1
|
Lee CY, Lai ZY, Chuang YJ. In Silico analysis unveils rs2109069 of DPP9 as a potential catalyst for COVID-19 severity and risk of inflammatory symptoms. Exp Mol Pathol 2024; 140:104946. [PMID: 39615159 DOI: 10.1016/j.yexmp.2024.104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND During the COVID-19 pandemic, the viral illness caused by SARS-CoV-2 spread through respiratory droplets, resulting in a global pandemic with a range of symptoms from mild to severe. Pathological inflammation posed a critical issue, yet the genetic mechanisms behind the excessive activation of inflammatory responses remained unclear. To uncover the genetic and regulatory basis of the pathogenesis, we first explored possible genetic mechanisms from phenome-wide association studies (PWAS) with different severity levels of COVID-19. PWAS is a genetic research approach that identifies pleiotropic risk variants that contribute to elucidating potential physiological mechanisms from different traits. METHODS We used the PWAS approach to link the multiple clinical symptoms to the variants. We discovered a common variant, rs2109069, in dipeptidyl peptidase 9 (DPP9), which relates to the elevated odds ratio of developing severe illness from COVID-19. Interestingly, the proxy of rs2109069 has been identified as the susceptible locus of interstitial lung disease (ILD) and idiopathic pulmonary fibrosis (IPF). We thus examined the DPP9 expression patterns in selected organs, including the lungs, blood vessels, and skin. RESULTS In silico analysis revealed conserved driver activation between COVID-19-induced inflammation and the association with ILD and IPF. Multi-omics analysis further verified the association of DPP9 with abnormal inflammatory responses in COVID-19. Lastly, gene homology analysis inferred a potential regulatory role of DPP9 in inhibiting inflammasome activation, which suggests that DPP9 deficiency may exacerbate inflammation observed in some COVID-19 patients. CONCLUSIONS Our in silico findings reveal that severe COVID-19 inflammatory responses and inflammatory lung diseases share the same genetic risk loci, helping to elucidate the underlying physiological mechanisms of severe COVID-19 inflammation. Additionally, the individual differences in immune sensitivity may contribute to the varying multi-organ inflammatory effects among patients. The rs2109069 of DPP9 could be a genetic marker to predict the risk of specific COVID-19 symptoms and severity.
Collapse
Affiliation(s)
- Chi-Ying Lee
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Zih-Yin Lai
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC.
| |
Collapse
|
2
|
Rodemer I, Vetter C, Kalder M, Hajek A, Kostev K. Negative Association Between Schizophrenia and Subsequent Cancer Diagnoses-A Retrospective Cohort Study from Germany. Eur J Investig Health Psychol Educ 2024; 14:2957-2965. [PMID: 39727502 DOI: 10.3390/ejihpe14120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Since previous studies have reported contradictory findings regarding the relationship between schizophrenia and cancer, we evaluated the association between schizophrenia and cancer diagnoses. METHODS In this retrospective cohort study, the IQVIA Disease Analyzer database was utilized to examine the incidence of cancer among patients aged over 18 years diagnosed with schizophrenia in German general practices from 2005 to 2022. Patients with schizophrenia were compared with those without the condition, with adjustments made for age, sex, index year of diagnosis, average annual practitioners visit frequency, and comorbidity. Kaplan-Meier curves were used to analyze the 10-year cumulative incidence of schizophrenia and cancer in total amongst patients with and without schizophrenia. Univariate Cox regression analysis was performed to calculate Hazard Ratios (HR) of cancer risk and their 95% confidence intervals (CI) of cancer in total and of specific cancer types. RESULTS Patients with schizophrenia (N = 13.711) had a lower incidence of cancer diagnosis compared to those without (N = 68.555). Specifically, 10.4% of patients with schizophrenia and 12.5% of patients without the condition were diagnosed with cancer (p < 0.001). Cox regression analysis showed a significant association between schizophrenia and subsequent cancer in the total population (HR: 0.82; 95% CI: 0.76-0.90), and among men (HR: 0.70; 95% CI: 0.61-0.80), but not among women (HR: 0.94, 95% CI: 0.84-1.04). Analyses stratified by cancer type and sex revealed a strong and significant association between schizophrenia and a decreased risk of prostate cancer in men (HR: 0.38; 95% CI: 0.24-0.61). Furthermore, there was also a negative association between schizophrenia and colorectal cancer risk in men, but statistical significance was not reached (HR: 0.58; 95% CI: 0.37-0.93). CONCLUSIONS This study demonstrates negative associations between schizophrenia and subsequent cancer, and more specifically in men for prostate and colorectal cancer. However, further research is required to explore the underlying reasons for these associations.
