1
|
Cerca J, Cotoras DD, Bieker VC, De-Kayne R, Vargas P, Fernández-Mazuecos M, López-Delgado J, White O, Stervander M, Geneva AJ, Guevara Andino JE, Meier JI, Roeble L, Brée B, Patiño J, Guayasamin JM, Torres MDL, Valdebenito H, Castañeda MDR, Chaves JA, Díaz PJ, Valente L, Knope ML, Price JP, Rieseberg LH, Baldwin BG, Emerson BC, Rivas-Torres G, Gillespie R, Martin MD. Evolutionary genomics of oceanic island radiations. Trends Ecol Evol 2023:S0169-5347(23)00032-0. [PMID: 36870806 DOI: 10.1016/j.tree.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rishi De-Kayne
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pablo Vargas
- Biodiversity and Conservation, Real Jardín Botánico, 28014 Madrid, Spain
| | - Mario Fernández-Mazuecos
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Calle Darwin 2, 28049 Madrid, Spain
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Oliver White
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Martin Stervander
- Bird Group, Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, UK
| | - Anthony J Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA
| | - Juan Ernesto Guevara Andino
- Grupo de Investigación en Biodiversidad Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| | - Joana Isabel Meier
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Lizzie Roeble
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Baptiste Brée
- Université de Pau et des Pays de l'Adour (UPPA), Energy Environment Solutions (E2S), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), 64000 Pau, France
| | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Calle Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, 38206, Spain
| | - Juan M Guayasamin
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - María de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - Hugo Valdebenito
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador; Herbarium of Economic Botany of Ecuador (Herabario QUSF), Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador
| | | | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA; Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Department of Botany and Plant Physiology, University of Málaga, Málaga, Spain
| | - Luis Valente
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Matthew L Knope
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Jonathan P Price
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Bruce G Baldwin
- Jepson Herbarium and Department of Integrative Biology, 1001 Valley Life Sciences Building 2465, University of California, Berkeley, CA 94720-2465, USA
| | - Brent C Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Spain
| | - Gonzalo Rivas-Torres
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Rosemary Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Wu L, Jiao X, Zhang D, Cheng Y, Song G, Qu Y, Lei F. Comparative Genomics and Evolution of Avian Specialized Traits. Curr Genomics 2021; 22:496-511. [PMID: 35386431 PMCID: PMC8905638 DOI: 10.2174/1389202923666211227143952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Funk ER, Spellman GM, Winker K, Withrow JJ, Ruegg KC, Zavaleta E, Taylor SA. Phylogenomic Data Reveal Widespread Introgression Across the Range of an Alpine and Arctic Specialist. Syst Biol 2020; 70:527-541. [PMID: 32941630 DOI: 10.1093/sysbio/syaa071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/10/2023] Open
Abstract
Understanding how gene flow affects population divergence and speciation remains challenging. Differentiating one evolutionary process from another can be difficult because multiple processes can produce similar patterns, and more than one process can occur simultaneously. Although simple population models produce predictable results, how these processes balance in taxa with patchy distributions and complicated natural histories is less certain. These types of populations might be highly connected through migration (gene flow), but can experience stronger effects of genetic drift and inbreeding, or localized selection. Although different signals can be difficult to separate, the application of high-throughput sequence data can provide the resolution necessary to distinguish many of these processes. We present whole-genome sequence data for an avian species group with an alpine and arctic tundra distribution to examine the role that different population genetic processes have played in their evolutionary history. Rosy-finches inhabit high elevation mountaintop sky islands and high-latitude island and continental tundra. They exhibit extensive plumage variation coupled with low levels of genetic variation. Additionally, the number of species within the complex is debated, making them excellent for studying the forces involved in the process of diversification, as well as an important species group in which to investigate species boundaries. Total genomic variation suggests a broadly continuous pattern of allele frequency changes across the mainland taxa of this group in North America. However, phylogenomic analyses recover multiple distinct, well supported, groups that coincide with previously described morphological variation and current species-level taxonomy. Tests of introgression using D-statistics and approximate Bayesian computation reveal significant levels of introgression between multiple North American taxa. These results provide insight into the balance between divergent and homogenizing population genetic processes and highlight remaining challenges in interpreting conflict between different types of analytical approaches with whole-genome sequence data. [ABBA-BABA; approximate Bayesian computation; gene flow; phylogenomics; speciation; whole-genome sequencing.].
