1
|
Aravind B, Shreeraksha RJ, Poornima R, Ravichandran D, Krishnaraj PU, Chimmad VP, Mirajkar KK, Bagewadi B, Janila P, Pandey MK, Varshney RK, Nayak SN. Impact of heat stress on physiological characteristics and expression of heat shock proteins (HSPs) in groundnut ( Arachis hypogaea L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1691-1706. [PMID: 39506994 PMCID: PMC11535108 DOI: 10.1007/s12298-024-01520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024]
Abstract
The current climate change has a profound impact on agricultural production. Despite the unanimous efforts of several nations to prevent further increase in global temperatures, developing adaptive strategies by imparting heat tolerance in crop plants is essential to ensure global food security. This study demonstrates the impact of heat stress on the morphological, physiological and biochemical properties of different groundnut genotypes derived from a recombinant inbred line (RIL) population (JL 24 × 55-437). The plants were grown in controlled conditions and a high-temperature stress of 45 °C was gradually imposed by placing the plants in an environmental chamber during peak reproductive stage [25 days after sowing (DAS) to 60 DAS]. Heat tolerant genotypes had better biochemical machinery to withstand the heat stress-induced oxidative burst with higher activity of catalase and peroxidase. Also, the tolerant genotypes had lesser membrane damage as indicated by lower malondialdehyde levels. Greater expression of heat shock proteins (HSP17) transcripts alongside elevated levels of both enzymatic and non-enzymatic antioxidant activity was observed when exposed to high temperature, indicating their potential association with heat stress tolerance in groundnut. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01520-y.
Collapse
Affiliation(s)
- B. Aravind
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - R. J. Shreeraksha
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - R. Poornima
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | | | - P. U. Krishnaraj
- Department of Agricultural Microbiology, University of Agricultural Sciences, Dharwad, India
| | - V. P. Chimmad
- Department of Crop Physiology, University of Agricultural Sciences, Dharwad, India
| | - Kiran K. Mirajkar
- Department of Biochemistry, University of Agricultural Sciences, Dharwad, India
| | - Basavaraj Bagewadi
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad India
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA Australia
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| |
Collapse
|
2
|
López-Virgen AG, Dautt-Castro M, Ulloa-Llanes LK, Casas-Flores S, Contreras-Vergara CA, Hernández-Oñate MA, Sotelo-Mundo RR, Vélez-de la Rocha R, Islas-Osuna MA. Genome-wide identification of gene families related to miRNA biogenesis in Mangifera indica L. and their possible role during heat stress. PeerJ 2024; 12:e17737. [PMID: 39035161 PMCID: PMC11260077 DOI: 10.7717/peerj.17737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/23/2024] [Indexed: 07/23/2024] Open
Abstract
Mango is a popular tropical fruit that requires quarantine hot water treatment (QHWT) for postharvest sanitation, which can cause abiotic stress. Plants have various defense mechanisms to cope with stress; miRNAs mainly regulate the expression of these defense responses. Proteins involved in the biogenesis of miRNAs include DICER-like (DCL), ARGONAUTE (AGO), HYPONASTIC LEAVES 1 (HYL1), SERRATE (SE), HUA ENHANCER1 (HEN1), HASTY (HST), and HEAT-SHOCK PROTEIN 90 (HSP90), among others. According to our analysis, the mango genome contains five DCL, thirteen AGO, six HYL, two SE, one HEN1, one HST, and five putative HSP90 genes. Gene structure prediction and domain identification indicate that sequences contain key domains for their respective gene families, including the RNase III domain in DCL and PAZ and PIWI domains for AGOs. In addition, phylogenetic analysis indicates the formation of clades that include the mango sequences and their respective orthologs in other flowering plant species, supporting the idea these are functional orthologs. The analysis of cis-regulatory elements of these genes allowed the identification of MYB, ABRE, GARE, MYC, and MeJA-responsive elements involved in stress responses. Gene expression analysis showed that most genes are induced between 3 to 6 h after QHWT, supporting the early role of miRNAs in stress response. Interestingly, our results suggest that mango rapidly induces the production of miRNAs after heat stress. This research will enable us to investigate further the regulation of gene expression and its effects on commercially cultivated fruits, such as mango, while maintaining sanitary standards.
Collapse
Affiliation(s)
- Andrés G. López-Virgen
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Mitzuko Dautt-Castro
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Lourdes K. Ulloa-Llanes
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Sergio Casas-Flores
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, San Luis Potosi, México
| | | | | | - Rogerio R. Sotelo-Mundo
- CTAOA, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Rosabel Vélez-de la Rocha
- Unidad Culiacán, Centro de Investigación en Alimentación y Desarrollo, A.C., Culiacán, Sinaloa, México
| | - Maria A. Islas-Osuna
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| |
Collapse
|
3
|
Shan X, Wang P, Yin Q, Li Y, Wang X, Feng Y, Xiao J, Li L, Huang X, Chen H, Duan X. Atypical dynamic neural configuration in autism spectrum disorder and its relationship to gene expression profiles. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02476-w. [PMID: 38861168 DOI: 10.1007/s00787-024-02476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024]
Abstract
Although it is well recognized that autism spectrum disorder (ASD) is associated with atypical dynamic functional connectivity patterns, the dynamic changes in brain intrinsic activity over each time point and the potential molecular mechanisms associated with atypical dynamic temporal characteristics in ASD remain unclear. Here, we employed the Hidden Markov Model (HMM) to explore the atypical neural configuration at every scanning time point in ASD, based on resting-state functional magnetic resonance imaging (rs-fMRI) data from the Autism Brain Imaging Data Exchange. Subsequently, partial least squares regression and pathway enrichment analysis were employed to explore the potential molecular mechanism associated with atypical neural dynamics in ASD. 8 HMM states were inferred from rs-fMRI data. Compared to typically developing, individuals on the autism spectrum showed atypical state-specific temporal characteristics, including number of states and occurrences, mean life time and transition probability between states. Moreover, these atypical temporal characteristics could predict communication difficulties of ASD, and states assoicated with negative activation in default mode network and frontoparietal network, and positive activation in somatomotor network, ventral attention network, and limbic network, had higher predictive contribution. Furthermore, a total of 321 genes was revealed to be significantly associated with atypical dynamic brain states of ASD, and these genes are mainly enriched in neurodevelopmental pathways. Our study provides new insights into characterizing the atypical neural dynamics from a moment-to-moment perspective, and indicates a linkage between atypical neural configuration and gene expression in ASD.
Collapse
Affiliation(s)
- Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Peng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Qing Yin
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Youyi Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xiaotian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Yu Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Lei Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| |
Collapse
|
4
|
Alagarsamy M, Karuppan S, Amal TC, Markkandan K. Sequencing and analysis of the complete mitochondrial genome of Amrasca biguttula biguttula Ishida, 1913 (Hemiptera: Cicadellidae: Typhlocybinae: Empoascini). Mitochondrial DNA B Resour 2024; 9:725-728. [PMID: 38859916 PMCID: PMC11164192 DOI: 10.1080/23802359.2024.2358958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
The complete mitogenome of the cotton leafhopper, Amrasca biguttula biguttula Ishida, 1913, was sequenced and annotated. The mitogenome is 14,474 bp long and contains 37 genes, including 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes, as well as a control region. The nucleotide composition of the mitogenome is as follows: A, 39.17%; T, 39.3%; C, 11.13%; and G, 10.39%. The total length of the 13 PCGs is 10,496 bp, which encodes 3503 amino acids. All PCGs start with the ATG codon, except for ATA, ATC, GTG, and ATT. Most of the PCGs stop with TGA, and the remaining with CCT, GAA, GGT, TCA, CCA, CTA, TTA, AAA, ATT, or ATA. The phylogenetic tree shows that A. biguttula biguttula belongs to Empoascini of the subfamily Typhlocybinae, but is different from other species within the subfamily.