Collapse
Affiliation(s)
- Ira Rodemer
- Epidemiology, IQVIA, 60549 Frankfurt, Germany
| | | | - Matthias Kalder
- Department of Gynecology and Obstetrics, Philipps-University of Marburg, 35043 Marburg, Germany
| | - André Hajek
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Karel Kostev
- Epidemiology, IQVIA, 60549 Frankfurt, Germany
- Department of Gynecology and Obstetrics, Philipps-University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
3
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
4
|
Bioinformatics and Network-based Approaches for Determining Pathways, Signature Molecules, and Drug Substances connected to Genetic Basis of Schizophrenia etiology. Brain Res 2022; 1785:147889. [PMID: 35339428 DOI: 10.1016/j.brainres.2022.147889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Knowledge of heterogeneous etiology and pathophysiology of schizophrenia (SZP) is reasonably inadequate and non-deterministic due to its inherent complexity and underlying vast dynamics related to genetic mechanisms. The evolution of large-scale transcriptome-wide datasets and subsequent development of relevant, robust technologies for their analyses show promises toward elucidating the genetic basis of disease pathogenesis, its early risk prediction, and predicting drug molecule targets for therapeutic intervention. In this research, we have scrutinized the genetic basis of SZP through functional annotation and network-based system biology approaches. We have determined 96 overlapping differentially expressed genes (DEGs) from 2 microarray datasets and subsequently identified their interconnecting networks to reveal transcriptome signatures like hub proteins (FYN, RAD51, SOCS3, XIAP, AKAP13, PIK3C2A, CBX5, GATA3, EIF3K, and CDKN2B), transcription factors and miRNAs. In addition, we have employed gene set enrichment to highlight significant gene ontology (e.g., positive regulation of microglial cell activation) and relevant pathways (such as axon guidance and focal adhesion) interconnected to the genes associated with SZP. Finally, we have suggested candidate drug substances like Luteolin HL60 UP as a possible therapeutic target based on these key molecular signatures.
Collapse
|
5
|
Ferrucci V, Asadzadeh F, Collina F, Siciliano R, Boccia A, Marrone L, Spano D, Carotenuto M, Chiarolla CM, De Martino D, De Vita G, Macrì A, Dassi L, Vandenbussche J, Marino N, Cantile M, Paolella G, D'Andrea F, di Bonito M, Gevaert K, Zollo M. Prune-1 drives polarization of tumor-associated macrophages (TAMs) within the lung metastatic niche in triple-negative breast cancer. iScience 2020; 24:101938. [PMID: 33426510 PMCID: PMC7779777 DOI: 10.1016/j.isci.2020.101938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
M2-tumor-associated macrophages (M2-TAMs) in the tumor microenvironment represent a prognostic indicator for poor outcome in triple-negative breast cancer (TNBC). Here we show that Prune-1 overexpression in human TNBC patients has positive correlation to lung metastasis and infiltrating M2-TAMs. Thus, we demonstrate that Prune-1 promotes lung metastasis in a genetically engineered mouse model of metastatic TNBC augmenting M2-polarization of TAMs within the tumor microenvironment. Thus, this occurs through TGF-β enhancement, IL-17F secretion, and extracellular vesicle protein content modulation. We also find murine inactivating gene variants in human TNBC patient cohorts that are involved in activation of the innate immune response, cell adhesion, apoptotic pathways, and DNA repair. Altogether, we indicate that the overexpression of Prune-1, IL-10, COL4A1, ILR1, and PDGFB, together with inactivating mutations of PDE9A, CD244, Sirpb1b, SV140, Iqca1, and PIP5K1B genes, might represent a route of metastatic lung dissemination that need future prognostic validations. Prune-1 correlates to M2-TAMs confirming lung metastatic dissemination in GEMM Cytokines and EV proteins are responsible of M2-TAMs polarization processes A small molecule with immunomodulatory properties ameliorates metastatic dissemination Identification of gene variants within immune response and cell adhesion in TNBC
Collapse
Affiliation(s)
- Veronica Ferrucci
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy.,European School of Molecular Medicine (SEMM), University of Milan, Milan, Italy
| | - Fatemeh Asadzadeh
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | | | | | - Laura Marrone
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Marianeve Carotenuto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Daniela De Martino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | - Gennaro De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Luisa Dassi
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy
| | - Jonathan Vandenbussche
- VIB-UGent Centre for Medical Biotechnology, Ghent 9052, Belgium.,Department of Biomolecular Medicine, Ghent University, B9052 Ghent, Belgium
| | - Natascia Marino
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Department of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis 46202, USA
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | | | - Francesco D'Andrea
- Dipartimento di Sanità pubblica - AOU, Università; degli Studi di Napoli Federico II, Naples 80131, Italy
| | - Maurizio di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | - Kris Gevaert
- VIB-UGent Centre for Medical Biotechnology, Ghent 9052, Belgium.,Department of Biomolecular Medicine, Ghent University, B9052 Ghent, Belgium
| | - Massimo Zollo
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy.,European School of Molecular Medicine (SEMM), University of Milan, Milan, Italy.,DAI Medicina di Laboratorio e Trasfusionale, AOU Federico II, Naples 80131, Italy
| |
Collapse
|
6
|
Reay WR, Cairns MJ. The role of the retinoids in schizophrenia: genomic and clinical perspectives. Mol Psychiatry 2020; 25:706-718. [PMID: 31666680 PMCID: PMC7156347 DOI: 10.1038/s41380-019-0566-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Signalling by retinoid compounds is vital for embryonic development, with particular importance for neurogenesis in the human brain. Retinoids, metabolites of vitamin A, exert influence over the expression of thousands of transcripts genome wide, and thus, act as master regulators of many important biological processes. A significant body of evidence in the literature now supports dysregulation of the retinoid system as being involved in the aetiology of schizophrenia. This includes mechanistic insights from large-scale genomic, transcriptomic and, proteomic studies, which implicate disruption of disparate aspects of retinoid biology such as transport, metabolism, and signalling. As a result, retinoids may present a valuable clinical opportunity in schizophrenia via novel pharmacotherapies and dietary intervention. Further work, however, is required to expand on the largely observational data collected thus far and confirm causality. This review will highlight the fundamentals of retinoid biology and examine the evidence for retinoid dysregulation in schizophrenia.