Collapse
Affiliation(s)
- Erik R Funk
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St. 334 UCB, Boulder, CO 80309, USA
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature and Science, 2001 Colorado Blvd., Denver, CO 80205, USA
| | - Kevin Winker
- University of Alaska Museum, University of Alaska Fairbanks, 1962 Yukon Dr., Fairbanks, AK 99775, USA
| | - Jack J Withrow
- University of Alaska Museum, University of Alaska Fairbanks, 1962 Yukon Dr., Fairbanks, AK 99775, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, 251 W Pitkin St., Fort Collins, CO 80521, USA
| | - Erika Zavaleta
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High St., Santa Cruz CA, 95064, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St. 334 UCB, Boulder, CO 80309, USA
| |
Collapse
|
4
|
Alberts SC, Gaillard J. Social influences on survival and reproduction: Insights from a long-term study of wild baboons. J Anim Ecol 2019; 88:47-66. [PMID: 30033518 PMCID: PMC6340732 DOI: 10.1111/1365-2656.12887] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Abstract
For social species, the environment has two components: physical and social. The social environment modifies the individual's interaction with the physical environment, and the physical environment may in turn impact individuals' social relationships. This interplay can generate considerable variation among individuals in survival and reproduction. Here, I synthesize more than four decades of research on the baboons of the Amboseli basin in southern Kenya to illustrate how social and physical environments interact to affect reproduction and survival. For immature baboons, social behaviour can both mitigate and exacerbate the challenge of survival. Only c. 50% of live-born females and c. 44% of live-born males reach the median age of first reproduction. Variation in pre-adult survival, growth and development is associated with multiple aspects of the social environment. For instance, conspecifics provide direct care and are a major source of social knowledge about food and the environment, but conspecifics can also represent a direct threat to survival through infanticide. In adulthood, both competition (within and between social groups) and cooperative affiliation (i.e. collective action and/or the exchange of social resources such as grooming) are prominent features of baboon social life and have important consequences for reproduction and survival. For instance, adult females with higher social dominance ranks have accelerated reproduction, and adult females that engage in more frequent affiliative social interactions have higher survival throughout adulthood. The early life environment also has important consequences for adult reproduction and survival, as in a number of other bird and mammal species. In seasonal breeders, early life effects often apply to entire cohorts; in contrast, in nonseasonal and highly social species such as baboons, early life effects are more individual-specific, stemming from considerable variation not only in the early physical environment (even if they are born in the same year) but also in the particulars of their social environment.
Collapse
Affiliation(s)
- Susan C. Alberts
- Departments of Biology and Evolutionary AnthropologyDuke UniversityDurhamNorth Carolina
- Institute of Primate ResearchNational Museums of KenyaKarenNairobiKenya
| | | |
Collapse
|
5
|
Growth factor gene IGF1 is associated with bill size in the black-bellied seedcracker Pyrenestes ostrinus. Nat Commun 2018; 9:4855. [PMID: 30451848 PMCID: PMC6242981 DOI: 10.1038/s41467-018-07374-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Pyrenestes finches are unique among birds in showing a non-sex-determined polymorphism in bill size and are considered a textbook example of disruptive selection. Morphs breed randomly with respect to bill size, and differ in diet and feeding performance relative to seed hardness. Previous breeding experiments are consistent with the polymorphism being controlled by a single genetic factor. Here, we use genome-wide pooled sequencing to explore the underlying genetic basis of bill morphology and identify a single candidate region. Targeted resequencing reveals extensive linkage disequilibrium across a 300 Kb region containing the insulin-like growth factor 1 (IGF1) gene, with a single 5-million-year-old haplotype associating with phenotypic dominance of the large-billed morph. We find no genetic similarities controlling bill size in the well-studied Darwin’s finches (Geospiza). Our results show how a single genetic factor may control bill size and provide a foundation for future studies to examine this phenomenon within and among avian species. Pyrenestes finches have a bill size polymorphism thought to be maintained by disruptive selection. Here, the authors identify a single candidate region, including insulin-like growth factor 1, differentiating small and large bill size morphs and a wider region differentiating the mega-billed morph.