Collapse
Affiliation(s)
| | | | - Thomas Cheeran Amal
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, India
| | - Kesavan Markkandan
- Oneomics Private Limited, Bharathidasan University Technology Park, Tiruchirappalli, India
| |
Collapse
|
5
|
Wang ZG, Qin CY, Chen Y, Yu XY, Chen RY, Niu J, Wang JJ. Fusion dsRNA designs incorporating multiple target sequences can enhance the aphid control capacity of an RNAi-based strategy. PEST MANAGEMENT SCIENCE 2024; 80:2689-2697. [PMID: 38327015 DOI: 10.1002/ps.7975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND RNA interference (RNAi) is the sequence-dependent suppression of gene expression by double-stranded RNA (dsRNA). This is a promising strategy for the control of insect pests because dsRNA can be rationally designed to maximize efficacy and biosafety, the latter by using sequences that are found in target pests but are safe for non-target insects. However, this has yet to be optimized in aphids, destructive sap-sucking pests that also transmit plant viruses. We used the green peach aphid (Myzus persicae) as a case study to optimize the efficiency of RNAi by applying a novel fusion dsRNA design. RESULTS Comparative transcriptomics revealed a number of genes that are induced in feeding aphids, and eight candidate genes were chosen as RNAi targets. To improve RNAi efficiency, our fusion dsRNA design approach combined optimal gene fragments (highly conserved in several aphid species but with less homology in beneficial insects such as the predator ladybeetle Propylea japonica) from three candidate genes. We compared this RNAi-based biological control approach with conventional chemical control using imidacloprid. We found that the fusion dsRNA strategy inhibited the aphid population to a significantly greater extent than single-target RNAi and did not affect ladybeetle fitness, allowing an additive effect between RNAi and natural predation, whereas imidacloprid was harmful to aphids and ladybeetles. CONCLUSION Our fusion dsRNA design approach enhances the ability of RNAi to control aphids without harming natural predators. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zi-Guo Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Cong-Yan Qin
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xin-Yuan Yu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Ruo-Yu Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jinzhi Niu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
6
|
Mehdi F, Galani S, Wickramasinghe KP, Zhao P, Lu X, Lin X, Xu C, Liu H, Li X, Liu X. Current perspectives on the regulatory mechanisms of sucrose accumulation in sugarcane. Heliyon 2024; 10:e27277. [PMID: 38463882 PMCID: PMC10923725 DOI: 10.1016/j.heliyon.2024.e27277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Sugars transported from leaves (source) to stems (sink) energize cell growth, elongation, and maintenance. which are regulated by a variety of genes. This review reflects progress and prospects in the regulatory mechanism for maximum sucrose accumulation, including the role of sucrose metabolizing enzymes, sugar transporters and the elucidation of post-transcriptional control of sucrose-induced regulation of translation (SIRT) in the accumulation of sucrose. The current review suggests that SIRT is emerging as a significant mechanism controlling Scbzip44 activities in response to endogenous sugar signals (via the negative feedback mechanism). Sucrose-controlled upstream open reading frame (SC-uORF) exists at the 5' leader region of Scbzip44's main ORF, which inhibits sucrose accumulation through post-transcriptional regulatory mechanisms. Sucrose transporters (SWEET1a/4a/4b/13c, TST, SUT1, SUT4 and SUT5) are crucial for sucrose translocation from source to sink. Particularly, SWEET13c was found to be a major contributor to the efflux in the transportation of stems. Tonoplast sugar transporters (TSTs), which import sucrose into the vacuole, suggest their tissue-specific role from source to sink. Sucrose cleavage has generally been linked with invertase isozymes, whereas sucrose synthase (SuSy)-catalyzed metabolism has been associated with biosynthetic processes such as UDP-Glc, cellulose, hemicellulose and other polymers. However, other two key sucrose-metabolizing enzymes, such as sucrose-6-phosphate phosphohydrolase (S6PP) and sucrose phosphate synthase (SPS) isoforms, have been linked with sucrose biosynthesis. These findings suggest that manipulation of genes, such as overexpression of SPS genes and sucrose transporter genes, silencing of the SC-uORF of Scbzip44 (removing the 5' leader region of the main ORF that is called SIRT-Insensitive) and downregulation of the invertase genes, may lead to maximum sucrose accumulation. This review provides an overview of sugarcane sucrose-regulating systems and baseline information for the development of cultivars with higher sucrose accumulation.
Collapse
Affiliation(s)
- Faisal Mehdi
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Saddia Galani
- Dr.A. Q. Khan Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi Pakistan
| | - Kamal Priyananda Wickramasinghe
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- Sugarcane Research Institute, Uda Walawa, 70190, Sri Lanka
| | - Peifang Zhao
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xin Lu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xiuqin Lin
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Chaohua Xu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Hongbo Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xujuan Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xinlong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| |
Collapse
|
7
|
Ali S, Ullah W, Kamarulzaman AFS, Hassan M, Rauf M, Khattak MNK, Dawar FU. Proteomic profile of epidermal mucus from Labeo rohita reveals differentially abundant proteins after Aeromonas hydrophila infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100115. [PMID: 37771818 PMCID: PMC10523009 DOI: 10.1016/j.fsirep.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
We report the proteomic profile of Epidermal Mucus (EM) from Labeo rohita and identified the differentially abundant proteins (DAPs) against Aeromonas hydrophila infection through label-free liquid chromatography-mass spectrometry (LC-MS/MS). Using discovery-based proteomics, a total of 2039 proteins were quantified in nontreated group and 1,328 proteins in the treated group, of which 114 were identified as DAPs in both the groups. Of the 114 DAPs, 68 proteins were upregulated and 46 proteins were downregulated in the treated group compared to nontreated group. Functional annotations of these DAPs shows their association with metabolism, cellular process, molecular process, cytoskeletal, stress, and particularly immune system. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Fisher's exact test between the two groups shows that most of the proteins were immune-related, which were significantly associated with the proteasome, phagosome, and Salmonella infection pathways. Overall, this study shows a basic and primary way for further functional research of the involvement of vitellogenin 2, alpha-2-macroglobulin-like protein, toll-like receptors (TLR-13), calpain, keratin-like proteins, and heat shock proteins against bacterial infection. Nonetheless, this first-ever comprehensive report of a proteomic sketch of EM from L. rohita after A. hydrophila infection provides systematic protein information to broadly understand the biological role of fish EM against bacterial infection.
Collapse
Affiliation(s)
- Shandana Ali
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | - Waheed Ullah
- Department of Microbiology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | | | - Maizom Hassan
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Muhammad Rauf
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farman Ullah Dawar
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
- Laboratory of Marine Biotechnology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| |
Collapse
|
8
|
Afzoon S, Amiri MA, Mohebbi M, Hamedani S, Farshidfar N. A systematic review of the impact of Porphyromonas gingivalis on foam cell formation: Implications for the role of periodontitis in atherosclerosis. BMC Oral Health 2023; 23:481. [PMID: 37442956 PMCID: PMC10347812 DOI: 10.1186/s12903-023-03183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The current literature suggests the significant role of foam cells in the initiation of atherosclerosis through the formation of a necrotic core in atherosclerotic plaques. Moreover, an important periodontal pathogen called Porphyromonas gingivalis (P. gingivalis) is indicated to play a significant role in this regard. Thus, the aim of this systematic review was to comprehensively study the pathways by which P. gingivalis as a prominent bacterial species in periodontal disease, can induce foam cells that would initiate the process of atherosclerosis formation. METHODS An electronic search was undertaken in three databases (Pubmed, Scopus, and Web of Science) to identify the studies published from January 2000 until March 2023. The risk of bias in each study was also assessed using the QUIN risk of bias assessment tool. RESULTS After the completion of the screening process, 11 in-vitro studies met the inclusion criteria and were included for further assessments. Nine of these studies represented a medium risk of bias, while the other two had a high risk of bias. All of the studies have reported that P. gingivalis can significantly induce foam cell formation by infecting the macrophages and induction of oxidized low-density lipoprotein (oxLDL) uptake. This process is activated through various mediators and pathways. The most important factors in this regard are the lipopolysaccharide of P. gingivalis and its outer membrane vesicles, as well as the changes in the expression rate of transmembrane lipid transportation channels, including transient receptor potential channel of the vanilloid subfamily 4 (TRPV4), lysosomal integral protein 2 (LIMP2), CD36, etc. The identified molecular pathways involved in this process include but are not limited to NF-κB, ERK1/2, p65. CONCLUSION Based on the results of this study, it can be concluded that P. gingivalis can effectively promote foam cell formation through various pathogenic elements and this bacterial species can affect the expression rate of various genes and the function of specific receptors in the cellular and lysosomal membranes. However, due to the moderate to high level of risk of bias among the studies, further studies are required in this regard.
Collapse
Affiliation(s)
- Saeed Afzoon
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mostafa Mohebbi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Lee YS, Son S, Lee HK, Lee RH, Shin D. Elucidating breed-specific variants of native pigs in Korea: insights into pig breeds' genomic characteristics. Anim Cells Syst (Seoul) 2022; 26:338-347. [PMID: 36605594 PMCID: PMC9809348 DOI: 10.1080/19768354.2022.2141316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Although conserving native pig breeds is important in Korea, research on the genomic aspects to identify breed-specific variations in native pig breeds is uncommon. Single nucleotide polymorphisms (SNPs) can be a powerful source for identifying breed-specific variants. We used whole genome sequencing data, including Jeju Native Pig (JNP), Korean Native Pig (KNP), Korean Wild Boar (KWB), and other western commercial pig breeds to determine native pig breed-specific SNPs. Furthermore, the goal was not only to determine the genomic specificity of native pig breeds but also to identify SNPs that carry breed-specific information (breed-informative SNPs) that can be related to breed characteristics. The representative characteristics of native pigs are their unique meat quality and disease resistance. We surveyed the gene ontology (GO) of native pigs with breed-specific SNPs. Examining the genes associated with GO may contribute to revealing the reasons for the unique characteristics of native pig breeds. The enriched GOs terms were neuron projection development, cell surface receptor signaling pathway, ion homeostasis in JNP, cell adhesion and wound healing in KNP, and DNA repair and reproduction in KWB. We expect that this study of breed-specific SNPs will enable us to gain a deeper understanding of native pigs in Korea.
Collapse
Affiliation(s)
- Young-Sup Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seungwoo Son
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ra Ham Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea, Ra Ham Lee Department of Animal Biotechnology, Jeonbuk National University, Jeonju54896, Republic of Korea; Donghyun Shin Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju54896, Republic of Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea, Ra Ham Lee Department of Animal Biotechnology, Jeonbuk National University, Jeonju54896, Republic of Korea; Donghyun Shin Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju54896, Republic of Korea
| |
Collapse
|
10
|
Ai N, Yang Z, Yuan H, Ouyang D, Miao R, Ji Y, Liang Y. A distributed sparse logistic regression with $$L_{1/2}$$ regularization for microarray biomarker discovery in cancer classification. Soft comput 2022. [DOI: 10.1007/s00500-022-07551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Kharva H, Feder JL, Hahn DA, Olsson SB. Rapid brain development and reduced neuromodulator titres correlate with host shifts in Rhagoletis pomonella. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220962. [PMID: 36117862 PMCID: PMC9449811 DOI: 10.1098/rsos.220962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Host shifts are considered a key generator of insect biodiversity. For insects, adaptation to new host plants often requires changes in larval/pupal development and adult behavioural preference toward new hosts. Neurochemicals play key roles in both development and behaviour and therefore provide a potential source for such synchronization. Here, we correlated life-history timing, brain development and corresponding levels of 14 neurochemicals in Rhagoletis pomonella (Diptera: Tephritidae), a species undergoing ecological speciation through an ongoing host shift from hawthorn to apple fruit. These races exhibit differences in pupal diapause timing as well as adult behavioural preference with respect to their hosts. This difference in behavioural preference is coupled with differences in neurophysiological response to host volatiles. We found that apple race pupae exhibited adult brain morphogenesis three weeks faster after an identical simulated winter than the hawthorn race, which correlated with significantly lower titres of several neurochemicals. In some cases, particularly biogenic amines, differences in titres were reflected in the mature adult stage, when host preference is exhibited. In summary, life-history timing, neurochemical titre and brain development can be coupled in this speciating system, providing new hypotheses for the origins of new species through host shifts.
