1
|
Heptinstall TC, Rosales García RA, Rautsaw RM, Myers EA, Holding ML, Mason AJ, Hofmann EP, Schramer TD, Hogan MP, Borja M, Castañeda-Gaytán G, Feldman CR, Rokyta DR, Parkinson CL. Dietary Breadth Predicts Toxin Expression Complexity in the Venoms of North American Gartersnakes. Integr Org Biol 2025; 7:obaf003. [PMID: 39959576 PMCID: PMC11822205 DOI: 10.1093/iob/obaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Selection on heritable phenotypic variation has played a prominent role in shaping the remarkable adaptations found across the Tree of Life. Complex ecological traits, such as snake venoms, are thought to be the products of selection because they directly link to fitness and survival. Snake venom increases the efficiency of prey capture and processing and is thus likely under intense selection. While many studies of snake venom have investigated the relationship between venom and diet, they have primarily focused on medically relevant front-fanged snakes. However, recent work has suggested that many non-front fanged snakes also rely on venom for subduing prey, despite having reduced toxicity toward humans. Here, we set out to uncover variation in toxin-producing genes, along with the ecological and evolutionary pressures impacting snake venom characteristics in the North American gartersnakes (Squamata: Natricidae: Thamnophis), a model group of non-front-fanged snakes. We annotated and analyzed Duvernoy's venom gland transcriptomes from 16 species representing all the major lineages within Thamnophis. We then generated measures of complexity of both toxins and dietary breadth. We found strong correlations between the complexity of toxin gene expression and phylogenetic diversity of diet, but no relationship between the complexity of the genetic makeup of the transcriptomes (allelic or sequence variation) and diet complexities. We also found phylogenetic signal associated with venom complexity, suggesting some influence of ancestry on venom characteristics. We suggest that, in non-front-fanged snakes, expression of toxins rather than sequence complexity is under strong selection by dietary diversity. These findings contradict similar studies from front-fanged snakes where increased transcriptomic complexity varies positively with dietary diversity, exposing a potential novel relationship between a complex phenotype-toxin expression-and its selective pressures-diet.
Collapse
Affiliation(s)
- T C Heptinstall
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R A Rosales García
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - E A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - M L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - A J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - E P Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Science Department, Cape Fear Community College, Wilmington, NC 28401, USA
| | - T D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - M P Hogan
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - M Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - G Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - C R Feldman
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - D R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - C L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Torres-Bonilla KA, Bayona-Serrano JD, Sáenz-Suarez PA, Andrade-Silva D, Bernal-Bautista MH, Serrano SMT, Hyslop S. Venom proteomics and Duvernoy's venom gland histology of Pseudoboa neuwiedii (Neuwied's false boa; Dipsadidae, Pseudoboini). Toxicon 2025; 254:108218. [PMID: 39706372 DOI: 10.1016/j.toxicon.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The venom of Colombian specimens of the rear-fanged snake Pseudoboa neuwiedii contains proteolytic and phospholipase A2 (PLA2) activities, but is devoid of esterases. Mass spectrometric analysis of electrophoretic bands indicated that this venom contains C-type lectins (CTL), cysteine-rich secretory proteins (CRiSP), PLA2, snake venom metalloproteinases (SVMP), and snake venom matrix metalloproteinases (svMMP). In this investigation, we extended our characterization of P. neuwiedii by undertaking a shotgun proteomic analysis of the venom and comparing the results with a transcriptomic database for Brazilian P. neuwiedii; proteomic data previously obtained by in-gel digestion of electrophoretic bands coupled with mass spectrometry were also reanalyzed by comparing them with the transcriptomic results. The histology of the Duvernoy's venom gland was also examined. Histological analysis revealed a structural organization similar to that of other colubrids that consisted of a serous venom gland and a mucous supralabial gland. When the shotgun proteomic data were run against a general UniProt database for serpents, only metalloproteinases were identified (99% SVMPs, 1% snake endogenous matrix metalloproteinases-9 or seMMP-9). In contrast, when run against a transcriptomic database derived from the venom gland of Brazilian P. neuwiedii that contains predominantly SVMP, CRiSP, type IIE PLA2 (PLA2-IIE), CTL and seMMP-9, the main components identified were seMMP-9 (49%), SVMP (47%), CRiSP (3%) and minor components that included CTL and PLA2-IIE. These findings confirmed the previously reported general composition of P. neuwiedii venom, with metalloproteinases (SVMP and seMMP-9) being the major components, and refined the identification of certain components, e.g., type IIA PLA2 now identified as PLA2-IIE and the detection of seMMP-9 rather than svMMP. The data also indicate compositional similarity between Brazilian and Colombian P. neuwiedii venoms, and stress the need for specific databases for non-front-fanged colubroid snakes to allow accurate and more comprehensive identification of the venom components of these snakes.