Collapse
|
6
|
Magani F, Bray ER, Martinez MJ, Zhao N, Copello VA, Heidman L, Peacock SO, Wiley DJ, D'Urso G, Burnstein KL. Identification of an oncogenic network with prognostic and therapeutic value in prostate cancer. Mol Syst Biol 2018; 14:e8202. [PMID: 30108134 PMCID: PMC6684952 DOI: 10.15252/msb.20188202] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Identifying critical pathways governing disease progression is essential for accurate prognosis and effective therapy. We developed a broadly applicable and novel systems-level gene discovery strategy. This approach focused on constitutively active androgen receptor (AR) splice variant-driven pathways as representative of an intractable mechanism of prostate cancer (PC) therapeutic resistance. We performed a meta-analysis of human prostate samples using weighted gene co-expression network analysis combined with experimental AR variant transcriptome analyses. An AR variant-driven gene module that is upregulated during human PC progression was identified. We filtered this module by identifying genes that functionally interacted with AR variants using a high-throughput synthetic genetic array screen in Schizosaccharomyces pombe This strategy identified seven AR variant-regulated genes that also enhance AR activity and drive cancer progression. Expression of the seven genes predicted poor disease-free survival in large independent PC patient cohorts. Pharmacologic inhibition of interacting members of the gene set potently and synergistically decreased PC cell proliferation. This unbiased and novel gene discovery strategy identified a clinically relevant, oncogenic, interacting gene hub with strong prognostic and therapeutic potential in PC.
Collapse
Affiliation(s)
- Fiorella Magani
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric R Bray
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria J Martinez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ning Zhao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Valeria A Copello
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laine Heidman
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie O Peacock
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David J Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gennaro D'Urso
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center (SCCC), Miami, FL, USA
| |
Collapse
|
7
|
Liang W, Yunlin Z, Zhenggang X, Tian H, Libo Z, Shiquan L. The complete mitochondrial genome and phylogeny of Geospiza magnirostris (Passeriformes: Thraupidae). CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-018-0998-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Vijay N, Weissensteiner M, Burri R, Kawakami T, Ellegren H, Wolf JBW. Genomewide patterns of variation in genetic diversity are shared among populations, species and higher-order taxa. Mol Ecol 2017; 26:4284-4295. [PMID: 28570015 DOI: 10.1111/mec.14195] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022]
Abstract
Genomewide screens of genetic variation within and between populations can reveal signatures of selection implicated in adaptation and speciation. Genomic regions with low genetic diversity and elevated differentiation reflective of locally reduced effective population sizes (Ne ) are candidates for barrier loci contributing to population divergence. Yet, such candidate genomic regions need not arise as a result of selection promoting adaptation or advancing reproductive isolation. Linked selection unrelated to lineage-specific adaptation or population divergence can generate comparable signatures. It is challenging to distinguish between these processes, particularly when diverging populations share ancestral genetic variation. In this study, we took a comparative approach using population assemblages from distant clades assessing genomic parallelism of variation in Ne . Utilizing population-level polymorphism data from 444 resequenced genomes of three avian clades spanning 50 million years of evolution, we tested whether population genetic summary statistics reflecting genomewide variation in Ne would covary among populations within clades, and importantly, also among clades where lineage sorting has been completed. All statistics including population-scaled recombination rate (ρ), nucleotide diversity (π) and measures of genetic differentiation between populations (FST , PBS, dxy ) were significantly correlated across all phylogenetic distances. Moreover, genomic regions with elevated levels of genetic differentiation were associated with inferred pericentromeric and subtelomeric regions. The phylogenetic stability of diversity landscapes and stable association with genomic features support a role of linked selection not necessarily associated with adaptation and speciation in shaping patterns of genomewide heterogeneity in genetic diversity.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Lab of Molecular and Genomic Evolution, Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Weissensteiner
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Reto Burri
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Department of Population Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Takeshi Kawakami
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hans Ellegren
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jochen B W Wolf
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Genetic structure and viability selection in the golden eagle (Aquila chrysaetos), a vagile raptor with a Holarctic distribution. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0863-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Singhal S, Leffler EM, Sannareddy K, Turner I, Venn O, Hooper DM, Strand AI, Li Q, Raney B, Balakrishnan CN, Griffith SC, McVean G, Przeworski M. Stable recombination hotspots in birds. Science 2015; 350:928-32. [PMID: 26586757 PMCID: PMC4864528 DOI: 10.1126/science.aad0843] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA. Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Ellen M Leffler
