboratories Group, Animal & Plant Health Centre, The Agri-Food & Veterinary Authority of Singapore (AVA), Singapore City, Singapore
| | - Z B Tan
- Bacteriology Laboratory, Animal Health Laboratory, Laboratories Group, Animal & Plant Health Centre, The Agri-Food & Veterinary Authority of Singapore (AVA), Singapore City, Singapore
| | - Y H Tay
- Bacteriology Laboratory, Animal Health Laboratory, Laboratories Group, Animal & Plant Health Centre, The Agri-Food & Veterinary Authority of Singapore (AVA), Singapore City, Singapore
| | - X H Teo
- Aquatic Animal Health Laboratory, Animal Health Laboratory, Laboratories Group, Animal & Plant Health Centre, The Agri-Food & Veterinary Authority of Singapore (AVA), Singapore City, Singapore
| | - L D Chee
- Aquatic Animal Health Laboratory, Animal Health Laboratory, Laboratories Group, Animal & Plant Health Centre, The Agri-Food & Veterinary Authority of Singapore (AVA), Singapore City, Singapore
| | - C J Fernandez
- Aquatic Animal Health Laboratory, Animal Health Laboratory, Laboratories Group, Animal & Plant Health Centre, The Agri-Food & Veterinary Authority of Singapore (AVA), Singapore City, Singapore
| |
Collapse
|
38
|
Wang R, Li LP, Huang T, Lei AY, Huang Y, Luo FG, Wang DY, Huang WY, Chen M, Huang J. Genomic comparison of virulent and non-virulent serotype V ST1 Streptococcus agalactiae in fish. Vet Microbiol 2017; 207:164-169. [PMID: 28757019 DOI: 10.1016/j.vetmic.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 02/05/2023]
Abstract
Streptococcus agalactiae or Group B Streptococcus (GBS) is the major pathogen causing pneumonia and meningitis in human, mastitis in dairy cows, and streptococcal disease in tilapia. Previous studies have shown that fish GBS strains are correlated with human GBS strains in evolution and might have cross-host infection ability. Although the invasive disease caused by ST1 GBS in non-pregnant adults and cows is increasing worldwide, infection of fish by ST1 GBS has not been reported. The aim of this study was to determine whether ST1 GBS was virulent in fish and to investigate the genomic characteristics of ST1 GBS strains with different pathogenicity in tilapia. The human-derived serotype V ST1 GBS strains NNA048 and NNA038 were used to intraperitoneally challenge Nile tilapia (Oreochromis niloticus) with doses of 1.0×109CFU/fish, 1.0×107CFU/fish, and 1.0×105CFU/fish, respectively. The cumulative mortality rates of NNA048 infection at three different doses were 100.00%, 83.33%, and 40.00%. In contrast, there were no any sick or dead fish in NNA038 infection group. Histopathological results indicated that challenge of tilapia with NNA048 caused different degree of degeneration and necrosis in brain, liver, spleen, head kidney, and gut, and a large number of blue-stained Streptococcus granules were observed in the tissues. In contrast, there were no any lesions in the tissues of tilapia that were challenged with NNA038. Genome comparison showed that the major genome differences between NNA048 and NNA038 were attributed to the different phage sequences, and there was a 49.8kb length, intact phage sequence encoding 68 proteins in NNA048 genome. SNV and Indels analysis between NNA038 and NNA048 genomes indicated that there were a total of 96 SNVs, 5 deletions and 1 insert. Taken together, serotype V ST1 GBS was comprised of virulent and nonvirulent strains to tilapia, and gene rearrangement might be the main reason of causing different levels of virulence between strains.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning 530021, China
| | - Li-Ping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning 530021, China
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning 530021, China
| | - Ai-Ying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning 530021, China
| | - Yan Huang
- Guangxi Center for Disease Control and Prevention, Nanning 530021, China
| | - Fu-Guang Luo
- Liuzhou's Aquaculture Technology Extending Station, Liuzhou 545006, China
| | - Dong-Ying Wang
- Institute of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Wei-Yi Huang
- Institute of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning 530021, China.