Collapse
Affiliation(s)
- Kristian A Torres-Bonilla
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Juan D Bayona-Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Paula A Sáenz-Suarez
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Manuel H Bernal-Bautista
- Departamento de Biologia, Universidad del Tolima, Barrio Santa Helena Parte Alta, 731020, Ibagué, Tolima, Colombia
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Coppinger GE, Stewart AJ, Borden JA, Strickland JL. Thamnophis sirtalis and their toxic relationship: Testing for intraspecific venom variation in Common Garter Snakes. Toxicon 2025; 253:108185. [PMID: 39615846 DOI: 10.1016/j.toxicon.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
Intraspecific phenotypic variation can be used as a window into the ecological differences among individuals of a species and lead to a better understanding of adaptive evolution. Adaptive traits, such as venom, that play an important ecological role for a species are useful models for understanding the sources of intraspecific variation. Intraspecific studies on front-fanged venomous snakes have offered deeper insights into the diverse mechanisms and adaptations that support the effectiveness of venom across species. Despite the extensive research on front-fanged venomous snakes, rear-fanged snakes, representing two-thirds of all snake species, have been largely overlooked. To test for sex and age-based intraspecific venom variation, we sequenced the messenger RNA from the Duvernoy's gland of 9 male and 10 female Common Garter Snakes, Thamnophis sirtalis, of different sizes from a single location. Our data represent the most venom gland transcriptomes of any venomous snake species from a single location and represent the first Duvernoy's venom gland transcriptomes for Thamnophis sirtalis. We found four toxin families dominate the Thamnophis sirtalis transcriptome: Snake Venom Metalloproteinases (SVMPs), Three-finger toxins (3FTxs), Cysteine-Rich Secretory Proteins (CRISPs), and C-type lectins (CTLs). Thamnophis sirtalis exhibits a unique balance in toxin expression, with approximately 30% each of neurotoxic (3FTx-dominated) and enzymatic (SVMP-dominated) components. No other published RFS Duvernoy's gland transcriptome displays this ratio, rather they are dominated by one or the other. Additionally, venom expression varies with sex and size, with differences in toxin gene expression between males and females as they grow. Our study provides new insights on venom composition in a RFS species and highlights the amount of intraspecific variation possible among individuals from a single population.
Collapse
Affiliation(s)
- Grace E Coppinger
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Aaron J Stewart
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Joel A Borden
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jason L Strickland
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
4
|
Entiauspe-Neto OM, Nachtigall PG, Borges-Martins M, Junqueira-de-Azevedo ILM, Grazziotin FG. Highly conserved and extremely variable: The paradoxical pattern of toxin expression revealed by comparative venom-gland transcriptomics of Phalotris (Serpentes: Dipsadidae). Toxicon 2024; 244:107740. [PMID: 38705487 DOI: 10.1016/j.toxicon.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Although non-front fanged snakes account for almost two-thirds of snake diversity, most studies on venom composition and evolution focus exclusively on front-fanged species, which comprise most of the clinically relevant accidents. Comprehensive reports on venom composition of non-front fanged snakes are still scarce for several groups. In this study, we address such shortage of knowledge by providing new insights about the venom composition among species of Phalotris, a poorly studied Neotropical dipsadid genus. Phalotris are known for their specialized venom delivery system and toxic venoms, which can cause life-threatening accidents in humans. We evaluate the venom-gland transcriptome of Phalotris, comparing the following three South American species: P. reticulatus for the Araucaria Pine forests, P. lemniscatus for the Pampa grasslands, and P. mertensi for the Brazilian Cerrado. Our results indicate similar venom profiles, in which they share a high expression level of Kunitz-type inhibitors (KUNZ). On the other hand, comparative analyses revealed substantial differences in the expression levels of C-type lectins (CTL) and snake venom metalloproteinases (SVMP). The diverse set of SVMP and CTL isoforms shows signals of positive selection, and we also identified truncated forms of type III SVMPs, which resemble type II and type I SVMPs of viperids. Additionally, we identified a CNP precursor hosting a proline-rich region containing a BPP motif resembling those commonly detected in viperid venoms with hypotensive activity. Altogether, our results suggest an evolutionary history favoring high expression levels of few KUNZ isoforms in Phalotris venoms, contrasting with a highly diverse set of SVMP and CTL isoforms. Such diversity can be comparable with the venom variability observed in some viperids. Our findings highlight the extreme phenotypic diversity of non-front fanged snakes and the importance to allocate greater effort to study neglected groups of Colubroidea.