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Keerthi Sannareddy
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Isaac Turner
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Oliver Venn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel M Hooper
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alva I Strand
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Qiye Li
- China National Genebank, BGI-Shenzhen, Shenzhen 518083, China
| | - Brian Raney
- Center for Biomolecular Science and Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA. Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Palmer DH, Kronforst MR. Divergence and gene flow among Darwin's finches: A genome-wide view of adaptive radiation driven by interspecies allele sharing. Bioessays 2015; 37:968-74. [PMID: 26200327 PMCID: PMC4659394 DOI: 10.1002/bies.201500047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A recent analysis of the genomes of Darwin's finches revealed extensive interspecies allele sharing throughout the history of the radiation and identified a key locus responsible for morphological evolution in this group. The radiation of Darwin's finches on the Galápagos archipelago has long been regarded as an iconic study system for field ecology and evolutionary biology. Coupled with an extensive history of field work, these latest findings affirm the increasing acceptance of introgressive hybridization, or gene flow between species, as a significant contributor to adaptive evolution. Here, we review and discuss these findings in relation to both classical work on Darwin's finches and contemporary work showing similar evolutionary signatures in other biological systems. The continued unification of genomic data with field biology promises to further elucidate the molecular basis of adaptation in Darwin's finches and well beyond.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL
| | - Marcus R. Kronforst
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL
- Department of Ecology & Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
12
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. PLoS One 2015; 10:e0130600. [PMID: 26075903 PMCID: PMC4468109 DOI: 10.1371/journal.pone.0130600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.
Collapse
|
14
|
Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature 2015; 518:371-5. [PMID: 25686609 DOI: 10.1038/nature14181] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/31/2014] [Indexed: 12/30/2022]
Abstract
Darwin's finches, inhabiting the Galápagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives. Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis), a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and, thereby, to an expanded utilization of food resources.
Collapse
|
15
|
Abstract
The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.
Collapse
Affiliation(s)
- Klaus-Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russian Federation;
| | | | | |
Collapse
|
16
|
Callicrate T, Dikow R, Thomas JW, Mullikin JC, Jarvis ED, Fleischer RC. Genomic resources for the endangered Hawaiian honeycreepers. BMC Genomics 2014; 15:1098. [PMID: 25496081 PMCID: PMC4300047 DOI: 10.1186/1471-2164-15-1098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/08/2014] [Indexed: 12/30/2022] Open
Abstract
Background The Hawaiian honeycreepers are an avian adaptive radiation containing many endangered and extinct species. They display a dramatic range of phenotypic variation and are a model system for studies of evolution, conservation, disease dynamics and population genetics. Development of a genome-scale resources for this group would augment the quality of research focusing on Hawaiian honeycreepers and facilitate comparative avian genomic research. Results We assembled the genome sequence of a Hawaii amakihi (Hemignathus virens),and identified ~3.9 million single nucleotide polymorphisms (SNPs) in the genome. Using the amakihi genome as a reference, we also identified ~156,000 SNPs in RAD tag (restriction site associated DNA) sequencing of five honeycreeper species (palila [Loxioides bailleui], Nihoa finch [Telespiza ultima], iiwi [Vestiaria coccinea], apapane [Himatione sanguinea], and amakihi). SNPs are distributed throughout the amakihi genome, and the individual sequenced shows several large regions of low heterozygosity on chromosomes 1, 5, 6, 8 and 11. SNPs from RAD tag sequencing were also found throughout the genome but were found to be more densely located on microchromosomes, apparently a result of differential distribution of the particular site recognized by restriction enzyme BseXI. Conclusions The amakihi genome sequence will be useful for comparative avian genomics research and provides a significant resource for studies in such areas as disease ecology, evolution, and conservation genetics. The genome sequences will enable mapping of transcriptome data for honeycreepers and comparison of gene sequences between avian taxa. Researchers will be able to use the large number of SNP markers to genotype honeycreepers in regions of interest or across the whole genome. There are enough markers to enable use of methods such as genome-wide association studies (GWAS) that will allow researchers to make connections between phenotypic diversity of honeycreepers and specific genetic variants. Genome-wide markers will also help resolve phylogenetic and population genetic questions in honeycreepers. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1098) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert C Fleischer
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, Washington DC 20008, USA.