Collapse
Affiliation(s)
- William R. Reay
- 0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cCentre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW Australia
| | - Murray J. Cairns
- 0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cCentre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW Australia
| |
Collapse
|
7
|
Qian K, Sun L, Zhou G, Ge H, Meng Y, Li J, Li X, Fang X. Trifluoperazine as an alternative strategy for the inhibition of tumor growth of colorectal cancer. J Cell Biochem 2019; 120:15756-15765. [PMID: 31081173 DOI: 10.1002/jcb.28845] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
The development of cancer in patients with schizophrenia is affected by genetic and environmental factors and antipsychotic medication. Several studies found that schizophrenia was associated with decreased risk of some cancers, and the neuroleptic medication might help to reduce the risk of colorectal cancer (CRC). Phenothiazine drugs including trifluoperazine (TFP) are widely used antipsychotic drugs and showed some antitumor effects, we here investigated the potential application of TFP in the treatment of colon cancer. A series doses of TFP were treated to the colon cancer cell line HCT116 and the inhibitory concentration (IC50 ) of TFP for HCT116 was determined by cell counting kit-8. The results indicated that the treatment of TFP impaired the cell vitality of HCT116 in a dose- and time-dependent manner. Meanwhile, the Edu assay demonstrated that the proliferation was also inhibited by TFP, which was accompanied with the induction of apoptosis and autophagy. The expression of CCNE1, CDK4, and antiapoptosis factor BCL-2 was downregulated but the proapoptosis factor BAX was upregulated. The autophagy inhibitor chloroquine could significantly reverse the TFP-induced apoptosis. Moreover, the ability of migration and invasion of HCT116 was found to be suppressed by TFP, which was associated with the inhibition of epithelial-mesenchymal transition (EMT). The function of TFP in vivo was further confirmed. The results showed that the administration of TFP remarkably abrogated the tumor growth with decreased tumor volume and proliferation index Ki-67 level in tumor tissues. The EMT phenotype was also confirmed to be inhibited by TFP in vivo, suggesting the promising antitumor effects of TFP in CRC.
Collapse
Affiliation(s)
- Kun Qian
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Laiyu Sun
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Guoqing Zhou
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Haixia Ge
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Yue Meng
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Jingfen Li
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Xiao Li
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Xinqiang Fang
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Kuppili PP, Nebhinani N. Deciphering the paradoxical incidence of cancer in schizophrenia. Australas Psychiatry 2018; 26:624-627. [PMID: 30226103 DOI: 10.1177/1039856218797439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES: The incidence of cancer in schizophrenia has been an area of controversy. The current article aims to provide a commentary outlining the contradictory findings of incidence of cancer in schizophrenia as well as discuss the available theories linking cancer with schizophrenia and address the methodological issues of the studies which could lead to the discrepant findings. METHOD: A literature search was carried out primarily using the electronic database of MEDLINE through PubMed using the search terms 'cancer' and 'schizophrenia'. Google Scholar was used to supplement the search. RESULTS: The findings were inconclusive, with studies documenting increased, decreased as well as no risk of cancer in patients with schizophrenia, compared with the general population. Several methodological limitations exist with regard to measures of assessment, sample size and selection bias. CONCLUSIONS: The association between cancer and schizophrenia remains controversial. Genetic as well as environmental theories exist explaining the paradoxical incidence of cancer in schizophrenia. The methodological factors could contribute to the discrepant findings.