Collapse
Affiliation(s)
- Omar M Entiauspe-Neto
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900, Av. Vital Brazil, 1500, Butantã, São Paulo, SP, Brazil; Programa de Pós-graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Pedro G Nachtigall
- Laboratório de Toxinologia Aplicada, Instituto Butantan, 05503-900, Av. Vital Brazil, 1500, Butantã, São Paulo, SP, Brazil
| | - Márcio Borges-Martins
- Programa de Pós-graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, CEP 91501-970, Porto Alegre, RS, Brazil
| | | | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900, Av. Vital Brazil, 1500, Butantã, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Smith CF, Modahl CM, Ceja Galindo D, Larson KY, Maroney SP, Bahrabadi L, Brandehoff NP, Perry BW, McCabe MC, Petras D, Lomonte B, Calvete JJ, Castoe TA, Mackessy SP, Hansen KC, Saviola AJ. Assessing Target Specificity of the Small Molecule Inhibitor MARIMASTAT to Snake Venom Toxins: A Novel Application of Thermal Proteome Profiling. Mol Cell Proteomics 2024; 23:100779. [PMID: 38679388 PMCID: PMC11154231 DOI: 10.1016/j.mcpro.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.
Collapse
Affiliation(s)
- Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Cassandra M Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Ceja Galindo
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Keira Y Larson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Sean P Maroney
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Lilyrose Bahrabadi
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Nicklaus P Brandehoff
- Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, Colorado, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Daniel Petras
- CMFI Cluster of Excellence, University of Tuebingen, Tuebingen, Germany; Department of Biochemistry, University of California Riverside, Riverside, California, USA
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Texas, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA.
| |
Collapse
|
6
|
Srodawa K, Cerda PA, Davis Rabosky AR, Crowe-Riddell JM. Evolution of Three-Finger Toxin Genes in Neotropical Colubrine Snakes (Colubridae). Toxins (Basel) 2023; 15:523. [PMID: 37755949 PMCID: PMC10534312 DOI: 10.3390/toxins15090523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Snake venom research has historically focused on front-fanged species (Viperidae and Elapidae), limiting our knowledge of venom evolution in rear-fanged snakes across their ecologically diverse phylogeny. Three-finger toxins (3FTxs) are a known neurotoxic component in the venoms of some rear-fanged snakes (Colubridae: Colubrinae), but it is unclear how prevalent 3FTxs are both in expression within venom glands and more broadly among colubrine species. Here, we used a transcriptomic approach to characterize the venom expression profiles of four species of colubrine snakes from the Neotropics that were dominated by 3FTx expression (in the genera Chironius, Oxybelis, Rhinobothryum, and Spilotes). By reconstructing the gene trees of 3FTxs, we found evidence of putative novel heterodimers in the sequences of Chironius multiventris and Oxybelis aeneus, revealing an instance of parallel evolution of this structural change in 3FTxs among rear-fanged colubrine snakes. We also found positive selection at sites within structural loops or "fingers" of 3FTxs, indicating these areas may be key binding sites that interact with prey target molecules. Overall, our results highlight the importance of exploring the venoms of understudied species in reconstructing the full evolutionary history of toxins across the tree of life.