| | | |
Collapse
|
17
|
Kueffer C, Drake DR, Fernández-Palacios JM. Island biology: looking towards the future. Biol Lett 2014; 10:20140719. [PMID: 25339655 PMCID: PMC4272214 DOI: 10.1098/rsbl.2014.0719] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 11/12/2022] Open
Abstract
Oceanic islands are renowned for the profound scientific insights that their fascinating biotas have provided to biologists during the past two centuries. Research presented at Island Biology 2014-an international conference, held in Honolulu, Hawaii (7-11 July 2014), which attracted 253 presenters and 430 participants from at least 35 countries(1)-demonstrated that islands are reclaiming a leading role in ecology and evolution, especially for synthetic studies at the intersections of macroecology, evolution, community ecology and applied ecology. New dynamics in island biology are stimulated by four major developments. We are experiencing the emergence of a truly global and comprehensive island research community incorporating previously neglected islands and taxa. Macroecology and big-data analyses yield a wealth of global-scale synthetic studies and detailed multi-island comparisons, while other modern research approaches such as genomics, phylogenetic and functional ecology, and palaeoecology, are also dispersing to islands. And, increasingly tight collaborations between basic research and conservation management make islands places where new conservation solutions for the twenty-first century are being tested. Islands are home to a disproportionate share of the world's rare (and extinct) species, and there is an urgent need to develop increasingly collaborative and innovative research to address their conservation requirements.
Collapse
Affiliation(s)
- Christoph Kueffer
- Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Donald R Drake
- Department of Botany, University of Hawaii, Honolulu, HI 96822, USA
| | | |
Collapse
|
18
|
Card DC, Schield DR, Reyes-Velasco J, Fujita MK, Andrew AL, Oyler-McCance SJ, Fike JA, Tomback DF, Ruggiero RP, Castoe TA. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies. PLoS One 2014; 9:e106649. [PMID: 25192061 PMCID: PMC4156343 DOI: 10.1371/journal.pone.0106649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/07/2014] [Indexed: 12/04/2022] Open
Abstract
As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5-5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.
Collapse
Affiliation(s)
- Daren C. Card
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Drew R. Schield
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Jacobo Reyes-Velasco
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Matthew K. Fujita
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Audra L. Andrew
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Sara J. Oyler-McCance
- United States Geological Survey – Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Jennifer A. Fike
- United States Geological Survey – Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Diana F. Tomback
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, United States of America
| | - Robert P. Ruggiero
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Todd A. Castoe
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
19
|
Finseth FR, Bondra E, Harrison RG. Selective Constraint Dominates the Evolution of Genes Expressed in a Novel Reproductive Gland. Mol Biol Evol 2014; 31:3266-81. [DOI: 10.1093/molbev/msu259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
20
|
Skinner MK, Gurerrero-Bosagna C, Haque MM, Nilsson EE, Koop JAH, Knutie SA, Clayton DH. Epigenetics and the evolution of Darwin's Finches. Genome Biol Evol 2014; 6:1972-89. [PMID: 25062919 PMCID: PMC4159007 DOI: 10.1093/gbe/evu158] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes can accumulate over longer periods of evolutionary time has seldom been tested empirically. This study was designed to compare epigenetic changes among several closely related species of Darwin's finches, a well-known example of adaptive radiation. Erythrocyte DNA was obtained from five species of sympatric Darwin's finches that vary in phylogenetic relatedness. Genome-wide alterations in genetic mutations using copy number variation (CNV) were compared with epigenetic alterations associated with differential DNA methylation regions (epimutations). Epimutations were more common than genetic CNV mutations among the five species; furthermore, the number of epimutations increased monotonically with phylogenetic distance. Interestingly, the number of genetic CNV mutations did not consistently increase with phylogenetic distance. The number, chromosomal locations, regional clustering, and lack of overlap of epimutations and genetic mutations suggest that epigenetic changes are distinct and that they correlate with the evolutionary history of Darwin's finches. The potential functional significance of the epimutations was explored by comparing their locations on the genome to the location of evolutionarily important genes and cellular pathways in birds. Specific epimutations were associated with genes related to the bone morphogenic protein, toll receptor, and melanogenesis signaling pathways. Species-specific epimutations were significantly overrepresented in these pathways. As environmental factors are known to result in heritable changes in the epigenome, it is possible that epigenetic changes contribute to the molecular basis of the evolution of Darwin's finches.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University