Collapse
Affiliation(s)
- Hinal Kharva
- Naturalist-Inspired Chemical Ecology lab, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
- School of Life Sciences, The University of Trans-Disciplinary Health Sciences and Technology, 74/2, Jarakabande Kaval, Post Attur via Yelahanka, Bangalore 560064, India
| | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Daniel A. Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Shannon B. Olsson
- Naturalist-Inspired Chemical Ecology lab, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Turner syndrome is the most common sex chromosome abnormality in female individuals, affecting 1/2000-1/2500 female newborns. Despite the high incidence of this condition, the mechanisms underlying the development of multiorgan dysfunction have not been elucidated. RECENT FINDINGS Clinical features involve multiple organ systems and include short stature, dysmorphic facial features, delayed puberty and gonadal failure, cardiac and renal abnormalities, audiologic abnormalities, and a high prevalence of endocrine and autoimmune disorders. Paucity of available genotype/phenotype correlation limits the ability of clinicians to provide accurate guidance and management. Given the advent of robust genetic testing and analysis platforms, developments in the genetic basis of disease are materializing at a rapid pace. SUMMARY The objective of this review is to highlight the recent advances in knowledge and to provide a framework with which to apply new data to the foundational understanding of the condition.
Collapse
|
13
|
Sajad S, Jiang S, Anwar M, Dai Q, Luo Y, Hassan MA, Tetteh C, Song J. Genome-Wide Study of Hsp90 Gene Family in Cabbage ( Brassica oleracea var. capitata L.) and Their Imperative Roles in Response to Cold Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:908511. [PMID: 35812899 PMCID: PMC9258498 DOI: 10.3389/fpls.2022.908511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 05/24/2023]
Abstract
Heat shock protein 90 (Hsp90) plays an important role in plant developmental regulation and defensive reactions. Several plant species have been examined for the Hsp90 family gene. However, the Hsp90 gene family in cabbage has not been well investigated to date. In this study, we have been discovered 12 BoHsp90 genes in cabbage (Brassica oleracea var. capitata L.). These B. oleracea Hsp90 genes were classified into five groups based on phylogenetic analysis. Among the five groups, group one contains five Hsp90 genes, including BoHsp90-1, BoHsp90-2, BoHsp90-6, BoHsp90-10, and BoHsp90-12. Group two contains three Hsp90 genes, including BoHsp90-3, BoHsp90-4, and BoHsp90. Group three only includes one Hsp90 gene, including BoHsp90-9. Group four were consisting of three Hsp90 genes including BoHsp90-5, BoHsp90-7, and BoHsp90-8, and there is no Hsp90 gene from B. oleracea in the fifth group. Synteny analysis showed that a total of 12 BoHsp90 genes have a collinearity relationship with 5 Arabidopsis genes and 10 Brassica rapa genes. The promoter evaluation revealed that the promoters of B. oleracea Hsp90 genes included environmental stress-related and hormone-responsive cis-elements. RNA-seq data analysis indicates that tissue-specific expression of BoHsp90-9 and BoHsp90-5 were highly expressed in stems, leaves, silique, and flowers. Furthermore, the expression pattern of B. oleracea BoHsp90 exhibited that BoHsp90-2, BoHsp90-3, BoHsp90-7, BoHsp90-9, BoHsp90-10, and BoHsp90-11 were induced under cold stress, which indicates these Hsp90 genes perform a vital role in cold acclimation and supports in the continual of normal growth and development process. The cabbage Hsp90 gene family was found to be differentially expressed in response to cold stress, suggesting that these genes play an important role in cabbage growth and development under cold conditions.
Collapse
Affiliation(s)
- Shoukat Sajad
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Shuhan Jiang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qian Dai
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Yuxia Luo
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | | | - Charles Tetteh
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jianghua Song
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| |
Collapse
|
14
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
15
|
Li J, Wu K, Li L, Wang M, Fang L, Zeng S. Cytological, Biochemical, and Transcriptomic Analyses of a Novel Yellow Leaf Variation in a Paphiopedilum (Orchidaceae) SCBG COP15. Genes (Basel) 2021; 13:71. [PMID: 35052412 PMCID: PMC8775194 DOI: 10.3390/genes13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
The genus Paphiopedilum, belonging to the Orchidaceae, has high ornamental value. Leaf variations can considerably improve the economic and horticultural value of the orchids. In the study, a yellow leaf mutant of a Paphiopedilum hybrid named P. SCBG COP15 was identified during the in vitro plant culture process; however, little is known about their molecular mechanisms. For this, RNA-seq libraries were created and used for the transcriptomic profiling of P. SCBG COP15 and the yellow mutant. The Chl a, Chl b, and carotenoid contents in the yellow leaves decreased by approximately 75.99%, 76.92%, and 56.83%, respectively, relative to the green leaves. Decreased chloroplasts per cell and abnormal chloroplast ultrastructure were observed by electron microscopic investigation in yellowing leaves; photosynthetic characteristics and Chl fluorescence parameters were also decreased in the mutant. Altogether, 34,492 unigenes were annotated by BLASTX; 1,835 DEGs were identified, consisting of 697 upregulated and 1138 downregulated DEGs. HEMA, CRD, CAO, and CHLE, involved in Chl biosynthesis, were predicted to be key genes responsible for leaf yellow coloration. Our findings provide an essential genetic resource for understanding the molecular mechanism of leaf color variation and breeding new varieties of Paphiopedilum with increased horticultural value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (K.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (K.W.); (L.L.)
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (K.W.); (L.L.)
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization/National Orchid Conservation Center of China/Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (K.W.); (L.L.)
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (K.W.); (L.L.)
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
16
|
Complete Mitochondrial Genomes of Metcalfa pruinosa and Salurnis marginella (Hemiptera: Flatidae): Genomic Comparison and Phylogenetic Inference in Fulgoroidea. Curr Issues Mol Biol 2021; 43:1391-1418. [PMID: 34698117 PMCID: PMC8929015 DOI: 10.3390/cimb43030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
The complete mitochondrial genomes (mitogenomes) of two DNA barcode-defined haplotypes of Metcalfa pruinosa and one of Salurnis marginella (Hemiptera: Flatidae) were sequenced and compared to those of other Fulgoroidea species. Furthermore, the mitogenome sequences were used to reconstruct phylogenetic relationships among fulgoroid families. The three mitogenomes, including that of the available species of Flatidae, commonly possessed distinctive structures in the 1702-1836 bp A+T-rich region, such as two repeat regions at each end and a large centered nonrepeat region. All members of the superfamily Fulgoroidea, including the Flatidae, consistently possessed a motiflike sequence (TAGTA) at the ND1 and trnS2 junction. The phylogenetic analyses consistently recovered the familial relationships of (((((Ricaniidae + Issidae) + Flatidae) + Fulgoridae) + Achilidae) + Derbidae) in the amino acid-based analysis, with the placement of Cixiidae and Delphacidae as the earliest-derived lineages of fulgoroid families, whereas the monophyly of Delphacidae was not congruent between tree-constructing algorithms.
Collapse
|
17
|
Biradar VS, Rajpathak SN, Joshi SR, Deobagkar DD. Functional and regulatory aspects of oxidative stress response in X monosomy. In Vitro Cell Dev Biol Anim 2021; 57:661-675. [PMID: 34505228 DOI: 10.1007/s11626-021-00604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
The partial/complete loss of one X chromosome in a human female leads to Turner syndrome (TS). TS individuals display a range of phenotypes including short stature, osteoporosis, ovarian malfunction, diabetes, and thyroid dysfunction. Epigenetic factors and regulatory networks are distinctly different in X monosomy (45, X). In a lifetime, an individual is exposed to a variety of stress conditions. To study whether X monosomy cells display a differential response upon exposure to mild stress as compared to normal 46, XX cells and whether this may contribute to various co-morbidities in aneuploid individuals, we have carried out a transcriptomic analysis of human fibroblasts 45, X and 46, XX after exposure to mild oxidative stress. Under these conditions, over 350 transcripts were seen to be differentially expressed in 45, X and 46, XX cells. Pathways associated with oxidative stress were differentially expressed highlighting the differential regulation of genes and associated phenotypes. It could be seen that X monosomy cells are more susceptible to oxidative stress as compared to normal cells and have altered molecular pathways both in normal conditions and also upon exposure to mild oxidative stress. To explore this aspect in detail, we have mapped the expressions of transcription factors (TFs) in 45, X and 46, XX cells. The network of transcription activating factors is differentially regulated in 45, X and 46, XX cells under stress exposure. It is tempting to speculate that the altered ability of 45, X (Turner) cells to respond to stress may play a significant role in the physiological function and altered phenotypes in Turner syndrome.
Collapse
Affiliation(s)
- Vinayak S Biradar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Shriram N Rajpathak
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Recombinant Department, Serum Institute of India Pvt. Ltd., Pune, 411 028, India
| | - Suraj R Joshi
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India.