Collapse
Affiliation(s)
- Kristy Srodawa
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter A. Cerda
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Alison R. Davis Rabosky
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Jenna M. Crowe-Riddell
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
7
|
Tioyama EC, Bayona-Serrano JD, Portes-Junior JA, Nachtigall PG, de Souza VC, Beraldo-Neto E, Grazziotin FG, Junqueira-de-Azevedo ILM, Moura-da-Silva AM, Freitas-de-Sousa LA. The Venom Composition of the Snake Tribe Philodryadini: 'Omic' Techniques Reveal Intergeneric Variability among South American Racers. Toxins (Basel) 2023; 15:415. [PMID: 37505684 PMCID: PMC10467154 DOI: 10.3390/toxins15070415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 07/29/2023] Open
Abstract
Snakes of the Philodryadini tribe are included in the Dipsadidae family, which is a diverse group of rear-fanged snakes widespread in different ecological conditions, including habitats and diet. However, little is known about the composition and effects of their venoms despite their relevance for understanding the evolution of these snakes or even their impact on the occasional cases of human envenoming. In this study, we integrated venom gland transcriptomics, venom proteomics and functional assays to characterize the venoms from eight species of the Philodryadini tribe, which includes the genus Philodryas, Chlorosoma and Xenoxybelis. The most abundant components identified in the venoms were snake venom metalloproteinases (SVMPs), cysteine-rich secretory proteins (CRISPs), C-type lectins (CTLs), snake endogenous matrix metalloproteinases type 9 (seMMP-9) and snake venom serinoproteinases (SVSPs). These protein families showed a variable expression profile in each genus. SVMPs were the most abundant components in Philodryas, while seMMP-9 and CRISPs were the most expressed in Chlorosoma and Xenoxybelis, respectively. Lineage-specific differences in venom composition were also observed among Philodryas species, whereas P. olfersii presented the highest amount of SVSPs and P. agassizii was the only species to express significant amounts of 3FTx. The variability observed in venom composition was confirmed by the venom functional assays. Philodryas species presented the highest SVMP activity, whereas Chlorosoma species showed higher levels of gelatin activity, which may correlate to the seMMP-9 enzymes. The variability observed in the composition of these venoms may be related to the tribe phylogeny and influenced by their diets. In the presented study, we expanded the set of venomics studies of the Philodryadini tribe, which paves new roads for further studies on the evolution and ecology of Dipsadidae snakes.
Collapse
Affiliation(s)
- Emilly Campos Tioyama
- Programa de Pós-Graduação em Ciências-Toxinologia, Escola Superior do Instituto Butantan, São Paulo 05508-210, Brazil; (E.C.T.); (J.D.B.-S.)
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (J.A.P.-J.); (A.M.M.-d.-S.)
| | - Juan David Bayona-Serrano
- Programa de Pós-Graduação em Ciências-Toxinologia, Escola Superior do Instituto Butantan, São Paulo 05508-210, Brazil; (E.C.T.); (J.D.B.-S.)
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (P.G.N.); (V.C.d.S.); (I.L.M.J.-d.-A.)
| | - José A. Portes-Junior
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (J.A.P.-J.); (A.M.M.-d.-S.)
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (P.G.N.); (V.C.d.S.); (I.L.M.J.-d.-A.)
| | - Vinicius Carius de Souza
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (P.G.N.); (V.C.d.S.); (I.L.M.J.-d.-A.)
| | - Emidio Beraldo-Neto
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo 05503-900, Brazil;
| | | | | | - Ana Maria Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (J.A.P.-J.); (A.M.M.-d.-S.)
| | | |
Collapse
|
8
|
Divergent Specialization of Simple Venom Gene Profiles among Rear-Fanged Snake Genera ( Helicops and Leptodeira, Dipsadinae, Colubridae). Toxins (Basel) 2022; 14:toxins14070489. [PMID: 35878227 PMCID: PMC9319703 DOI: 10.3390/toxins14070489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Many venomous animals express toxins that show extraordinary levels of variation both within and among species. In snakes, most studies of venom variation focus on front-fanged species in the families Viperidae and Elapidae, even though rear-fanged snakes in other families vary along the same ecological axes important to venom evolution. Here we characterized venom gland transcriptomes from 19 snakes across two dipsadine rear-fanged genera (Leptodeira and Helicops, Colubridae) and two front-fanged genera (Bothrops, Viperidae; Micrurus, Elapidae). We compared patterns of composition, variation, and diversity in venom transcripts within and among all four genera. Venom gland transcriptomes of rear-fanged Helicops and Leptodeira and front-fanged Micrurus are each dominated by expression of single toxin families (C-type lectins, snake venom metalloproteinase, and phospholipase A2, respectively), unlike highly diverse front-fanged Bothrops venoms. In addition, expression patterns of congeners are much more similar to each other than they are to species from other genera. These results illustrate the repeatability of simple venom profiles in rear-fanged snakes and the potential for relatively constrained venom composition within genera.