Collapse
Affiliation(s)
| | - Naresh Nebhinani
- Associate Professor, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
9
|
Zhao J, Liu X, Huo C, Zhao T, Ye H. Abnormalities in Prefrontal Cortical Gene Expression Profiles Relevant to Schizophrenia in MK-801-Exposed C57BL/6 Mice. Neuroscience 2018; 390:60-78. [PMID: 30102956 DOI: 10.1016/j.neuroscience.2018.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
MK-801, a non-competitive NMDA receptor (NMDAR) antagonist, disturbs NMDAR function in rodents and induces psychological and behavioral changes similar to schizophrenia (SCZ). However, the effects of MK-801 treatment on gene expression are largely unknown. Here we performed RNA-sequencing on the prefrontal cortex of MK-801-exposed male mice in order to analyze gene expression and co-expression patterns related to SCZ and to identify mechanisms that underlie the molecular etiology of this disorder. Transcriptome analysis revealed that the differentially expressed genes were more often associated with biological processes that included postsynaptic transmission, immune system process, response to external stimulus and hemostasis. In order to extract comprehensive biological information, we used an approach for biclustering, called FABIA, to simultaneously cluster transcriptomic data across genes and conditions. When combined with analyses using DAVID and STRING databases, we found that co-expression patterns were altered in synapse-related genes and genes central to the mitochondrial network. Abnormal co-expression of genes mediating synaptic vesicle cycling could disturb release, uptake and reuptake of glutamate, and the perturbation in co-expression patterns for mitochondrial respiratory chain complexes was extensive. Our study supports the hypothesis that research using MK-801-exposed male mice as an animal model of SCZ offers important insights into the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Jialu Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xu Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chunyue Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Yanjing Medical College, Capital Medical University, Beijing 100069, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Xu D, Chen G, Kong L, Zhang W, Hu L, Chen C, Li J, Zhuo C. Lower risk of liver cancer in patients with schizophrenia: a systematic review and meta-analysis of cohort studies. Oncotarget 2017; 8:102328-102335. [PMID: 29254248 PMCID: PMC5731958 DOI: 10.18632/oncotarget.21679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Previous studies regarding the association between schizophrenia and the subsequent risk of liver cancer have shown inconsistent results. We aimed to perform a systematic review and meta-analysis to evaluate the association between schizophrenia and liver cancer incidence. We systematically searched the PubMed and Embase electronic databases for cohort studies reporting the standardized incidence ratio (SIR) for the risk of liver cancer in patents with schizophrenia as compared with the general population. A random-effects model was used to analyze the data. Stratified analyses were performed according to the gender of the patients. Seven studies comprising 312,834 patients with schizophrenia were included. During follow-up, 581 liver cancer cases were confirmed. The meta-analysis results showed that schizophrenia was associated with a trend of a lower liver cancer incidence (SIR: 0.83, 95% confidence interval [CI]: 0.66–1.04, p = 0.10) with significant heterogeneity (I2 = 81%). Sensitivity analysis of five cohorts of patients with cancer events before the diagnosis of schizophrenia indicated that schizophrenia was associated with a significantly lower incidence of liver cancer (SIR: 0.76, 95% CI: 0.61–0.96, p = 0.02; I2 = 84%). The reduction of a subsequent incidence of liver cancer was significant in male patients with schizophrenia (SIR: 0.71, p = 0.005), and a trend of a reduced risk of liver cancer was also detected in female patients (SIR: 0.83, p = 0.12). Significant publication bias was detected. However, “trim and fill” analyses by including the imputed unpublished studies showed similar results. In summary, schizophrenia may be protective against the incidence of liver cancer.
Collapse
Affiliation(s)
- Dali Xu
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Lingguang Kong
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Wei Zhang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Lirong Hu
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Jie Li
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, 300222, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China.,Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, 300222, China
| |
Collapse
|
11
|
Zhang H, Li S, Liu P, Lee FHF, Wong AHC, Liu F. Proteomic analysis of the cullin 4B interactome using proximity-dependent biotinylation in living cells. Proteomics 2017; 17. [PMID: 28225217 DOI: 10.1002/pmic.201600163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
Abstract
Cullin 4B (CUL4B) mutations have been implicated in mental retardation and dopamine-related behaviors due to disruptions in their interaction with cullin-RING E3 ligases (CRLs). Thus, further identification of CUL4B substrates can increase the knowledge of protein homeostasis and illuminate the role of CUL4B in neuropsychiatric disease. However, the transient nature of the coupling between CUL4B and its substrates is difficult to detect in vivo using current approaches, thus hampers efforts to investigate functions of CRLs within unperturbed living systems. In this study, we sought to discover CUL4B interactants with or without dopamine stimulation. BirA (118G) proximity-dependent biotin labeling combined with LC-MS was employed to biotinylate and identify transient and weak interactants of CUL4B. After purification with streptavidin beads and identified by LC-MS, a total of 150 biotinylated proteins were identified at baseline condition, 53 of which are well-known CUL4B interactants. After dopamine stimulation, 29 proteins disappeared and were replaced by 21 different protein interactants. The altered CUL4B interactants suggest that CUL4B regulates protein turnover and homeostasis in response to dopamine stimulation. Our results demonstrate the potential of this approach to identify novel CUL4B-related molecules in respond to cellular stimuli, which may be applied to other types of signaling pathways.