- School of Physical Sciences, ISRO Space Technology Cell, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
18
|
Proteomic analysis of Caenorhabditis elegans against Salmonella Typhi toxic proteins. Genes Immun 2021; 22:75-92. [PMID: 33986511 DOI: 10.1038/s41435-021-00132-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
Bacterial effector molecules are crucial infectious agents that can cause pathogenesis. In the present study, the pathogenesis of toxic Salmonella enterica serovar Typhi (S. Typhi) proteins on the model host Caenorhabditis elegans was investigated by exploring the host's regulatory proteins during infection through the quantitative proteomics approach. Extracted host proteins were analyzed using two-dimensional gel electrophoresis (2D-GE) and differentially regulated proteins were identified using MALDI TOF/TOF/MS analysis. Of the 150 regulated proteins identified, 95 were downregulated while 55 were upregulated. The interaction network of regulated proteins was predicted using the STRING tool. Most downregulated proteins were involved in muscle contraction, locomotion, energy hydrolysis, lipid synthesis, serine/threonine kinase activity, oxidoreductase activity, and protein unfolding. Upregulated proteins were involved in oxidative stress pathways. Hence, cellular stress generated by S. Typhi proteins in the model host was determined using lipid peroxidation as well as oxidant and antioxidant assays. In addition, candidate proteins identified via extract analysis were validated by western blotting, and the roles of several crucial molecules were analyzed in vivo using transgenic strains (myo-2 and col-19) and mutant (ogt-1) of C. elegans. To the best of our knowledge, this is the first study to report protein regulation in host C. elegans exposed to toxic S. Typhi proteins. It highlights the significance of p38 MAPK and JNK immune pathways.
Collapse
|
19
|
An insight into transcriptome of Cyathus bulleri for lignocellulase expression on wheat bran. Arch Microbiol 2021; 203:3727-3736. [PMID: 33877388 DOI: 10.1007/s00203-021-02326-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
To identify enzymes that can be effectively used for hydrolysis of lignocellulosic biomass, an attractive carbon source in biorefineries, transcriptome analysis was carried out of wheat bran grown fungus, Cyathus bulleri. A comprehensive set of transcripts, encoding carbohydrate active enzymes, were identified. These belonged to 55, 32, 12, 11 and 7 different families of the enzyme classes of Glycoside Hydrolases (GHs), Glycosyl Transferases (GTs), Auxiliary Activities (AAs), Carbohydrate Esterases (CEs) and Polysaccharide Lyases (PLs) respectively. Higher levels of transcripts were obtained for proteins encoding cellulose and hemicellulose degrading activities (of the GH class) with the highest diversity found in the transcripts encoding the hemicellulases. Several transcripts encoding pectin degrading activity were also identified indicating close association of the pectin with the cellulose/hemicellulose in the cell wall of this fungus. Transcripts encoding ligninases were categorized into Cu radical oxidase, Glucose-Methanol-Choline oxidoreductase (with 37 different transcripts in the AA3 sub-family), Laccase and Manganese peroxidases. Temporal gene expression profile for laccase isoforms was studied to understand their role in lignin degradation. To our knowledge, this is the first analysis of the transcriptome of a member belonging to the family Nidulariaceae.
Collapse
|
20
|
Zhang W, Zhao Z, Wang K, Shen L, Shi X. The International Conference on Intelligent Biology and Medicine (ICIBM) 2020: Scalable techniques and algorithms for computational genomics. BMC Genomics 2020; 21:831. [PMID: 33372588 PMCID: PMC7770499 DOI: 10.1186/s12864-020-07256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this introduction article, we summarize the 2020 International Conference on Intelligent Biology and Medicine (ICIBM 2020) conference which was held on August 9-10, 2020 (virtual conference). We then briefly describe the nine research articles included in this supplement issue. ICIBM 2020 hosted four scientific sections covering current topics in bioinformatics, computational biology, genomics, biomedical informatics, among others. A total of 75 original manuscripts were submitted to ICIBM 2020. All the papers were under rigorous review (at least three reviewers), and highly ranked manuscripts were selected for oral presentation and supplement issues. This genomics supplement issue included nine manuscripts. These articles cover methods and applications for single cell RNA sequencing, multi-omics data integration for gene regulation, gene fusion detection from long-read RNA sequencing, gene co-expression analysis of metabolic pathways in cancer, integrative genome-wide association studies (GWAS) of subcortical imaging phenotype in Alzheimer's disease, as well as deep learning methods for protein structure prediction, metabolic pathway membership inference, and horizontal gene transfer (HGT) insertion sites prediction.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Xinghua Shi
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
21
|
Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. Sci Rep 2020; 10:8187. [PMID: 32424344 PMCID: PMC7235038 DOI: 10.1038/s41598-020-64890-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Insulin is a protein hormone that controls the metabolism of sugar, fat and protein via signal transduction in cells, influencing growth and developmental processes such as reproduction and ageing. From nematodes to fruit flies, rodents and other animals, glucose signalling mechanisms are highly conserved. Reproductive termites (queens and kings) exhibit an extraordinarily long lifespan relative to non-reproductive individuals such as workers, despite being generated from the same genome, thus providing a unique model for the investigation of longevity. The key reason for this molecular mechanism, however, remains unclear. To clarify the molecular mechanism underlying this phenomenon, we sequenced the transcriptomes of the primary kings (PKs), primary queens (PQs), male (WMs) and female (WFs) workers of the lower subterranean termite Reticulitermes chinensis. We performed RNA sequencing and identified 33 insulin signalling pathway-related genes in R. chinensis. RT-qPCR analyses revealed that EIF4E and RPS6 genes were highly expressed in WMs and WFs workers, while mTOR expression was lower in PKs and PQs than in WMs and WFs. PQs and PKs exhibited lower expression of akt2-a than female workers. As the highly conserved insulin signalling pathway can significantly prolong the healthspan and lifespan, so we infer that the insulin signalling pathway regulates ageing in the subterranean termite R. chinensis. Further studies are recommended to reveal the biological function of insulin signalling pathway-related genes in the survival of termites to provide new insights into biomolecular homeostasis maintenance and its relationship to remarkable longevity.
Collapse
|
22
|
Mathé E, Zhang C, Wang K, Ning X, Guo Y, Zhao Z. The International Conference on Intelligent Biology and Medicine 2019 (ICIBM 2019): conference summary and innovations in genomics. BMC Genomics 2019; 20:1005. [PMID: 31888451 PMCID: PMC6936133 DOI: 10.1186/s12864-019-6326-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The goal of this editorial is to summarize the 2019 International Conference on Intelligent Biology and Medicine (ICIBM 2019) conference that took place on June 9–11, 2019 in The Ohio State University, Columbus, OH, and to provide an introductory summary of the seven articles presented in this supplement issue. ICIBM 2019 hosted four keynote speakers, four eminent scholar speakers, five tutorials and workshops, twelve concurrent sessions and a poster session, totaling 23 posters, spanning state-of-the-art developments in bioinformatics, genomics, next-generation sequencing (NGS) analysis, scientific databases, cancer and medical genomics, and computational drug discovery. A total of 105 original manuscripts were submitted to ICIBM 2019, and after careful review, seven were selected for this supplement issue. These articles cover methods and applications for functional annotations of miRNA targeting, clonal evolution of bacterial cells, gene co-expression networks that describe a given phenotype, functional binding site analysis of RNA-binding proteins, normalization of genome architecture mapping data, sample predictions based on multiple NGS data types, and prediction of an individual’s genetic admixture given exonic single nucleotide polymorphisms data.
Collapse
Affiliation(s)
- Ewy Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210, USA.
| | - Chi Zhang
- Department of Medical & Molecular Genetics, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xia Ning
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210, USA
| | - Yan Guo
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Rukmangada MS, Sumathy R, Naik VG. Functional annotation of mulberry (Morus spp.) transcriptome, differential expression of genes related to growth and identification of putative genic SSRs, SNPs and InDels. Mol Biol Rep 2019; 46:6421-6434. [PMID: 31583573 DOI: 10.1007/s11033-019-05089-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/22/2019] [Indexed: 11/30/2022]
Abstract
Growth is a complex trait associated with mulberry leaf yield and controlled by several genes. In this study, we have explored the molecular basis underlying growth using Transcriptome profiling of contrasting genotypes. A total of 66.6 Mbp of primary transcriptomes from high growth (HGG)-Jalalgarah-3 and M. laevigata (H) and, low growth genotypes (LGG)-Harmutty and Vadagaraparai-2; resulting in 24210, 27998, 28085 and 28764 final transcripts respectively. Out of the 34096 pooled transcripts, 20249 transcripts matched with at least one sequence of the non-redundant database. Functional annotation resulted in the categorization of 18970 transcripts into 3 gene ontology (GO) terms and 7440 were assigned to 23 Kyoto encyclopaedia of genes and genomes (KEGG) pathway. Based on the differentially expressed genes and gene enrichment analysis, over expression of photosynthetic related transcripts in HGG and defence related transcripts in LGG were noted. Simple sequence repeats were mined from unique transcripts and the most abundant motifs were tri- (1883) followed by di- (1710), tetra- (192), penta- (68) and hexa- (40) repeats. Further, a total of 390897 high quality SNPs and 8081 InDels were identified by mapping onto Morus notabilis reference genome. The study provides an insight into the expression of genes involved in growth and further research on utilization in gentic improvement of the crop.
Collapse
Affiliation(s)
- M S Rukmangada
- Molecular Biology Laboratory - 1, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570008, Karnataka, India.,Bioinformatics Centre, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570008, Karnataka, India
| | - R Sumathy
- Bioinformatics Centre, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570008, Karnataka, India
| | - Vorkady Girish Naik
- Regional Sericultural Research Station, Central Silk Board, Ministry of Textiles - Govt. of India, Chamarajanagara, 571313, Karnataka, India.
| |
Collapse
|
24
|
Xiong X, Sun S, Li Y, Zhang X, Sun J, Xue F. The cotton WRKY transcription factor GhWRKY70 negatively regulates the defense response against Verticillium dahliae. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Wu Z, Yan J, Wang K, Liu X, Guo Y, Zhi D, Ruan J, Zhao Z. The International Conference on Intelligent Biology and Medicine (ICIBM) 2018: genomics with bigger data and wider applications. BMC Genomics 2019; 20:80. [PMID: 30712512 PMCID: PMC6360715 DOI: 10.1186/s12864-018-5369-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The sixth International Conference on Intelligent Biology and Medicine (ICIBM) took place in Los Angeles, California, USA on June 10-12, 2018. This conference featured eleven regular scientific sessions, four tutorials, one poster session, four keynote talks, and four eminent scholar talks. The scientific program covered a wide range of topics from bench to bedside, including 3D Genome Organization, reconstruction of large scale evolution of genomes and gene functions, artificial intelligence in biological and biomedical fields, and precision medicine. Both method development and application in genomic research continued to be a main component in the conference, including studies on genetic variants, regulation of transcription, genetic-epigenetic interaction at both single cell and tissue level and artificial intelligence. Here, we write a summary of the conference and also briefly introduce the four high quality papers selected to be published in BMC Genomics that cover novel methodology development or innovative data analysis.