Collapse
|
9
|
Ochoa A, Hassinger ATB, Holding ML, Gibbs HL. Genetic characterization of potential venom resistance proteins in California ground squirrels (
Otospermophilus beecheyi
) using transcriptome analyses. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:259-269. [PMID: 35611404 DOI: 10.1002/jez.b.23145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022]
Abstract
Understanding the molecular basis of adaptations in coevolving species requires identifying the genes that underlie reciprocally selected phenotypes, such as those involved in venom in snakes and resistance to the venom in their prey. In this regard, California ground squirrels (CGS; Otospermophilus beecheyi) are eaten by northern Pacific rattlesnakes (Crotalus oreganus oreganus), but individual squirrels may still show substantial resistance to venom and survive bites. A recent study using proteomics identified venom interactive proteins (VIPs) in the blood serum of CGS. These VIPs represent possible resistance proteins, but the sequences of genes encoding them are unknown despite the value of such data to molecular studies of coevolution. To address this issue, we analyzed a de novo assembled transcriptome from CGS liver tissue-where many plasma proteins are synthesized-and other tissues from this species. We then examined VIP sequences in terms of three characteristics that identify them as possible resistance proteins: evidence for positive selection, high liver expression, and nonsynonymous variation across CGS populations. Based on these characteristics, we identified five VIPs (i.e., α-2-macroglobulin, α-1-antitrypsin-like protein GS55-LT, apolipoprotein A-II, hibernation-associated plasma protein HP-20, and hibernation-associated plasma protein HP-27) as the most likely candidates for resistance proteins among VIPs identified to date. Four of these proteins have been previously implicated in conferring resistance to the venom in mammals, validating our approach. When combined with the detailed information available for rattlesnake venom proteins, these results set the stage for future work focused on understanding coevolutionary interactions at the molecular level between these species.
Collapse
Affiliation(s)
- Alexander Ochoa
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership Ohio State University Columbus Ohio USA
- Department of Biology University of Central Florida Orlando Florida USA
| | - Alyssa T. B. Hassinger
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership Ohio State University Columbus Ohio USA
| | | | - H. Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership Ohio State University Columbus Ohio USA
| |
Collapse
|
10
|
Abstract
The venom glands of reptiles, particularly those of front-fanged advanced snakes, must satisfy conflicting biological demands: rapid synthesis of potentially labile and highly toxic proteins, storage in the gland lumen for long periods, stabilization of the stored secretions, immediate activation of toxins upon deployment and protection of the animal from the toxic effects of its own venom. This dynamic system could serve as a model for the study of a variety of different phenomena involving exocrine gland activation, protein synthesis, stabilization of protein products and secretory mechanisms. However, these studies have been hampered by a lack of a long-term model that can be propagated in the lab (as opposed to whole-animal studies). Numerous attempts have been made to extend the lifetime of venom gland secretory cells, but only recently has an organoid model been shown to have the requisite qualities of recapitulation of the native system, self-propagation and long-term viability (>1 year). A tractable model is now available for myriad cell- and molecular-level studies of venom glands, protein synthesis and secretion. However, venom glands of reptiles are not identical, and many differ very extensively in overall architecture, microanatomy and protein products produced. This Review summarizes the similarities among and differences between venom glands of helodermatid lizards and of rear-fanged and front-fanged snakes, highlighting those areas that are well understood and identifying areas where future studies can fill in significant gaps in knowledge of these ancient, yet fascinating systems.