| | - Jun Huang
- Institute of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
39
|
Cai X, Wang B, Peng Y, Li Y, Lu Y, Huang Y, Jian J, Wu Z. Construction of a Streptococcus agalactiae phoB mutant and evaluation of its potential as an attenuated modified live vaccine in golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:405-416. [PMID: 27884809 DOI: 10.1016/j.fsi.2016.11.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Streptococcus agalactiae is a Gram-positive pathogen that can survive inside professional phagocytes and nonphagocytic cells to cause septicemia and meningoencephalitis in freshwater and marine fish. However, vaccines based on extracellular products (ECP) and formalin-killed whole S. agalactiae cells, as well as subunit vaccine are unable to protect fish from infection by variant serotypes S. agalactiae. The search for live attenuated vaccine with highly conserved and virulent-related genes is essential for producing a vaccine to help understand and control streptococcosis In this study, the phoB gene was cloned from pathogenic S. agalactiae TOS01 strain and the mutant strain SAΔphoB was constructed via allelic exchange mutagenesis. The results showed that the deduced amino acid of S. agalactiae TOS01 shares high similarities with other Streptococcus spp. and has high conserved response regulator receiver domain (REC) and DNA-binding effector domain of two-component system response regulators (Trans_reg_C). Cell adherence and invasion assays, challenge experiments and histopathological changes post-vaccination were performed and observed, the results showed that the mutant strain SAΔphoB has a lower adherence and invasion rate and less virulent than the wild type strain in golden pompano, and it doesn't induce clinical symptoms and obvious pathological changes in golden pompano, thereby indicating that the deletion of phoB affects the virulence and infectious capacity of S. agalactiae. Golden pompano vaccinated via intraperitoneal injection SAΔphoB had the relative percent survival value of 93.1% after challenge with TOS01, demonstrating its high potential as an effective attenuated live vaccine candidate. Real-time PCR assays showed that the SAΔphoB was able to enhance the expression of immune-related genes, including MHC-I, MyD88, IL-22 and IL-10 after vaccination, indicating that the SAΔphoB is able to induce humoral and cell-mediated immune response in golden pompano over a long period of time.
Collapse
Affiliation(s)
- Xiaohui Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yinhui Peng
- Guangxi Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, 536000, China
| | - Yuan Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| |
Collapse
|
40
|
Draft Genome Sequence of an Attenuated Streptococcus agalactiae Strain Isolated from the Gut of a Nile Tilapia ( Oreochromis niloticus). GENOME ANNOUNCEMENTS 2017; 5:5/6/e01627-16. [PMID: 28183773 PMCID: PMC5331513 DOI: 10.1128/genomea.01627-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus agalactiae is a pathogen that causes severe anthropozoonosis within a broad range of hosts from aquatic animals to mammals, including human beings. Here, we describe the draft genome of S. agalactiae HZAUSC001, a low-virulent strain isolated from the gut of a moribund tilapia (Oreochromis niloticus) in China.
Collapse
|
41
|
Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens. Front Microbiol 2017; 8:121. [PMID: 28217117 PMCID: PMC5290457 DOI: 10.3389/fmicb.2017.00121] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools.
Collapse
Affiliation(s)
- Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | | | - Kerry L Bartie
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College LondonLondon, UK; The Centre for Genomic Pathogen Surveillance, Wellcome Genome CampusCambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Alexandra Adams
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| |
Collapse
|
42
|
The genome of serotype VI Streptococcus agalactiae serotype VI and comparative analysis. Gene 2017; 597:59-65. [DOI: 10.1016/j.gene.2016.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 01/21/2023]
|
43
|
Complete Genome Sequence of Streptococcus agalactiae Strain S25 Isolated from Peritoneal Liquid of Nile Tilapia. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00784-16. [PMID: 27491974 PMCID: PMC4974326 DOI: 10.1128/genomea.00784-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus agalactiae (Lancefield group B; GBS) is one of the major pathogens in fish production, especially in Nile tilapia (Oreochromis niloticus). The genomic characteristics of GBS isolated from fish must be more explored. Thus, we present here the genome of GBS S25, isolated from Nile tilapia from Brazil.