Collapse
Affiliation(s)
- Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI 02912 USA
| | - Jingwen Yan
- Department of Biohealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Xiaoming Liu
- College of Public Health, University of South Florida, Tampa, FL 33612 USA
| | - Yan Guo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131 USA
| | - Degui Zhi
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
26
|
Zhi D, Zhao Z, Li F, Wu Z, Liu X, Wang K. The International Conference on Intelligent Biology and Medicine (ICIBM) 2018: genomics meets medicine. BMC Med Genomics 2019; 12:20. [PMID: 30704510 PMCID: PMC6357345 DOI: 10.1186/s12920-018-0448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During June 10–12, 2018, the International Conference on Intelligent Biology and Medicine (ICIBM 2018) was held in Los Angeles, California, USA. The conference included 11 scientific sessions, four tutorials, one poster session, four keynote talks and four eminent scholar talks that covered a wide range of topics ranging from 3D genome structure analysis and visualization, next generation sequencing analysis, computational drug discovery, medical informatics, cancer genomics to systems biology. While medical genomics has always been a main theme in ICIBM, this year we for the first time organized the BMC Medical Genomics Supplement for ICIBM. Here, we describe 15 ICIBM papers selected for publishing in BMC Medical Genomics.
Collapse
Affiliation(s)
- Degui Zhi
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Fuhai Li
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210, USA
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI, 02912, USA
| | - Xiaoming Liu
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Present address: College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Xu B, Yu G, Li H, Xie Z, Wen W, Zhang J, Huang B. Knockdown of STAYGREEN in Perennial Ryegrass (Lolium perenne L.) Leads to Transcriptomic Alterations Related to Suppressed Leaf Senescence and Improved Forage Quality. PLANT & CELL PHYSIOLOGY 2019; 60:202-212. [PMID: 30329104 DOI: 10.1093/pcp/pcy203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/10/2018] [Indexed: 05/09/2023]
Abstract
Chl breakdown is a hallmark of leaf senescence. Protein degradation is tightly associated with accelerated Chl catabolism during leaf senescence. Therefore, blocking or reducing Chl breakdown and thereby improving Chl and leaf protein contents is desirable for agronomic improvement in perennial forage grasses. Perennial ryegrass (Lolium perenne L.) is one principle cool-season forage grass in temperate areas throughout the world. In this study, the perennial ryegrass STAY-GREEN gene (LpSGR) was cloned and characterized. LpSGR was highly expressed in developmentally or dark-induced senescent leaves. LpSGR was subcellularly localized in chloroplast and interacted with the other Chl catabolic enzymes. RNA interference (RNAi) of LpSGR in perennial ryegrass blocked the degradation of Chl, resulting in increased Chl content and photochemical efficiency in senescent leaves. The RNAi transgenic plants had significantly improved forage quality, with up to 46.1% increased protein content in the harvested biomass. Transcriptome comparison revealed that suppression of LpSGR led to multiple alterations in metabolic pathways in locations inside the chloroplast. Most transcription factors of senescence-associated hormonal signaling pathways (e.g. ABA, ethylene and jasmonic acid) had decreased expression levels in the RNAi plants. These results provided a foundation for the further study on the regulatory mechanism of LpSGR in perennial ryegrass for the purpose of forage improvement with delayed leaf senescence and higher forage quality.
Collapse
Affiliation(s)
- Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, PR China
| | - Guohui Yu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, PR China
| | - Hui Li
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, PR China
| | - Zheni Xie
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, PR China
| | - Wuwu Wen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, PR China
| | - Jing Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, PR China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
28
|
The H3K9 methyltransferase SETDB1 maintains female identity in Drosophila germ cells. Nat Commun 2018; 9:4155. [PMID: 30297796 PMCID: PMC6175928 DOI: 10.1038/s41467-018-06697-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
The preservation of germ cell sexual identity is essential for gametogenesis. Here we show that H3K9me3-mediated gene silencing is integral to female fate maintenance in Drosophila germ cells. Germ cell specific loss of the H3K9me3 pathway members, the H3K9 methyltransferase SETDB1, WDE, and HP1a, leads to ectopic expression of genes, many of which are normally expressed in testis. SETDB1 controls the accumulation of H3K9me3 over a subset of these genes without spreading into neighboring loci. At phf7, a regulator of male germ cell sexual fate, the H3K9me3 peak falls over the silenced testis-specific transcription start site. Furthermore, H3K9me3 recruitment to phf7 and repression of testis-specific transcription is dependent on the female sex determination gene Sxl. Thus, female identity is secured by an H3K9me3 epigenetic pathway in which Sxl is the upstream female-specific regulator, SETDB1 is the required chromatin writer, and phf7 is one of the critical SETDB1 target genes. Epigenetic regulation is critical for the maintenance of germ cell identity. Here the authors show that H3K9me3-mediated gene silencing is critical for repression of testis-specific transcription in Drosophila female germ cells, indicating H3K9me3 maintains female germ cell sexual identity.
Collapse
|
29
|
Piazza R, Magistroni V, Redaelli S, Mauri M, Massimino L, Sessa A, Peronaci M, Lalowski M, Soliymani R, Mezzatesta C, Pirola A, Banfi F, Rubio A, Rea D, Stagno F, Usala E, Martino B, Campiotti L, Merli M, Passamonti F, Onida F, Morotti A, Pavesi F, Bregni M, Broccoli V, Baumann M, Gambacorti-Passerini C. SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub. Nat Commun 2018; 9:2192. [PMID: 29875417 PMCID: PMC5989213 DOI: 10.1038/s41467-018-04462-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
SETBP1 variants occur as somatic mutations in several hematological malignancies such as atypical chronic myeloid leukemia and as de novo germline mutations in the Schinzel–Giedion syndrome. Here we show that SETBP1 binds to gDNA in AT-rich promoter regions, causing activation of gene expression through recruitment of a HCF1/KMT2A/PHF8 epigenetic complex. Deletion of two AT-hooks abrogates the binding of SETBP1 to gDNA and impairs target gene upregulation. Genes controlled by SETBP1 such as MECOM are significantly upregulated in leukemias containing SETBP1 mutations. Gene ontology analysis of deregulated SETBP1 target genes indicates that they are also key controllers of visceral organ development and brain morphogenesis. In line with these findings, in utero brain electroporation of mutated SETBP1 causes impairment of mouse neurogenesis with a profound delay in neuronal migration. In summary, this work unveils a SETBP1 function that directly affects gene transcription and clarifies the mechanism operating in myeloid malignancies and in the Schinzel–Giedion syndrome caused by SETBP1 mutations. SETBP1 variants occur as somatic mutations in several malignancies and as de novo germline mutations in developmental disorders. Here the authors provide evidence that SETBP1 binds to gDNA in AT-rich promoter regions to promote target gene upregulation, indicating SETBP1 functions directly to regulate transcription.
Collapse
Affiliation(s)
- Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy.
| | - Vera Magistroni
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy
| | - Luca Massimino
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marco Peronaci
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy
| | - Maciej Lalowski
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, Meilahti Clinical Proteomics Core Facility, University of Helsinki, 00290, Helsinki, Finland
| | - Rabah Soliymani
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, Meilahti Clinical Proteomics Core Facility, University of Helsinki, 00290, Helsinki, Finland
| | - Caterina Mezzatesta
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy
| | - Alessandra Pirola
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Alicia Rubio
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Delphine Rea
- Service d'Hématologie Adulte, Hôpital Saint-Louis, 75010, Paris, France
| | - Fabio Stagno
- Chair and Hematology Section, Ferrarotto Hospital, AOU Policlinico, 95123, Catania, Italy
| | - Emilio Usala
- Azienda Brotzu U.O. Ematologia e CTMO, Ospedale Businco, 09121, Cagliari, Italy
| | - Bruno Martino
- UO Ematologia Azienda Ospedaliera "BIANCHI MELACRINO MORELLI", 89124, Reggio Calabria, Italy
| | - Leonardo Campiotti
- Dipartimento Medicina Clinica e Sperimentale, Università Insubria, 21100, Varese, Italy
| | - Michele Merli
- Division of Hematology, University Hospital Ospedale di Circolo e Fondazione Macchi, 21100, Varese, Italy
| | - Francesco Passamonti
- Hematology, Dipartimento di Medicina Clinica e Sperimentale, University of Varese, 21100, Varese, Italy
| | - Francesco Onida
- BMT Center - Oncohematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, 20122, Milan, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano (Torino), Italy
| | - Francesca Pavesi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marco Bregni
- Oncology Unit, ASST Valle Olona, Ospedale di Circolo di Busto Arsizio, 21052, Busto Arsizio, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.,CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Marc Baumann
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, Meilahti Clinical Proteomics Core Facility, University of Helsinki, 00290, Helsinki, Finland
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo hospital, 20900, Monza, Italy
| |
Collapse
|
30
|
Santos PKF, de Souza Araujo N, Françoso E, Zuntini AR, Arias MC. Diapause in a tropical oil-collecting bee: molecular basis unveiled by RNA-Seq. BMC Genomics 2018; 19:305. [PMID: 29703143 PMCID: PMC5923013 DOI: 10.1186/s12864-018-4694-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diapause is a natural phenomenon characterized by an arrest in development that ensures the survival of organisms under extreme environmental conditions. The process has been well documented in arthropods. However, its molecular basis has been mainly studied in species from temperate zones, leaving a knowledge gap of this phenomenon in tropical species. In the present study, the Neotropical and solitary bee Tetrapedia diversipes was employed as a model for investigating diapause in species from tropical zones. Being a bivoltine insect, Tetrapedia diversipes produce two generations of offspring per year. The first generation, normally born during the wet season, develops faster than individuals from the second generation, born after the dry season. Furthermore, it has been shown that the development of the progeny, of the second generation, is halted at the 5th larval instar, and remains in larval diapause during the dry season. Towards the goal of gaining a better understanding of the diapause phenomenon we compared the global gene expression pattern, in larvae, from both reproductive generations and during diapause. The results demonstrate that there are similarities in the observed gene expression patterns to those already described for temperate climate models, and also identify diapause-related genes that have not been previously reported in the literature. RESULTS The RNA-Seq analysis identified 2275 differentially expressed transcripts, of which 1167 were annotated. Of these genes, during diapause, 352 were upregulated and 815 were downregulated. According to their biological functions, these genes were categorized into the following groups: cellular detoxification, cytoskeleton, cuticle, sterol and lipid metabolism, cell cycle, heat shock proteins, immune response, circadian clock, and epigenetic control. CONCLUSION Many of the identified genes have already been described as being related to diapause; however, new genes were discovered, for the first time, in this study. Among those, we highlight: Niemann-Pick type C1, NPC2 and Acyl-CoA binding protein homolog (all involved in ecdysteroid synthesis); RhoBTB2 and SASH1 (associated with cell cycle regulation) and Histone acetyltransferase KAT7 (related to epigenetic transcriptional regulation). The results presented here add important findings to the understanding of diapause in tropical species, thus increasing the comprehension of diapause-related molecular mechanisms.