Collapse
Affiliation(s)
- Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA
| |
Collapse
|
11
|
Schramer TD, Rautsaw RM, Bayona-Serrano JD, Nystrom GS, West TR, Ortiz-Medina JA, Sabido-Alpuche B, Meneses-Millán M, Borja M, Junqueira-de-Azevedo ILM, Rokyta DR, Parkinson CL. An integrative view of the toxic potential of Conophis lineatus (Dipsadidae: Xenodontinae), a medically relevant rear-fanged snake. Toxicon 2021; 205:38-52. [PMID: 34793822 DOI: 10.1016/j.toxicon.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Most traditional research on snake venoms has focused on front-fanged snake families (Viperidae, Elapidae, and Atractaspididae). However, venom is now generally accepted as being a much more broadly possessed trait within snakes, including species traditionally considered harmless. Unfortunately, due to historical inertia and methodological challenges, the toxin repertoires of non-front-fanged snake families (e.g., Colubridae, Dipsadidae, and Natricidae) have been heavily neglected despite the knowledge of numerous species capable of inflicting medically relevant envenomations. Integrating proteomic data for validation, we perform a de novo assembly and analysis of the Duvernoy's venom gland transcriptome of the Central American Road Guarder (Dipsadidae: Xenodontinae: Conophis lineatus), a species known for its potent bite. We identified 28 putative toxin transcripts from 13 toxin families in the Duvernoy's venom gland transcriptome, comprising 63.7% of total transcriptome expression. In addition to ubiquitous snake toxin families, we proteomically confirmed several atypical venom components. The most highly expressed toxins (55.6% of total toxin expression) were recently described snake venom matrix metalloproteases (svMMPs), with 48.0% of svMMP expression contributable to a novel svMMP isoform. We investigate the evolution of the new svMMP isoform in the context of rear-fanged snakes using phylogenetics. Finally, we examine the morphology of the venom apparatus using μCT and explore how the venom relates to autecology and the highly hemorrhagic effects seen in human envenomations. Importantly, we provide the most complete venom characterization of this medically relevant snake species to date, producing insights into the effects and evolution of its venom, and point to future research directions to better understand the venoms of 'harmless' non-front-fanged snakes.
Collapse
Affiliation(s)
- Tristan D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Taylor R West
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Javier A Ortiz-Medina
- Departamento de Sistemática y Ecología Acuática, El Colegio de La Frontera Sur, Unidad Chetumal, Chetumal, Quintana Roo, Mexico; Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico; HERP.MX A.C., Villa de Álvarez, Colima, Mexico
| | - Bianca Sabido-Alpuche
- Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico
| | - Marcos Meneses-Millán
- Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez Del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil; Center of Toxins, Immune-Response and Cell Signaling (CeTICS), São Paulo, Brazil
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC, USA; Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA.
| |
Collapse
|
12
|
Zhao HY, Sun Y, Du Y, Li JQ, Lv JG, Qu YF, Lin LH, Lin CX, Ji X, Gao JF. Venom of the Annulated Sea Snake Hydrophis cyanocinctus: A Biochemically Simple but Genetically Complex Weapon. Toxins (Basel) 2021; 13:548. [PMID: 34437419 PMCID: PMC8402435 DOI: 10.3390/toxins13080548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Given that the venom system in sea snakes has a role in enhancing their secondary adaption to the marine environment, it follows that elucidating the diversity and function of venom toxins will help to understand the adaptive radiation of sea snakes. We performed proteomic and de novo NGS analyses to explore the diversity of venom toxins in the annulated sea snake (Hydrophis cyanocinctus) and estimated the adaptive molecular evolution of the toxin-coding unigenes and the toxicity of the major components. We found three-finger toxins (3-FTxs), phospholipase A2 (PLA2) and cysteine-rich secretory protein (CRISP) in the venom proteome and 59 toxin-coding unigenes belonging to 24 protein families in the venom-gland transcriptome; 3-FTx and PLA2 were the most abundant families. Nearly half of the toxin-coding unigenes had undergone positive selection. The short- (i.p. 0.09 μg/g) and long-chain neurotoxin (i.p. 0.14 μg/g) presented fairly high toxicity, whereas both basic and acidic PLA2s expressed low toxicity. The toxicity of H. cyanocinctus venom was largely determined by the 3-FTxs. Our data show the venom is used by H. cyanocinctus as a biochemically simple but genetically complex weapon and venom evolution in H. cyanocinctus is presumably driven by natural selection to deal with fast-moving prey and enemies in the marine environment.
Collapse
Affiliation(s)
- Hong-Yan Zhao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.-Y.Z.); (Y.S.); (L.-H.L.)
| | - Yan Sun
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.-Y.Z.); (Y.S.); (L.-H.L.)