| | - Carlos Gurerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State UniversityPresent address: Department of Physics, Biology and Chemistry (IFM), Linköping University, Sweden
| | - M Muksitul Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University
| | - Jennifer A H Koop
- Department of Biology, University of UtahPresent address: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | | | | |
Collapse
|
21
|
Ekblom R, Wolf JBW. A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 2014; 7:1026-42. [PMID: 25553065 PMCID: PMC4231593 DOI: 10.1111/eva.12178] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022] Open
Abstract
Genome sequencing projects were long confined to biomedical model organisms and required the concerted effort of large consortia. Rapid progress in high-throughput sequencing technology and the simultaneous development of bioinformatic tools have democratized the field. It is now within reach for individual research groups in the eco-evolutionary and conservation community to generate de novo draft genome sequences for any organism of choice. Because of the cost and considerable effort involved in such an endeavour, the important first step is to thoroughly consider whether a genome sequence is necessary for addressing the biological question at hand. Once this decision is taken, a genome project requires careful planning with respect to the organism involved and the intended quality of the genome draft. Here, we briefly review the state of the art within this field and provide a step-by-step introduction to the workflow involved in genome sequencing, assembly and annotation with particular reference to large and complex genomes. This tutorial is targeted at scientists with a background in conservation genetics, but more generally, provides useful practical guidance for researchers engaging in whole-genome sequencing projects.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Evolutionary Biology, Uppsala University Uppsala, Sweden
| | - Jochen B W Wolf
- Department of Evolutionary Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
22
|
Deakin JE, Ezaz T. Tracing the evolution of amniote chromosomes. Chromosoma 2014; 123:201-16. [PMID: 24664317 PMCID: PMC4031395 DOI: 10.1007/s00412-014-0456-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/09/2023]
Abstract
A great deal of diversity in chromosome number and arrangement is observed across the amniote phylogeny. Understanding how this diversity is generated is important for determining the role of chromosomal rearrangements in generating phenotypic variation and speciation. Gaining this understanding is achieved by reconstructing the ancestral genome arrangement based on comparisons of genome organization of extant species. Ancestral karyotypes for several amniote lineages have been reconstructed, mainly from cross-species chromosome painting data. The availability of anchored whole genome sequences for amniote species has increased the evolutionary depth and confidence of ancestral reconstructions from those made solely from chromosome painting data. Nonetheless, there are still several key lineages where the appropriate data required for ancestral reconstructions is lacking. This review highlights the progress that has been made towards understanding the chromosomal changes that have occurred during amniote evolution and the reconstruction of ancestral karyotypes.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, 2601, Australia,
| | | |
Collapse
|
23
|
Doyle JM, Katzner TE, Bloom PH, Ji Y, Wijayawardena BK, DeWoody JA. The genome sequence of a widespread apex predator, the golden eagle (Aquila chrysaetos). PLoS One 2014; 9:e95599. [PMID: 24759626 PMCID: PMC3997482 DOI: 10.1371/journal.pone.0095599] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/28/2014] [Indexed: 12/05/2022] Open
Abstract
Biologists routinely use molecular markers to identify conservation units, to quantify genetic connectivity, to estimate population sizes, and to identify targets of selection. Many imperiled eagle populations require such efforts and would benefit from enhanced genomic resources. We sequenced, assembled, and annotated the first eagle genome using DNA from a male golden eagle (Aquila chrysaetos) captured in western North America. We constructed genomic libraries that were sequenced using Illumina technology and assembled the high-quality data to a depth of ∼40x coverage. The genome assembly includes 2,552 scaffolds >10 Kb and 415 scaffolds >1.2 Mb. We annotated 16,571 genes that are involved in myriad biological processes, including such disparate traits as beak formation and color vision. We also identified repetitive regions spanning 92 Mb (∼6% of the assembly), including LINES, SINES, LTR-RTs and DNA transposons. The mitochondrial genome encompasses 17,332 bp and is ∼91% identical to the Mountain Hawk-Eagle (Nisaetus nipalensis). Finally, the data reveal that several anonymous microsatellites commonly used for population studies are embedded within protein-coding genes and thus may not have evolved in a neutral fashion. Because the genome sequence includes ∼800,000 novel polymorphisms, markers can now be chosen based on their proximity to functional genes involved in migration, carnivory, and other biological processes.