Collapse
Affiliation(s)
- Priscila Karla F. Santos
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| | - Natalia de Souza Araujo
- 0000 0001 0805 7253grid.4861.bCurrent address: GIGA – Medical Genomics, Unit of Animal Genomics, University of Liege, Quartier Hopital, Avenue de I’Hopital, 11, 4000 Liege, Belgium
| | - Elaine Françoso
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| | - Alexandre Rizzo Zuntini
- 0000 0001 0723 2494grid.411087.bDepartamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Barão Geraldo, Campinas, SP CEP 13083-970 Brazil
| | - Maria Cristina Arias
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| |
Collapse
|
31
|
Islam MT, Hussain HI, Rookes JE, Cahill DM. Transcriptome analysis, using RNA-Seq of Lomandra longifolia roots infected with Phytophthora cinnamomi reveals the complexity of the resistance response. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:130-142. [PMID: 28881083 DOI: 10.1111/plb.12624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/30/2017] [Indexed: 05/05/2023]
Abstract
The plant pathogen Phytophthora cinnamon the causal agent of disease in numerous species, is a major threat to natural vegetation and has economic impacts in agriculture. The pathogen principally invades the root system, which, in susceptible species, is rapidly colonised and functionally destroyed. Few species are resistant, however, where resistance is expressed the pathogen is restricted to small, localised lesions. The molecular mechanisms that underpin this response in resistant species are not well understood. Lomandra longifolia, an Australian native species, is highly resistant to P. cinnamomi. In an earlier study, we showed induction of resistance-related components such as callose, lignin and hydrogen peroxide (H2 O2 ) in L. longifolia roots that had been inoculated with P. cinnamomi. Here, in order to further identify, during the very early stages of infection, the molecular components and regulatory networks that may trigger resistance, a comprehensive root transcriptome analysis was performed using next generation sequencing. Overall, 18 cDNA libraries were produced generating 52.8 GB 126 base pair reads, which were de novo assembled into contigs. Differentially expressed genes (DEGs) were identified allowing the identification of infection-responsive candidate genes that were putatively related to resistance, and from this set ten were selected for qRT-PCR to validate the RNA-Seq expression value. Further analysis of individual candidates revealed that many were involved in PAMP-triggered immunity (PTI; pattern recognition receptors, glutathione S-transferase, callose synthases, pathogenesis-related protein-1, mitogen activated protein kinases) and effector-triggered immunity (ETI) (NBS-LRR, signalling genes, transcription factors and anti-pathogenic compound synthase genes). As these candidate genes or mediated components activate different defence signalling systems, they may have potential for investigation of novel approaches to disease control and in transgenic approaches for improvement, in susceptible species, of resistance to P. cinnamomi.
Collapse
Affiliation(s)
- M T Islam
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - H I Hussain
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| | - J E Rookes
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| | - D M Cahill
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| |
Collapse
|
32
|
Gamboa M, Tsuchiya MC, Matsumoto S, Iwata H, Watanabe K. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21422. [PMID: 28925517 DOI: 10.1002/arch.21422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
| | - Maria Claret Tsuchiya
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Institute of Biological Sciences, University of the Philippines, Los Baños, Laguna, Philippines
| | - Suguru Matsumoto
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
33
|
Fu S, Shao J, Paul C, Zhou C, Hartung JS. Transcriptional analysis of sweet orange trees co-infected with 'Candidatus Liberibacter asiaticus' and mild or severe strains of Citrus tristeza virus. BMC Genomics 2017; 18:837. [PMID: 29089035 PMCID: PMC5664567 DOI: 10.1186/s12864-017-4174-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Citrus worldwide is threatened by huanglongbing (HLB) and tristeza diseases caused by 'Candidatus Liberibacter asiaticus' (CaLas) and Citrus tristeza virus (CTV). Although the pathogens are members of the α-proteobacteria and Closteroviridae, respectively, both are restricted to phloem cells in infected citrus and are transmitted by insect vectors. The response of sweet orange to single infection by either of these two pathogens has been characterized previously by global gene expression analysis. But because of the ubiquity of these pathogens where the diseases occur, co-infection by both pathogens is very common and could lead to increased disease severity based on synergism. We therefore co-inoculated sweet orange trees with CaLas and either a mild or a severe strain of CTV, and measured changes of gene expression in host plants. RESULTS In plants infected with CaLas-B232, the overall alteration in gene expression was much greater in plants co-inoculated with the severe strain of CTV, B6, than when co-infected with the mild strain of CTV, B2. Plants co-infected with CaLas-B232 and either strain of CTV died but trees co-infected with CTV-B2 survived much longer than those co-infected with CTV-B6. Many important pathways were perturbed by both CTV-B2/CaLas-B232 and/or CTV-B6/CaLas-B232, but always more severely by CTV-B6/CaLas-B232. Genes related to cell wall modification and metal transport responded differently to infection by the pathogens in combination than by the same pathogens singly. The expressions of genes encoding phloem proteins and sucrose loading proteins were also differentially altered in response to CTV-B2 or CTV-B6 in combination with CaLas-B232, leading to different phloem environments in plants co-infected by CaLas and mild or severe CTV. CONCLUSIONS Many host genes were expressed differently in response to dual infection as compared to single infections with the same pathogens. Interactions of the pathogens within the host may lead to a better or worse result for the host plant. CTV-B6 may exert a synergistic effect with CaLas-B232 in weakening the plant; on the other hand, the responses activated by the mild strain CTV-B2 may provide some beneficial effects against CaLas-B232 by increasing the defense response of the host.
Collapse
Affiliation(s)
- Shimin Fu
- Citrus Research Institute, Southwest University, Chongqing, China
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Jonathan Shao
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Cristina Paul
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Chongqing, China
| | - John S. Hartung
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| |
Collapse
|
34
|
The International Conference on Intelligent Biology and Medicine (ICIBM) 2016: summary and innovation in genomics. BMC Genomics 2017; 18:703. [PMID: 28984207 PMCID: PMC5629612 DOI: 10.1186/s12864-017-4018-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this editorial, we first summarize the 2016 International Conference on Intelligent Biology and Medicine (ICIBM 2016) that was held on December 8–10, 2016 in Houston, Texas, USA, and then briefly introduce the ten research articles included in this supplement issue. ICIBM 2016 included four workshops or tutorials, four keynote lectures, four conference invited talks, eight concurrent scientific sessions and a poster session for 53 accepted abstracts, covering current topics in bioinformatics, systems biology, intelligent computing, and biomedical informatics. Through our call for papers, a total of 77 original manuscripts were submitted to ICIBM 2016. After peer review, 11 articles were selected in this special issue, covering topics such as single cell RNA-seq analysis method, genome sequence and variation analysis, bioinformatics method for vaccine development, and cancer genomics.
Collapse
|
35
|
Tellis M, Mathur M, Gurjar G, Kadoo N, Gupta V. Identification and functionality prediction of pathogenesis-related protein 1 from legume family. Proteins 2017; 85:2066-2080. [PMID: 28762578 DOI: 10.1002/prot.25361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 11/11/2022]
Abstract
The production and accumulation of pathogenesis-related (PR) proteins in plants is one of the important responses to biotic and abiotic stress. Large number of identified PR proteins has been categorized into 17 functional families based on their structure, phylogenetics, and biological activities. However, they are not widely studied in legume crops. Using 29 PR1 proteins from Arabidopsis thaliana, as query, here we have predicted 92 candidate PR1 proteins through the PSI-BLAST and HMMER programs. These candidate proteins were comprehensively analyzed with, multiple sequence alignment, domain architecture studies, signal peptide, and motif extraction followed by phylogenetic analysis. Further, response of two candidate PR1 proteins from chickpea against Fusarium oxysporum f.sp.ciceri attack was validated using qRT-PCR followed by their 3D structure prediction. To decipher mode of action for PR1s, docking of pathogen extracellular matrix components along with fungal elicitors was performed with two chickpea PR1 proteins. Based on these findings, we propose carbohydrate to be the unique pathogen-recognition feature for PR1 proteins and β-glucanase activity via β-glucan binding or modification.