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China; (Y.D.); (J.-G.L.)
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.-Q.L.); (Y.-F.Q.)
| | - Jia-Qi Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.-Q.L.); (Y.-F.Q.)
| | - Jin-Geng Lv
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China; (Y.D.); (J.-G.L.)
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.-Q.L.); (Y.-F.Q.)
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.-Y.Z.); (Y.S.); (L.-H.L.)
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China; (Y.D.); (J.-G.L.)
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xiang Ji
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.-Q.L.); (Y.-F.Q.)
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian-Fang Gao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.-Y.Z.); (Y.S.); (L.-H.L.)
| |
Collapse
|
13
|
Zhao HY, Wen L, Miao YF, Du Y, Sun Y, Yin Y, Lin CX, Lin LH, Ji X, Gao JF. Venom-gland transcriptomic, venomic, and antivenomic profiles of the spine-bellied sea snake (Hydrophis curtus) from the South China Sea. BMC Genomics 2021; 22:520. [PMID: 34238212 PMCID: PMC8268360 DOI: 10.1186/s12864-021-07824-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background A comprehensive evaluation of the -omic profiles of venom is important for understanding the potential function and evolution of snake venom. Here, we conducted an integrated multi-omics-analysis to unveil the venom-transcriptomic and venomic profiles in a same group of spine-bellied sea snakes (Hydrophis curtus) from the South China Sea, where the snake is a widespread species and might generate regionally-specific venom potentially harmful to human activities. The capacity of two heterologous antivenoms to immunocapture the H. curtus venom was determined for an in-depth evaluation of their rationality in treatment of H. curtus envenomation. In addition, a phylogenetic analysis by maximum likelihood was used to detect the adaptive molecular evolution of full-length toxin-coding unigenes. Results A total of 90,909,384 pairs of clean reads were generated via Illumina sequencing from a pooled cDNA library of six specimens, and yielding 148,121 unigenes through de novo assembly. Sequence similarity searching harvested 63,845 valid annotations, including 63,789 non-toxin-coding and 56 toxin-coding unigenes belonging to 22 protein families. Three protein families, three-finger toxins (3-FTx), phospholipase A2 (PLA2), and cysteine-rich secretory protein, were detected in the venom proteome. 3-FTx (27.15% in the transcriptome/41.94% in the proteome) and PLA2 (59.71%/49.36%) were identified as the most abundant families in the venom-gland transcriptome and venom proteome. In addition, 24 unigenes from 11 protein families were shown to have experienced positive selection in their evolutionary history, whereas four were relatively conserved throughout evolution. Commercial Naja atra antivenom exhibited a stronger capacity than Bungarus multicinctus antivenom to immunocapture H. curtus venom components, especially short neurotoxins, with the capacity of both antivenoms to immunocapture short neurotoxins being weaker than that for PLA2s. Conclusions Our study clarified the venom-gland transcriptomic and venomic profiles along with the within-group divergence of a H. curtus population from the South China Sea. Adaptive evolution of most venom components driven by natural selection appeared to occur rapidly during evolutionary history. Notably, the utility of commercial N. atra and B. multicinctus antivenoms against H. curtus toxins was not comprehensive; thus, the development of species-specific antivenom is urgently needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07824-7.