Collapse
Affiliation(s)
- Hailong Zhang
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shupeng Li
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pingting Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Frankie H F Lee
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Albert H C Wong
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Safari-Alighiarloo N, Rezaei-Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki S. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis. PeerJ 2016; 4:e2775. [PMID: 28028462 PMCID: PMC5183126 DOI: 10.7717/peerj.2775] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS), entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein-protein interaction (PPI)) and transcriptomes data to construct and analyze PPI networks for MS disease. METHODS Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. RESULTS The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission) which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. DISCUSSION This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Taghizadeh
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University , Tehran , Iran
| | - Seyyed Mohammad Tabatabaei
- Medical Informatics Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Namaki
- Immunology Department, Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
13
|
Lee SA, Huang KC. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Med Genomics 2016; 9:68. [PMID: 28117656 PMCID: PMC5260790 DOI: 10.1186/s12920-016-0229-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetics of schizophrenia provides important information on how the environmental factors affect the genetic architecture of the disease. DNA methylation plays a pivotal role in etiology for schizophrenia. Previous studies have focused mostly on the discovery of schizophrenia-associated SNPs or genetic variants. As postmortem brain samples became available, more and more recent studies surveyed transcriptomics of the diseases. In this study, we constructed protein-protein interaction (PPI) network using the disease associated SNP (or genetic variants), differentially expressed disease genes and differentially methylated disease genes (or promoters). By combining the different datasets and topological analyses of the PPI network, we established a more comprehensive understanding of the development and genetics of this devastating mental illness. Results We analyzed the previously published DNA methylation profiles of prefrontal cortex from 335 healthy controls and 191 schizophrenic patients. These datasets revealed 2014 CpGs identified as GWAS risk loci with the differential methylation profile in schizophrenia, and 1689 schizophrenic differential methylated genes (SDMGs) identified with predominant hypomethylation. These SDMGs, combined with the PPIs of these genes, were constructed into the schizophrenic differential methylation network (SDMN). On the SDMN, there are 10 hypermethylated SDMGs, including GNA13, CAPNS1, GABPB2, GIT2, LEFTY1, NDUFA10, MIOS, MPHOSPH6, PRDM14 and RFWD2. The hypermethylation to differential expression network (HyDEN) were constructed to determine how the hypermethylated promoters regulate gene expression. The enrichment analyses of biochemical pathways in HyDEN, including TNF alpha, PDGFR-beta signaling, TGF beta Receptor, VEGFR1 and VEGFR2 signaling, regulation of telomerase, hepatocyte growth factor receptor signaling, ErbB1 downstream signaling and mTOR signaling pathway, suggested that the malfunctioning of these pathways contribute to the symptoms of schizophrenia. Conclusions The epigenetic profiles of DNA differential methylation from schizophrenic brain samples were investigated to understand the regulatory roles of SDMGs. The SDMGs interplays with SCZCGs in a coordinated fashion in the disease mechanism of schizophrenia. The protein complexes and pathways involved in SDMN may be responsible for the etiology and potential treatment targets. The SDMG promoters are predominantly hypomethylated. Increasing methylation on these promoters is proposed as a novel therapeutic approach for schizophrenia. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng-An Lee
- Department of Information Management, Kainan University, Taoyuan, Taiwan
| | - Kuo-Chuan Huang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan.
| |
Collapse
|
14
|
Mladinov M, Sedmak G, Fuller HR, Babić Leko M, Mayer D, Kirincich J, Štajduhar A, Borovečki F, Hof PR, Šimić G. Gene expression profiling of the dorsolateral and medial orbitofrontal cortex in schizophrenia. Transl Neurosci 2016; 7:139-150. [PMID: 28123834 PMCID: PMC5234522 DOI: 10.1515/tnsci-2016-0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/05/2016] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a complex polygenic disorder of unknown etiology. Over 3,000 candidate genes associated with schizophrenia have been reported, most of which being mentioned only once. Alterations in cognitive processing - working memory, metacognition and mentalization - represent a core feature of schizophrenia, which indicates the involvement of the prefrontal cortex in the pathophysiology of this disorder. Hence we compared the gene expression in postmortem tissue from the left and right dorsolateral prefrontal cortex (DLPFC, Brodmann's area 46), and the medial part of the orbitofrontal cortex (MOFC, Brodmann's area 11/12), in six patients with schizophrenia and six control brains. Although in the past decade several studies performed transcriptome profiling in schizophrenia, this is the first study to investigate both hemispheres, providing new knowledge about possible brain asymmetry at the level of gene expression and its relation to schizophrenia. We found that in the left hemisphere, twelve genes from the DLPFC and eight genes from the MOFC were differentially expressed in patients with schizophrenia compared to controls. In the right hemisphere there was only one gene differentially expressed in the MOFC. We reproduce the involvement of previously reported genes TARDBP and HNRNPC in the pathogenesis of schizophrenia, and report seven novel genes: SART1, KAT7, C1D, NPM1, EVI2A, XGY2, and TTTY15. As the differentially expressed genes only partially overlap with previous studies that analyzed other brain regions, our findings indicate the importance of considering prefrontal cortical regions, especially those in the left hemisphere, for obtaining disease-relevant insights.