Collapse
Affiliation(s)
- Meenakshi Tellis
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Monika Mathur
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Gayatri Gurjar
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Department of Biotechnology, Fergusson College, Pune, India
| | - Narendra Kadoo
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Vidya Gupta
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
36
|
Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology 2017; 387:81-94. [PMID: 28602540 PMCID: PMC5535741 DOI: 10.1016/j.tox.2017.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
Abstract
Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases. Using the model organism Caenorhabditis elegans, we screened ten mitochondrial toxicants (2, 4-dinitrophenol, acetaldehyde, acrolein, aflatoxin B1, arsenite, cadmium, cisplatin, doxycycline, paraquat, rotenone) for increased or decreased toxicity in fusion (fzo-1, eat-3)-, fission (drp-1)-, and mitophagy (pdr-1, pink-1)-deficient nematodes using a larval growth assay. In general, fusion-deficient nematodes were the most sensitive to toxicants, including aflatoxin B1, arsenite, cisplatin, paraquat, and rotenone. Because arsenite was particularly potent in fission- and fusion-deficient nematodes, and hundreds of millions of people are chronically exposed to arsenic, we investigated the effects of these genetic deficiencies on arsenic toxicity in more depth. We found that deficiencies in fission and fusion sensitized nematodes to arsenite-induced lethality throughout aging. Furthermore, low-dose arsenite, which acted in a "mitohormetic" fashion by increasing mitochondrial function (in particular, basal and maximal oxygen consumption) in wild-type nematodes by a wide range of measures, exacerbated mitochondrial dysfunction in fusion-deficient nematodes. Analysis of multiple mechanistic changes suggested that disruption of pyruvate metabolism and Krebs cycle activity underlie the observed arsenite-induced mitochondrial deficits, and these disruptions are exacerbated in the absence of mitochondrial fusion. This research demonstrates the importance of mitochondrial dynamics in limiting arsenite toxicity by permitting mitochondrial adaptability. It also suggests that individuals suffering from deficiencies in mitodynamic processes may be more susceptible to the mitochondrial toxicity of arsenic and other toxicants.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Tewodros R Godebo
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Latasha L Smith
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Tess C Leuthner
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Laura L Maurer
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, 08801-3059, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
37
|
Hoang NV, Furtado A, Mason PJ, Marquardt A, Kasirajan L, Thirugnanasambandam PP, Botha FC, Henry RJ. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing. BMC Genomics 2017; 18:395. [PMID: 28532419 PMCID: PMC5440902 DOI: 10.1186/s12864-017-3757-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the economic importance of sugarcane in sugar and bioenergy production, there is not yet a reference genome available. Most of the sugarcane transcriptomic studies have been based on Saccharum officinarum gene indices (SoGI), expressed sequence tags (ESTs) and de novo assembled transcript contigs from short-reads; hence knowledge of the sugarcane transcriptome is limited in relation to transcript length and number of transcript isoforms. RESULTS The sugarcane transcriptome was sequenced using PacBio isoform sequencing (Iso-Seq) of a pooled RNA sample derived from leaf, internode and root tissues, of different developmental stages, from 22 varieties, to explore the potential for capturing full-length transcript isoforms. A total of 107,598 unique transcript isoforms were obtained, representing about 71% of the total number of predicted sugarcane genes. The majority of this dataset (92%) matched the plant protein database, while just over 2% was novel transcripts, and over 2% was putative long non-coding RNAs. About 56% and 23% of total sequences were annotated against the gene ontology and KEGG pathway databases, respectively. Comparison with de novo contigs from Illumina RNA-Sequencing (RNA-Seq) of the internode samples from the same experiment and public databases showed that the Iso-Seq method recovered more full-length transcript isoforms, had a higher N50 and average length of largest 1,000 proteins; whereas a greater representation of the gene content and RNA diversity was captured in RNA-Seq. Only 62% of PacBio transcript isoforms matched 67% of de novo contigs, while the non-matched proportions were attributed to the inclusion of leaf/root tissues and the normalization in PacBio, and the representation of more gene content and RNA classes in the de novo assembly, respectively. About 69% of PacBio transcript isoforms and 41% of de novo contigs aligned with the sorghum genome, indicating the high conservation of orthologs in the genic regions of the two genomes. CONCLUSIONS The transcriptome dataset should contribute to improved sugarcane gene models and sugarcane protein predictions; and will serve as a reference database for analysis of transcript expression in sugarcane.
Collapse
Affiliation(s)
- Nam V Hoang
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia
| | - Patrick J Mason
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia
| | - Annelie Marquardt
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,Sugar Research Australia, Indooroopilly, QLD, 4068, Australia
| | - Lakshmi Kasirajan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,ICAR - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India
| | - Prathima P Thirugnanasambandam
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,ICAR - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India
| | - Frederik C Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,Sugar Research Australia, Indooroopilly, QLD, 4068, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
38
|
Comparative Transcriptomic Analysis of Vernalization- and Cytokinin-Induced Floral Transition in Dendrobium nobile. Sci Rep 2017; 7:45748. [PMID: 28361995 PMCID: PMC5374638 DOI: 10.1038/srep45748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/03/2017] [Indexed: 12/25/2022] Open
Abstract
Vernalization is required for floral initiation in Dendrobium. Interestingly, those beneficial effects can also be achieved by exogenous cytokinin application in greenhouses. Thus, an as yet unknown crosstalk/interaction may exist between vernalization and cytokinin signaling pathways. In this study, we showed, by de novo transcriptome assembly using RNA-seq data from both vegetative and reproductive tissue samples, that some floral transition-related genes—DnVRN1, FT, SOC1, LFY and AP1—were differentially expressed in low-temperature-challenged (LT) or thidiazuron (TDZ)-treated plants, compared to those mock-treated (CK). Both LT and TDZ upregulated SOC1, LFY and AP1, while the upregulation of DnVRN1 and FT was only LT-induced. We further found that LT promoted the upregulation of some key cytokinin signaling regulators, including several cytokinin biosynthesis-related genes and type-B response regulator (RR)-encoding genes, and that both LT and TDZ triggered the significant upregulation of some marker genes in the gibberellin (GA) signaling pathway, indicating an important low temperature-cytokinin-GA axis in flowering. Our data thus have revealed a cytokinin-GA signal network underlying vernalization, providing a novel insight into further investigation of the molecular mechanism of floral initiation in Dendrobium.
Collapse
|
39
|
Sethupathy S, Vigneshwari L, Valliammai A, Balamurugan K, Pandian SK. l-Ascorbyl 2,6-dipalmitate inhibits biofilm formation and virulence in methicillin-resistant Staphylococcus aureus and prevents triacylglyceride accumulation in Caenorhabditis elegans. RSC Adv 2017. [DOI: 10.1039/c7ra02934a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the present study, the antibiofilm, antipathogenic and anticarotenogenic potential ofl-ascorbyl 2,6-dipalmitate (ADP) against methicillin-resistantStaphylococcus aureus(MRSA) has been evaluated.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- Department of Biotechnology
- Alagappa University
- Science Campus
- Karaikudi 630 003
- India
| | | | - Alaguvel Valliammai
- Department of Biotechnology
- Alagappa University
- Science Campus
- Karaikudi 630 003
- India
| | | | | |
Collapse
|
40
|
Nestel D, Papadopoulos NT, Pascacio-Villafán C, Righini N, Altuzar-Molina AR, Aluja M. Resource allocation and compensation during development in holometabolous insects. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:78-88. [PMID: 27650504 DOI: 10.1016/j.jinsphys.2016.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
We provide an extensive review on current knowledge and future research paths on the topic of resource allocation and compensation during development in holometabolous insects, emphasizing the role of resource management during development, and how compensatory mechanisms may be acting to remediate nutritional deficiencies carried over from earlier stages of development. We first review resource allocation in "open" and "closed" developmental stages and then move on to the topic of modelling resource allocation and its trade-offs. In doing so, we review novel methodological developments such as response-surface methods and mixture experiments as well as nutritional geometry. We also dwell on the fascinating topic of compensatory physiology and behavior. We finish by discussing future research paths, among them the emerging field of nutrigenomics and gut microbiome, which will shed light into the yet poorly understood role of the symbiotic microbiota in nutrient compensation or assimilation.
Collapse
Affiliation(s)
- David Nestel
- Institute of Plant Protection, Dept. of Entomology, ARO, The Volcani Ctr., Beit Dagan 50250, Israel.
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Dept. of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| | - Carlos Pascacio-Villafán
- Instituto de Ecología, A.C., Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, 91070 Xalapa, Veracruz, Mexico
| | - Nicoletta Righini
- Instituto de Ecología, A.C., Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, 91070 Xalapa, Veracruz, Mexico
| | - Alma R Altuzar-Molina
- Instituto de Ecología, A.C., Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, 91070 Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Instituto de Ecología, A.C., Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, 91070 Xalapa, Veracruz, Mexico
| |
Collapse
|
41
|
De novo sequencing, assembly and analysis of eight different transcriptomes from the Malayan pangolin. Sci Rep 2016; 6:28199. [PMID: 27618997 PMCID: PMC5020319 DOI: 10.1038/srep28199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
Pangolins are scale-covered mammals, containing eight endangered species. Maintaining pangolins in captivity is a significant challenge, in part because little is known about their genetics. Here we provide the first large-scale sequencing of the critically endangered Manis javanica transcriptomes from eight different organs using Illumina HiSeq technology, yielding ~75 Giga bases and 89,754 unigenes. We found some unigenes involved in the insect hormone biosynthesis pathway and also 747 lipids metabolism-related unigenes that may be insightful to understand the lipid metabolism system in pangolins. Comparative analysis between M. javanica and other mammals revealed many pangolin-specific genes significantly over-represented in stress-related processes, cell proliferation and external stimulus, probably reflecting the traits and adaptations of the analyzed pregnant female M. javanica. Our study provides an invaluable resource for future functional works that may be highly relevant for the conservation of pangolins.