Collapse
Affiliation(s)
- Jacqueline M. Doyle
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Todd E. Katzner
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, West Virginia, United States of America
- Northern Research Station, USDA Forest Service, Parsons, West Virginia, United States of America
| | - Peter H. Bloom
- Western Foundation of Vertebrate Zoology, Camarillo, California, United States of America
| | - Yanzhu Ji
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Bhagya K. Wijayawardena
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - J. Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
24
|
Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, Soreq H. Long non-coding RNA and alternative splicing modulations in Parkinson's leukocytes identified by RNA sequencing. PLoS Comput Biol 2014; 10:e1003517. [PMID: 24651478 PMCID: PMC3961179 DOI: 10.1371/journal.pcbi.1003517] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/31/2014] [Indexed: 12/22/2022] Open
Abstract
The continuously prolonged human lifespan is accompanied by increase in neurodegenerative diseases incidence, calling for the development of inexpensive blood-based diagnostics. Analyzing blood cell transcripts by RNA-Seq is a robust means to identify novel biomarkers that rapidly becomes a commonplace. However, there is lack of tools to discover novel exons, junctions and splicing events and to precisely and sensitively assess differential splicing through RNA-Seq data analysis and across RNA-Seq platforms. Here, we present a new and comprehensive computational workflow for whole-transcriptome RNA-Seq analysis, using an updated version of the software AltAnalyze, to identify both known and novel high-confidence alternative splicing events, and to integrate them with both protein-domains and microRNA binding annotations. We applied the novel workflow on RNA-Seq data from Parkinson's disease (PD) patients' leukocytes pre- and post- Deep Brain Stimulation (DBS) treatment and compared to healthy controls. Disease-mediated changes included decreased usage of alternative promoters and N-termini, 5′-end variations and mutually-exclusive exons. The PD regulated FUS and HNRNP A/B included prion-like domains regulated regions. We also present here a workflow to identify and analyze long non-coding RNAs (lncRNAs) via RNA-Seq data. We identified reduced lncRNA expression and selective PD-induced changes in 13 of over 6,000 detected leukocyte lncRNAs, four of which were inversely altered post-DBS. These included the U1 spliceosomal lncRNA and RP11-462G22.1, each entailing sequence complementarity to numerous microRNAs. Analysis of RNA-Seq from PD and unaffected controls brains revealed over 7,000 brain-expressed lncRNAs, of which 3,495 were co-expressed in the leukocytes including U1, which showed both leukocyte and brain increases. Furthermore, qRT-PCR validations confirmed these co-increases in PD leukocytes and two brain regions, the amygdala and substantia-nigra, compared to controls. This novel workflow allows deep multi-level inspection of RNA-Seq datasets and provides a comprehensive new resource for understanding disease transcriptome modifications in PD and other neurodegenerative diseases. Long non-coding RNAs (lncRNAs) comprise a novel, fascinating class of RNAs with largely unknown biological functions. Parkinson's-disease (PD) is the most frequent motor disorder, and Deep-brain-stimulation (DBS) treatment alleviates the symptoms, but early disease biomarkers are still unknown and new future genetic interference targets are urgently needed. Using RNA-sequencing technology and a novel computational workflow for in-depth exploration of whole-transcriptome RNA-seq datasets, we detected and analyzed lncRNAs in sequenced libraries from PD patients' leukocytes pre and post-treatment and the brain, adding this full profile resource of over 7,000 lncRNAs to the few human tissues-derived lncRNA datasets that are currently available. Our study includes sample-specific database construction, detecting disease-derived changes in known and novel lncRNAs, exons and junctions and predicting corresponding changes in Polyadenylation choices, protein domains and miRNA binding sites. We report widespread transcript structure variations at the splice junction and exons levels, including novel exons and junctions and alteration of lncRNAs followed by experimental validation in PD leukocytes and two PD brain regions compared with controls. Our results suggest lncRNAs involvement in neurodegenerative diseases, and specifically PD. This comprehensive workflow will be of use to the increasing number of laboratories producing RNA-Seq data in a wide range of biomedical studies.