Collapse
Affiliation(s)
- Mihovil Mladinov
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Goran Sedmak
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK and Institute for Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, United Kingdom of Great Britain and Northern Ireland
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Davor Mayer
- Department of Forensic Medicine, University of Zagreb Medical School, Zagreb, Croatia
| | - Jason Kirincich
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Andrija Štajduhar
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Fran Borovečki
- Department of Neurology, University Clinical Hospital Zagreb, Zagreb, Croatia
| | - Patrick R Hof
- Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
15
|
Karathanasis N, Tsamardinos I, Lagani V. omicsNPC: Applying the Non-Parametric Combination Methodology to the Integrative Analysis of Heterogeneous Omics Data. PLoS One 2016; 11:e0165545. [PMID: 27812137 PMCID: PMC5094732 DOI: 10.1371/journal.pone.0165545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 10/13/2016] [Indexed: 12/17/2022] Open
Abstract
Background The advance of omics technologies has made possible to measure several data modalities on a system of interest. In this work, we illustrate how the Non-Parametric Combination methodology, namely NPC, can be used for simultaneously assessing the association of different molecular quantities with an outcome of interest. We argue that NPC methods have several potential applications in integrating heterogeneous omics technologies, as for example identifying genes whose methylation and transcriptional levels are jointly deregulated, or finding proteins whose abundance shows the same trends of the expression of their encoding genes. Results We implemented the NPC methodology within “omicsNPC”, an R function specifically tailored for the characteristics of omics data. We compare omicsNPC against a range of alternative methods on simulated as well as on real data. Comparisons on simulated data point out that omicsNPC produces unbiased / calibrated p-values and performs equally or significantly better than the other methods included in the study; furthermore, the analysis of real data show that omicsNPC (a) exhibits higher statistical power than other methods, (b) it is easily applicable in a number of different scenarios, and (c) its results have improved biological interpretability. Conclusions The omicsNPC function competitively behaves in all comparisons conducted in this study. Taking into account that the method (i) requires minimal assumptions, (ii) it can be used on different studies designs and (iii) it captures the dependences among heterogeneous data modalities, omicsNPC provides a flexible and statistically powerful solution for the integrative analysis of different omics data.
Collapse
Affiliation(s)
- Nestoras Karathanasis
- Institute of Computer Science, Foundation for Research and Technology—Hellas, Heraklion, Greece
| | | | - Vincenzo Lagani
- Department of Computer Science, University of Crete, Heraklion, Greece
- * E-mail:
| |
Collapse
|
16
|
Kim S, Hwang Y, Lee D, Webster MJ. Transcriptome sequencing of the choroid plexus in schizophrenia. Transl Psychiatry 2016; 6:e964. [PMID: 27898074 PMCID: PMC5290353 DOI: 10.1038/tp.2016.229] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 09/19/2015] [Accepted: 09/28/2016] [Indexed: 01/11/2023] Open
Abstract
The choroid plexus (CP) has a key role in maintaining brain homeostasis by producing cerebrospinal fluid (CSF), by mediating transport of nutrients and removing metabolic products from the central nervous system and by responding to peripheral inflammatory signals. Although abnormal markers of immune response and inflammation are apparent in individuals with schizophrenia, the CP of these individuals has not been characterized. We therefore sequenced mRNA from the CP from two independent collections of individuals with schizophrenia and unaffected controls. Genes related to immune function and inflammation were upregulated in both collections. In addition, a co-expression module related to immune/inflammation response that was generated by combining mRNA-Seq data from both collections was significantly associated with disease status. The immune/inflammation-related co-expression module was positively correlated with levels of C-reactive protein (CRP), cortisol and several immune modulator proteins in the serum of the same individuals and was also positively correlated with CRP, cortisol and pro-inflammatory cytokines in the frontal cortex of the same individuals. In addition, we found a substantial number of nodes (genes) that were common to our schizophrenia-associated immune/inflammation module from the pooled data and a module we generated from lippopolysaccharides-treated mouse model data. These results suggest that the CP of individuals with schizophrenia are responding to signals from the periphery by upregulating immune/inflammation-related genes to protect the brain and maintain the homeostasis but nevertheless fails to completely prevent immune/inflammation related changes in the brain.