Collapse
|
42
|
Sun Y, Wang G, Li Y, Jiang L, Yang Y, Guan S. De novo transcriptome sequencing and comparative analysis to discover genes related to floral development in Cymbidium faberi Rolfe. SPRINGERPLUS 2016; 5:1458. [PMID: 27833829 PMCID: PMC5082062 DOI: 10.1186/s40064-016-3089-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Abstract
Cymbidium faberi is a traditional orchid flower in China that is highly appreciated for its fragrant aroma from its zygomorphic flowers. One bottleneck of the commercial production of C. faberi is the long vegetative growth phase of the orchid and the difficulty of the regulation of its flowering time. Moreover, its flower size, shape and color are often targeting traits for orchid breeders. Understanding the molecular mechanisms of floral development in C. faberi will ultimately benefit the genetic improvement of this orchid plant. The goal of this study is to identify potential genes and regulatory networks related to the floral development in C. faberi by using transcriptome sequencing, de novo assembly and computational analyses. The vegetative and flower buds of C. faberi were sampled for such comparisons. The RNA-seq yielded about 189,300 contigs that were assembled into 172,959 unigenes. Furthermore, a total of 13,484 differentially expressed unigenes (DEGs) were identified between the vegetative and flower buds. There were 7683 down-regulated and 5801 up-regulated DEGs in the flower buds compared to those in the vegetative buds, among which 3430 and 6556 DEGs were specifically enriched in the flower or vegetative buds, respectively. A total of 173 DEGs orthologous to known genes associated with the floral organ development, floral symmetry and flowering time were identified, including 12 TCP transcription factors, 34 MADS-box genes and 28 flowering time related genes. Furthermore, expression levels of ten genes potentially involved in floral development and flowering time were verified by quantitative real-time PCR. The identified DEGs will facilitate the functional genetic studies for further understanding the flower development of C. faberi.
Collapse
Affiliation(s)
- Yuying Sun
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Guangdong Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuxia Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Li Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuxia Yang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuangxue Guan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
43
|
Raimondo F, Cerra D, Magni F, Pitto M. Urinary proteomics for the study of genetic kidney diseases. Expert Rev Proteomics 2016; 13:309-24. [DOI: 10.1586/14789450.2016.1136218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Ruan J, Jin V, Huang Y, Xu H, Edwards JS, Chen Y, Zhao Z. Education, collaboration, and innovation: intelligent biology and medicine in the era of big data. BMC Genomics 2015; 16 Suppl 7:S1. [PMID: 26099197 PMCID: PMC4474420 DOI: 10.1186/1471-2164-16-s7-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Here we present a summary of the 2014 International Conference on Intelligent Biology and Medicine (ICIBM 2014) and the editorial report of the supplement to BMC Genomics and BMC Systems Biology that includes 20 research articles selected from ICIBM 2014. The conference was held on December 4-6, 2014 at San Antonio, Texas, USA, and included six scientific sessions, four tutorials, four keynote presentations, nine highlight talks, and a poster session that covered cutting-edge research in bioinformatics, systems biology, and computational medicine.
Collapse
Affiliation(s)
- Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, 78249 San Antonio, TX, USA
| | - Victor Jin
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 78229 San Antonio, TX, USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 78249 San Antonio, TX, USA
| | - Hua Xu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 77030 San Antonio, TX, USA
| | - Jeremy S Edwards
- Department of Molecular Genetics and Microbiology, University of New Mexico, 87131 Albuquerque, NM, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 78229 San Antonio, TX, USA
- Department of Epidemiology & Biostatistics, The University of Texas Health Science Center at San Antonio, 78229 San Antonio, TX, USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 37203 Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, 37232 Nashville, TN, USA
| |
Collapse
|
45
|
Ganegoda GU, Wang J, Wu FX, Li M. Prediction of disease genes using tissue-specified gene-gene network. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 3:S3. [PMID: 25350876 PMCID: PMC4243117 DOI: 10.1186/1752-0509-8-s3-s3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tissue specificity is an important aspect of many genetic diseases in the context of genetic disorders as the disorder affects only few tissues. Therefore tissue specificity is important in identifying disease-gene associations. Hence this paper seeks to discuss the impact of using tissue specificity in predicting new disease-gene associations and how to use tissue specificity along with phenotype information for a particular disease. METHODS In order to find out the impact of using tissue specificity for predicting new disease-gene associations, this study proposes a novel method called tissue-specified genes to construct tissues-specific gene-gene networks for different tissue samples. Subsequently, these networks are used with phenotype details to predict disease genes by using Katz method. The proposed method was compared with three other tissue-specific network construction methods in order to check its effectiveness. Furthermore, to check the possibility of using tissue-specific gene-gene network instead of generic protein-protein network at all time, the results are compared with three other methods. RESULTS In terms of leave-one-out cross validation, calculation of the mean enrichment and ROC curves indicate that the proposed approach outperforms existing network construction methods. Furthermore tissues-specific gene-gene networks make a more positive impact on predicting disease-gene associations than generic protein-protein interaction networks. CONCLUSIONS In conclusion by integrating tissue-specific data it enabled prediction of known and unknown disease-gene associations for a particular disease more effectively. Hence it is better to use tissue-specific gene-gene network whenever possible. In addition the proposed method is a better way of constructing tissue-specific gene-gene networks.
Collapse
Affiliation(s)
| | - JianXin Wang
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Fang-Xiang Wu
- School of Information Science and Engineering, Central South University, Changsha, China
- College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK Canada
| | - Min Li
- School of Information Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
46
|
Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1064-71. [PMID: 25326068 DOI: 10.1007/s11427-014-4747-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022]
Abstract
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies. However, it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments. With the advances of the high-throughput techniques, a large number of protein-protein interactions have been produced. Therefore, to address this issue, several methods based on protein interaction network have been proposed. In this paper, we propose a shortest path-based algorithm, named SPranker, to prioritize disease-causing genes in protein interaction networks. Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes, we further propose an improved algorithm SPGOranker by integrating the semantic similarity of GO annotations. SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account. The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches, ICN, VS and RWR. The experimental results show that SPranker and SPGOranker outperform ICN, VS, and RWR for the prioritization of orphan disease-causing genes. Importantly, for the case study of severe combined immunodeficiency, SPranker and SPGOranker predict several novel causal genes.
Collapse
|
47
|
Zhao X, Zhang J, Chen C, Yang J, Zhu H, Liu M, Lv F. Deep sequencing-based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi. BMC Genomics 2014; 15:747. [PMID: 25174959 PMCID: PMC4162972 DOI: 10.1186/1471-2164-15-747] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/22/2014] [Indexed: 02/01/2023] Open
Abstract
Background The Orchidaceae is one of the largest families in the plant kingdom and orchid mycorrhizae (OM) are indispensable in the life cycle of all orchids under natural conditions. In spite of this, little is known concerning the mechanisms underlying orchid- mycorrhizal fungi interactions. Our previous work demonstrated that the non-mycorrhizal fungus Umbelopsis nana ZH3A-3 could improve the symbiotic effects of orchid mycorrhizal fungus Epulorhiza repens ML01 by co-cultivation with Cymbidium hybridum plantlets. Thus, we investigated the C. hybridum transcript profile associated with different beneficial fungi. Results More than 54,993,972 clean reads were obtained from un-normalized cDNA library prepared from fungal- and mock- treated Cymbidium roots at four time points using RNA-seq technology. These reads were assembled into 16,798 unique transcripts, with a mean length of 1127 bp. A total of 10,971 (65.31%) sequences were annotated based on BLASTX results and over ninety percent of which were assigned to plant origin. The digital gene expression profiles in Cymbidium root at 15 days post inoculation revealed that 1674, 845 and 1743 genes were sigificantly regulated in response to ML01, ZH3A-3 and ML01+ ZH3A-3 treatments, respectively. Twenty-six genes in different regulation patterns were validated using quantitative RT-PCR. Our analysis showed that general defense responses were co- induced by three treatments, including cell wall modification, reactive oxygen species detoxification, secondary biosynthesis and hormone balance. Genes involved in phosphate transport and root morphogenesis were also detected to be up-regulated collectively. Among the OM specifically induced transcripts, genes related to signaling, protein metabolism and processing, defense, transport and auxin response were identifed. Aside from these orchid transcripts, some putative fungal genes were also identified in symbiotic roots related to plant cell wall degradation, remodeling the fungal cell wall and nutrient transport. Conclusion The orchid root transcriptome will facilitate our understanding of orchid - associated biological mechanism. The comparative expression profiling revealed that the transcriptional reprogramming by OM symbiosis generally overlapped that of arbuscular mycorrhizas and ectomycorrhizas. The molecular basis of OM formation and function will improve our knowledge of plant- mycorrhzial fungi interactions, and their effects on plant and fungal growth, development and differentiation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-747) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fubing Lv
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, East 1st Street 1, Jinying Road, Tianhe District, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
48
|
Peng C, Gao F. Protein localization analysis of essential genes in prokaryotes. Sci Rep 2014; 4:6001. [PMID: 25105358 PMCID: PMC4126397 DOI: 10.1038/srep06001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/22/2014] [Indexed: 01/27/2023] Open
Abstract
Essential genes, those critical for the survival of an organism under certain conditions, play a significant role in pharmaceutics and synthetic biology. Knowledge of protein localization is invaluable for understanding their function as well as the interaction of different proteins. However, systematical examination of essential genes from the aspect of the localizations of proteins they encode has not been explored before. Here, a comprehensive protein localization analysis of essential genes in 27 prokaryotes including 24 bacteria, 2 mycoplasmas and 1 archaeon has been performed. Both statistical analysis of localization information in these genomes and GO (Gene Ontology) terms enriched in the essential genes show that proteins encoded by essential genes are enriched in internal location sites, while exist in cell envelope with a lower proportion compared with non-essential ones. Meanwhile, there are few essential proteins in the external subcellular location sites such as flagellum and fimbrium, and proteins encoded by non-essential genes tend to have diverse localizations. These results would provide further insights into the understanding of fundamental functions needed to support a cellular life and improve gene essentiality prediction by taking the protein localization and enriched GO terms into consideration.
Collapse
Affiliation(s)
- Chong Peng
- Department of Physics, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|