Collapse
|
44
|
Chu C, Huang PY, Chen HM, Wang YH, Tsai IA, Lu CC, Chen CC. Genetic and pathogenic difference between Streptococcus agalactiae serotype Ia fish and human isolates. BMC Microbiol 2016; 16:175. [PMID: 27484120 PMCID: PMC4971743 DOI: 10.1186/s12866-016-0794-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/29/2016] [Indexed: 11/19/2022] Open
Abstract
Background Streptococcus agalactiae (GBS) is a common pathogen to infect newborn, woman, the elderly, and immuno-compromised human and fish. 37 fish isolates and 554 human isolates of the GBS in 2007–2012 were investigated in serotypes, antibiotic susceptibility, genetic difference and pathogenicity to tilapia. Results PCR serotyping determined serotype Ia for all fish GBS isolates and only in 3.2 % (3–4.2 %) human isolates. For fish isolates, all consisted a plasmid less than 6 kb and belonged to ST7 type, which includes mainly pulsotypes I and Ia, with a difference in a deletion at the largest DNA fragment. These fish isolates were susceptible to all antimicrobials tested in 2007 and increased in non-susceptibility to penicillin, and resistance to clindamycin and ceftriaxone in 2011. Differing in pulsotype and lacking plasmid from fish isolates, human serotype Ia isolates were separated into eight pulsotypes II–IX. Main clone ST23 included pulsotypes II and IIa (50 %) and ST483 consisted of pulsotype III. Human serotype Ia isolates were all susceptible to ceftriaxone and penicillin and few were resistant to erythromycin, azithromycin, clindamycin, levofloxacin and moxifloxacine with the resistant rate of 20 % or less. Using tilapia to analyze the pathogenesis, fish isolates could cause more severe symptoms, including hemorrhage of the pectoral fin, hemorrhage of the gill, and viscous black and common scites, and mortality (>95 % for pulsotype I) than the human isolates (<30 %); however, the fish pulostype Ia isolate 912 with deletion caused less symptoms and the lowest mortality (<50 %) than pulsotype I isolates. Conclusion Genetic, pathogenic, and antimicrobial differences demonstrate diverse origin of human and fish serotype Ia isolates. The pulsotype Ia of fish serotype Ia isolates may be used as vaccine strains to prevent the GBS infection in fish. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0794-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chishih Chu
- Department of Microbiology, Immunology, and Biopharmaceutics, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Pei-Yu Huang
- Department of Aquatic Biosciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Hung-Ming Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
| | - Ying-Hsiang Wang
- Department of Pediatrics, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
| | - I-An Tsai
- Department of Aquatic Biosciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Chih-Cheng Lu
- Department of Microbiology, Immunology, and Biopharmaceutics, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Che-Chun Chen
- Department of Aquatic Biosciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC.
| |
Collapse
|
45
|
Draft Genome Sequences of Streptococcus agalactiae Serotype Ia and III Isolates from Tilapia Farms in Thailand. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00122-16. [PMID: 27013037 PMCID: PMC4807226 DOI: 10.1128/genomea.00122-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus agalactiaeserotypes Ia and III were isolated from infected tilapia in cage and pond culture farms in Thailand during 2012 to 2014, in which pathogenicity analysis demonstrated that serotype III showed higher virulence than serotype Ia. Here, we report the draft genome sequencing of piscineS. agalactiaeserotypes Ia and III.