Collapse
Affiliation(s)
- S Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD, USA
| | - Y Hwang
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - D Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea,Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea E-mail:
| | - M J Webster
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD, USA,Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Suite C-050, Rockville, MD 20850, USA. E-mail:
| |
Collapse
|
17
|
Mladinov M, Sedmak G, Fuller HR, Babić Leko M, Mayer D, Kirincich J, Štajduhar A, Borovečki F, Hof PR, Šimić G. Gene expression profiling of the dorsolateral and medial orbitofrontal cortex in schizophrenia. Transl Neurosci 2016. [PMID: 28123834 DOI: 10.1515/tnsci-2016-0021/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Schizophrenia is a complex polygenic disorder of unknown etiology. Over 3,000 candidate genes associated with schizophrenia have been reported, most of which being mentioned only once. Alterations in cognitive processing - working memory, metacognition and mentalization - represent a core feature of schizophrenia, which indicates the involvement of the prefrontal cortex in the pathophysiology of this disorder. Hence we compared the gene expression in postmortem tissue from the left and right dorsolateral prefrontal cortex (DLPFC, Brodmann's area 46), and the medial part of the orbitofrontal cortex (MOFC, Brodmann's area 11/12), in six patients with schizophrenia and six control brains. Although in the past decade several studies performed transcriptome profiling in schizophrenia, this is the first study to investigate both hemispheres, providing new knowledge about possible brain asymmetry at the level of gene expression and its relation to schizophrenia. We found that in the left hemisphere, twelve genes from the DLPFC and eight genes from the MOFC were differentially expressed in patients with schizophrenia compared to controls. In the right hemisphere there was only one gene differentially expressed in the MOFC. We reproduce the involvement of previously reported genes TARDBP and HNRNPC in the pathogenesis of schizophrenia, and report seven novel genes: SART1, KAT7, C1D, NPM1, EVI2A, XGY2, and TTTY15. As the differentially expressed genes only partially overlap with previous studies that analyzed other brain regions, our findings indicate the importance of considering prefrontal cortical regions, especially those in the left hemisphere, for obtaining disease-relevant insights.
Collapse
Affiliation(s)
- Mihovil Mladinov
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Goran Sedmak
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK and Institute for Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, United Kingdom of Great Britain and Northern Ireland
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Davor Mayer
- Department of Forensic Medicine, University of Zagreb Medical School, Zagreb, Croatia
| | - Jason Kirincich
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Andrija Štajduhar
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Fran Borovečki
- Department of Neurology, University Clinical Hospital Zagreb, Zagreb, Croatia
| | - Patrick R Hof
- Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
18
|
Sakai M, Watanabe Y, Someya T, Araki K, Shibuya M, Niizato K, Oshima K, Kunii Y, Yabe H, Matsumoto J, Wada A, Hino M, Hashimoto T, Hishimoto A, Kitamura N, Iritani S, Shirakawa O, Maeda K, Miyashita A, Niwa SI, Takahashi H, Kakita A, Kuwano R, Nawa H. Assessment of copy number variations in the brain genome of schizophrenia patients. Mol Cytogenet 2015; 8:46. [PMID: 26136833 PMCID: PMC4487564 DOI: 10.1186/s13039-015-0144-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022] Open
Abstract
Background Cytogenomic mutations and chromosomal abnormality are implicated in the neuropathology of several brain diseases. Cell heterogeneity of brain tissues makes their detection and validation difficult, however. In the present study, we analyzed gene dosage alterations in brain DNA of schizophrenia patients and compared those with the copy number variations (CNVs) identified in schizophrenia patients as well as with those in Asian lymphocyte DNA and attempted to obtain hints at the pathological contribution of cytogenomic instability to schizophrenia. Results Brain DNA was extracted from postmortem striatum of schizophrenia patients and control subjects (n = 48 each) and subjected to the direct two color microarray analysis that limits technical data variations. Disease-associated biases of relative DNA doses were statistically analyzed with Bonferroni’s compensation on the premise of brain cell mosaicism. We found that the relative gene dosage of 85 regions significantly varied among a million of probe sites. In the candidate CNV regions, 26 regions had no overlaps with the common CNVs found in Asian populations and included the genes (i.e., ANTXRL, CHST9, DNM3, NDST3, SDK1, STRC, SKY) that are associated with schizophrenia and/or other psychiatric diseases. The majority of these candidate CNVs exhibited high statistical probabilities but their signal differences in gene dosage were less than 1.5-fold. For test evaluation, we rather selected the 10 candidate CNV regions that exhibited higher aberration scores or larger global effects and were thus confirmable by PCR. Quantitative PCR verified the loss of gene dosage at two loci (1p36.21 and 1p13.3) and confirmed the global variation of the copy number distributions at two loci (11p15.4 and 13q21.1), both indicating the utility of the present strategy. These test loci, however, exhibited the same somatic CNV patterns in the other brain region. Conclusions The present study lists the candidate regions potentially representing cytogenomic CNVs in the brain of schizophrenia patients, although the significant but modest alterations in their brain genome doses largely remain to be characterized further. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0144-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miwako Sakai
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan ; Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | | | | | - Yasuto Kunii
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hirooki Yabe
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Junya Matsumoto
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Akira Wada