Collapse
Affiliation(s)
- Lilach Soreq
- Department of Medical Neurobiology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Alessandro Guffanti
- Department of Biological Chemistry, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
- Genomnia srl, Lainate, Milan, Italy
| | - Nathan Salomonis
- Department of Pediatrics, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Zvi Israel
- The Center for Functional and Restorative Neurosurgery, Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- Department of Biological Chemistry, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 2014; 29:51-63. [DOI: 10.1016/j.tree.2013.09.008] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/02/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022]
|
27
|
Comparative genome mapping between Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (O. mykiss) based on homologous microsatellite loci. G3-GENES GENOMES GENETICS 2013; 3:2281-8. [PMID: 24170738 PMCID: PMC3852389 DOI: 10.1534/g3.113.008003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Comparative genome mapping can rapidly facilitate the transfer of DNA sequence information from a well-characterized species to one that is less described. Chromosome arm numbers are conserved between members of the teleost family Salmonidae, order Salmoniformes, permitting rapid alignment of large syntenic blocks of DNA between members of the group. However, extensive Robertsonian rearrangements after an ancestral whole-genome duplication event has resulted in different chromosome numbers across Salmonid taxa. In anticipation of the rapid application of genomic data across members of the Pacific salmon genus Oncorhynchus, we mapped the genome of Chinook salmon (O. tshawytscha) by using 361 microsatellite loci and compared linkage groups to those already derived for a well-characterized species rainbow trout (O. mykiss). The Chinook salmon female map length was 1526 cM, the male map 733 cM, and the consensus map between the two sexes was 2206 cM. The average female to male recombination ratio was 5.43 (range 1-42.8 across all pairwise marker comparisons). We detected 34 linkage groups that corresponded with all chromosome arms mapped with homologous loci in rainbow trout and inferred that 16 represented metacentric chromosomes and 18 represented acrocentric chromosomes. Up to 13 chromosomes were conserved between the two species, suggesting that their structure precedes the divergence between Chinook salmon and rainbow trout. However, marker order differed in one of these linkage groups. The remaining linkage group structures reflected independent Robertsonian chromosomal arrangements, possibly after divergence. The putative linkage group homologies presented here are expected to facilitate future DNA sequencing efforts in Chinook salmon.
Collapse
|
28
|
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden;
| |
Collapse
|
29
|
Bernardi G. Speciation in fishes. Mol Ecol 2013; 22:5487-502. [PMID: 24118417 DOI: 10.1111/mec.12494] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 12/27/2022]
Abstract
The field of speciation has seen much renewed interest in the past few years, with theoretical and empirical advances that have moved it from a descriptive field to a predictive and testable one. The goal of this review is to provide a general background on research on speciation as it pertains to fishes. Three major components to the question are first discussed: the spatial, ecological and sexual factors that influence speciation mechanisms. We then move to the latest developments in the field of speciation genomics. Affordable and rapidly available, massively parallel sequencing data allow speciation studies to converge into a single comprehensive line of investigation, where the focus has shifted to the search for speciation genes and genomic islands of speciation. We argue that fish present a very diverse array of scenarios, making them an ideal model to study speciation processes.
Collapse
Affiliation(s)
- Giacomo Bernardi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz, CA, 95076, USA
| |
Collapse
|