Collapse
|
46
|
Delannoy CMJ, Zadoks RN, Crumlish M, Rodgers D, Lainson FA, Ferguson HW, Turnbull J, Fontaine MC. Genomic comparison of virulent and non-virulent Streptococcus agalactiae in fish. JOURNAL OF FISH DISEASES 2016; 39:13-29. [PMID: 25399660 DOI: 10.1111/jfd.12319] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 06/04/2023]
Abstract
Streptococcus agalactiae infections in fish are predominantly caused by beta-haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non-haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of S. agalactiae. Intraperitoneal challenge of Nile tilapia, Oreochromis niloticus (Linnaeus), showed that ST260 is lethal at doses down to 10(2) cfu per fish, whereas ST23 does not cause disease at 10(7) cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of S. agalactiae that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR-based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish-derived strains. Several fish-associated genes encode proteins that potentially provide fitness in the aquatic environment.
Collapse
Affiliation(s)
- C M J Delannoy
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - R N Zadoks
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - M Crumlish
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - D Rodgers
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - F A Lainson
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - H W Ferguson
- School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - J Turnbull
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - M C Fontaine
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| |
Collapse
|
47
|
Zhang L, Zeng Z, Hu C, Bellis SL, Yang W, Su Y, Zhang X, Wu Y. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials 2016; 77:307-19. [DOI: 10.1016/j.biomaterials.2015.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
|
48
|
Wang R, Li L, Huang Y, Luo F, Liang W, Gan X, Huang T, Lei A, Chen M, Chen L. Comparative genome analysis identifies two large deletions in the genome of highly-passaged attenuated Streptococcus agalactiae strain YM001 compared to the parental pathogenic strain HN016. BMC Genomics 2015; 16:897. [PMID: 26537657 PMCID: PMC4634907 DOI: 10.1186/s12864-015-2026-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background Streptococcus agalactiae (S. agalactiae), also known as group B Streptococcus (GBS), is an important pathogen for neonatal pneumonia, meningitis, bovine mastitis, and fish meningoencephalitis. The global outbreaks of Streptococcus disease in tilapia cause huge economic losses and threaten human food hygiene safety as well. To investigate the mechanism of S. agalactiae pathogenesis in tilapia and develop attenuated S. agalactiae vaccine, this study sequenced and comparatively analyzed the whole genomes of virulent wild-type S. agalactiae strain HN016 and its highly-passaged attenuated strain YM001 derived from tilapia. Methods We performed Illumina sequencing of DNA prepared from strain HN016 and YM001. Sequencedreads were assembled and nucleotide comparisons, single nucleotide polymorphism (SNP) , indels were analyzed between the draft genomes of HN016 and YM001. Clustered regularly interspaced short palindromic repeats (CRISPRs) and prophage were detected and analyzed in different S. agalactiae strains. Results The genome of S. agalactiae YM001 was 2,047,957 bp with a GC content of 35.61 %; it contained 2044 genes and 88 RNAs. Meanwhile, the genome of S. agalactiae HN016 was 2,064,722 bp with a GC content of 35.66 %; it had 2063 genes and 101 RNAs. Comparative genome analysis indicated that compared with HN016, YM001 genome had two significant large deletions, at the sizes of 5832 and 11,116 bp respectively, resulting in the deletion of three rRNA and ten tRNA genes, as well as the deletion and functional damage of ten genes related to metabolism, transport, growth, anti-stress, etc. Besides these two large deletions, other ten deletions and 28 single nucleotide variations (SNVs) were also identified, mainly affecting the metabolism- and growth-related genes. Conclusions The genome of attenuated S. agalactiae YM001 showed significant variations, resulting in the deletion of 10 functional genes, compared to the parental pathogenic strain HN016. The deleted and mutated functional genes all encode metabolism- and growth-related proteins, not the known virulence proteins, indicating that the metabolism- and growth-related genes are important for the pathogenesis of S. agalactiae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2026-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Yan Huang
- Guangxi Center for Disease Control and Prevention, Nanning, 530028, People's Republic of China.
| | - Fuguang Luo
- Liuzhou's Aquaculture Technology Extending Station, Liuzhou, 545006, People's Republic of China.