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Mizuki Hino
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Takeshi Hashimoto
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Akitoyo Hishimoto
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Noboru Kitamura
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Shuji Iritani
- Matsuzawa Hospital, Setagaya-ku, 156-0057 Tokyo, Japan ; Department of Mental Health, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Aichi Japan
| | - Osamu Shirakawa
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan ; Department of Neuropsychiatry, Kinki University Faculty of Medicine, 589-8511 Osaka-Sayama, Osaka Japan
| | - Kiyoshi Maeda
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan ; Department of Social Rehabilitation, Kobe University School of Medicine, 654-0142 Hyogo, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Shin-Ichi Niwa
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hitoshi Takahashi
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Akiyoshi Kakita
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan
| |
Collapse
|
19
|
Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Transl Psychiatry 2015; 5:e557. [PMID: 25918994 PMCID: PMC4462612 DOI: 10.1038/tp.2015.49] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
Depressive disorders have been shown to be highly influenced by environmental pathogenic factors, some of which are believed to exert stress on human brain functioning via epigenetic modifications. Previous genome-wide methylomic studies on depression have suggested that, along with differential DNA methylation, affected co-twins of monozygotic (MZ) pairs have increased DNA methylation variability, probably in line with theories of epigenetic stochasticity. Nevertheless, the potential biological roots of this variability remain largely unexplored. The current study aimed to evaluate whether DNA methylation differences within MZ twin pairs were related to differences in their psychopathological status. Data from the Illumina Infinium HumanMethylation450 Beadchip was used to evaluate peripheral blood DNA methylation of 34 twins (17 MZ pairs). Two analytical strategies were used to identify (a) differentially methylated probes (DMPs) and (b) variably methylated probes (VMPs). Most DMPs were located in genes previously related to neuropsychiatric phenotypes. Remarkably, one of these DMPs (cg01122889) was located in the WDR26 gene, the DNA sequence of which has been implicated in major depressive disorder from genome-wide association studies. Expression of WDR26 has also been proposed as a biomarker of depression in human blood. Complementarily, VMPs were located in genes such as CACNA1C, IGF2 and the p38 MAP kinase MAPK11, showing enrichment for biological processes such as glucocorticoid signaling. These results expand on previous research to indicate that both differential methylation and differential variability have a role in the etiology and clinical manifestation of depression, and provide clues on specific genomic loci of potential interest in the epigenetics of depression.
Collapse
|
20
|
Huang KC, Yang KC, Lin H, Tsao TTH, Lee SA. Transcriptome alterations of mitochondrial and coagulation function in schizophrenia by cortical sequencing analysis. BMC Genomics 2014; 15 Suppl 9:S6. [PMID: 25522158 PMCID: PMC4290619 DOI: 10.1186/1471-2164-15-s9-s6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Transcriptome sequencing of brain samples provides detailed enrichment analysis of differential expression and genetic interactions for evaluation of mitochondrial and coagulation function of schizophrenia. It is implicated that schizophrenia genetic and protein interactions may give rise to biological dysfunction of energy metabolism and hemostasis. These findings may explain the biological mechanisms responsible for negative and withdraw symptoms of schizophrenia and antipsychotic-induced venous thromboembolism. We conducted a comparison of schizophrenic candidate genes from literature reviews and constructed the schizophrenia-mediator network (SCZMN) which consists of schizophrenic candidate genes and associated mediator genes by applying differential expression analysis to BA22 RNA-Seq brain data. The network was searched against pathway databases such as PID, Reactome, HumanCyc, and Cell-Map. The candidate complexes were identified by MCL clustering using CORUM for potential pathogenesis of schizophrenia. Results Published BA22 RNA-Seq brain data of 9 schizophrenic patients and 9 controls samples were analyzed. The differentially expressed genes in the BA22 brain samples of schizophrenia are proposed as schizophrenia candidate marker genes (SCZCGs). The genetic interactions between mitochondrial genes and many under-expressed SCZCGs indicate the genetic predisposition of mitochondria dysfunction in schizophrenia. The biological functions of SCZCGs, as listed in the Pathway Interaction Database (PID), indicate that these genes have roles in DNA binding transcription factor, signal and cancer-related pathways, coagulation and cell cycle regulation and differentiation pathways. In the query-query protein-protein interaction (QQPPI) network of SCZCGs, TP53, PRKACA, STAT3 and SP1 were identified as the central "hub" genes. Mitochondrial function was modulated by dopamine inhibition of respiratory complex I activity. The genetic interaction between mitochondria function and schizophrenia may be revealed by DRD2 linked to NDUFS7 through protein-protein interactions of FLNA and ARRB2. The biological mechanism of signaling pathway of coagulation cascade was illustrated by the PPI network of the SCZCGs and the coagulation-associated genes. The relationship between antipsychotic target genes (DRD2/3 and HTR2A) and coagulation factor genes (F3, F7 and F10) appeared to cascade the following hemostatic process implicating the bottleneck of coagulation genetic network by the bridging of actin-binding protein (FLNA). Conclusions It is implicated that the energy metabolism and hemostatic process have important roles in the pathogenesis for schizophrenia. The cross-talk of genetic interaction by these co-expressed genes and reached candidate genes may address the key network in disease pathology. The accuracy of candidate genes evaluated from different quantification tools could be improved by crosstalk analysis of overlapping genes in genetic networks.
Collapse
|