| | - Wanwen Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Xi Gan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Aiying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
49
|
Kayansamruaj P, Pirarat N, Kondo H, Hirono I, Rodkhum C. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains. INFECTION GENETICS AND EVOLUTION 2015; 36:307-314. [PMID: 26455417 DOI: 10.1016/j.meegid.2015.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022]
Abstract
Streptococcus agalactiae, or Group B streptococcus (GBS), is a highly virulent pathogen in aquatic animals, causing huge mortalities worldwide. In Thailand, the serotype Ia, β-hemolytic GBS, belonging to sequence type (ST) 7 of clonal complex (CC) 7, was found to be the major cause of streptococcosis outbreaks in fish farms. In this study, we performed an in silico genomic comparison, aiming to investigate the phylogenetic relationship between the pathogenic fish strains of Thai ST7 and other ST7 from different hosts and geographical origins. In general, the genomes of Thai ST7 strains are closely related to other fish ST7s, as the core genome is shared by 92-95% of any individual fish ST7 genome. Among the fish ST7 genomes, we observed only small dissimilarities, based on the analysis of clustered regularly interspaced short palindromic repeats (CRISPRs), surface protein markers, insertions sequence (IS) elements and putative virulence genes. The phylogenetic tree based on single nucleotide polymorphisms (SNPs) of the core genome sequences clearly categorized the ST7 strains according to their geographical and host origins, with the human ST7 being genetically distant from other fish ST7 strains. A pan-genome analysis of ST7 strains detected a 48-kb gene island specifically in the Thai ST7 isolates. The orientations and predicted amino acid sequences of the genes in the island closely matched those of Tn5252, a streptococcal conjugative transposon, in GBS 2603V/R serotype V, Streptococcus pneumoniae and Streptococcus suis. Thus, it was presumed that Thai ST7 acquired this Tn5252 homologue from related streptococci. The close phylogenetic relationship between the fish ST7 strains suggests that these strains were derived from a common ancestor and have diverged in different geographical regions and in different hosts.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nopadon Pirarat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Channarong Rodkhum
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
50
|
Chaplin AV, Efimov BA, Smeianov VV, Kafarskaia LI, Pikina AP, Shkoporov AN. Intraspecies Genomic Diversity and Long-Term Persistence of Bifidobacterium longum. PLoS One 2015; 10:e0135658. [PMID: 26275230 PMCID: PMC4537262 DOI: 10.1371/journal.pone.0135658] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/23/2015] [Indexed: 12/28/2022] Open
Abstract
Members of genus Bifidobacterium are Gram-positive bacteria, representing a large part of the human infant microbiota and moderately common in adults. However, our knowledge about their diversity, intraspecific phylogeny and long-term persistence in humans is still limited. Bifidobacterium longum is generally considered to be the most common and prevalent species in the intestinal microbiota. In this work we studied whole genome sequences of 28 strains of B. longum, including 8 sequences described in this paper. Part of these strains were isolated from healthy children during a long observation period (up to 10 years between isolation from the same patient). The three known subspecies (longum, infantis and suis) could be clearly divided using sequence-based phylogenetic methods, gene content and the average nucleotide identity. The profiles of glycoside hydrolase genes reflected the different ecological specializations of these three subspecies. The high impact of horizontal gene transfer on genomic diversity was observed, which is possibly due to a large number of prophages and rapidly spreading plasmids. The pan-genome characteristics of the subspecies longum corresponded to the open pan-genome model. While the major part of the strain-specific genetic loci represented transposons and phage-derived regions, a large number of cell envelope synthesis genes were also observed within this category, representing high variability of cell surface molecules. We observed the cases of isolation of high genetically similar strains of B. longum from the same patients after long periods of time, however, we didn’t succeed in the isolation of genetically identical bacteria: a fact, reflecting the high plasticity of microbiota in children.
Collapse
Affiliation(s)
- Andrei V Chaplin
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris A Efimov
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir V Smeianov
- Department of Natural Sciences, Medical Institute, North Caucasus State Academy for Humanities and Technologies, Cherkessk, Russia
| | - Lyudmila I Kafarskaia
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alla P Pikina
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrei N Shkoporov
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|