Collapse
Affiliation(s)
- Hong-Yan Zhao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lin Wen
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yu-Feng Miao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yan Sun
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yin Yin
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiang Ji
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China. .,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China. .,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Jian-Fang Gao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
14
|
Hofmann EP, Rautsaw RM, Mason AJ, Strickland JL, Parkinson CL. Duvernoy's Gland Transcriptomics of the Plains Black-Headed Snake, Tantilla nigriceps (Squamata, Colubridae): Unearthing the Venom of Small Rear-Fanged Snakes. Toxins (Basel) 2021; 13:336. [PMID: 34066626 PMCID: PMC8148590 DOI: 10.3390/toxins13050336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of small taxa with low venom yields. Here, we use RNA-seq to characterize the Duvernoy's gland transcriptome of the Plains Black-headed Snake, Tantilla nigriceps, a small, semi-fossorial colubrid that feeds on a variety of potentially dangerous arthropods including centipedes and spiders. We generated transcriptomes of six individuals from three localities in order to both characterize the toxin expression of this species for the first time, and to look for initial evidence of venom variation in the species. Three toxin families-three-finger neurotoxins (3FTxs), cysteine-rich secretory proteins (CRISPs), and snake venom metalloproteinases (SVMPIIIs)-dominated the transcriptome of T. nigriceps; 3FTx themselves were the dominant toxin family in most individuals, accounting for as much as 86.4% of an individual's toxin expression. Variation in toxin expression between individuals was also noted, with two specimens exhibiting higher relative expression of c-type lectins than any other sample (8.7-11.9% compared to <1%), and another expressed CRISPs higher than any other toxin. This study provides the first Duvernoy's gland transcriptomes of any species of Tantilla, and one of the few transcriptomic studies of RFS not predicated on a single individual. This initial characterization demonstrates the need for further study of toxin expression variation in this species, as well as the need for further exploration of small RFS venoms.
Collapse
Affiliation(s)
- Erich P. Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
15
|
Nachtigall PG, Rautsaw RM, Ellsworth SA, Mason AJ, Rokyta DR, Parkinson CL, Junqueira-de-Azevedo ILM. ToxCodAn: a new toxin annotator and guide to venom gland transcriptomics. Brief Bioinform 2021; 22:6235957. [PMID: 33866357 DOI: 10.1093/bib/bbab095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION Next-generation sequencing has become exceedingly common and has transformed our ability to explore nonmodel systems. In particular, transcriptomics has facilitated the study of venom and evolution of toxins in venomous lineages; however, many challenges remain. Primarily, annotation of toxins in the transcriptome is a laborious and time-consuming task. Current annotation software often fails to predict the correct coding sequence and overestimates the number of toxins present in the transcriptome. Here, we present ToxCodAn, a python script designed to perform precise annotation of snake venom gland transcriptomes. We test ToxCodAn with a set of previously curated transcriptomes and compare the results to other annotators. In addition, we provide a guide for venom gland transcriptomics to facilitate future research and use Bothrops alternatus as a case study for ToxCodAn and our guide. RESULTS Our analysis reveals that ToxCodAn provides precise annotation of toxins present in the transcriptome of venom glands of snakes. Comparison with other annotators demonstrates that ToxCodAn has better performance with regard to run time ($>20x$ faster), coding sequence prediction ($>3x$ more accurate) and the number of toxins predicted (generating $>4x$ less false positives). In this sense, ToxCodAn is a valuable resource for toxin annotation. The ToxCodAn framework can be expanded in the future to work with other venomous lineages and detect novel toxins.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP 05503-900, Brazil
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
16
|
Sánchez MN, Gonzalez KY, Sciani JM, Gritti MA, Maruñak SL, Tavares FL, Teibler GP, Peichoto ME. First insights into the biochemical and toxicological characterization of venom from the Banded Cat-eyed Snake Leptodeira annulata pulchriceps. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108897. [PMID: 32950744 DOI: 10.1016/j.cbpc.2020.108897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022]
Abstract
With the aim to widen the current knowledge of toxinological implications of bites from rear-fanged snakes and biological roles of their venoms, this study focuses on the biochemical composition and toxic effects of the venom of Leptodeira annulata pulchriceps from Argentina. We analyzed the protein composition by electrophoresis and mass spectrometry, and enzymatic properties by quantitative assays on different substrates. Additionally, we evaluated local and systemic toxicity in mice, and tested its cross-reactivity with elapid and viperid antivenoms used in Argentina. This venom showed features reminiscent of venoms from snakes of Bothrops genus, containing components ranging from ~17 to 75 kDa, which are mainly tissue-damaging toxins such as proteinases. Although showing low lethality to mice (LD50 = 20 μg/g body weight), prominent hemorrhage developed locally in mice intramuscularly and intradermally injected with the venom, and the minimum hemorrhagic dose was found to be 12.7 μg/mouse. This study is the first comprehensive investigation of the venom of L. a. pulchriceps, and sheds new light on differences between this and those of the other two subspecies of L. annulata. Additionally, the study provides new insights into the venom components of "colubrid" snakes, advocating for considering bites from this rich diversity of snakes as a public health problem that needs to be addressed worldwide.
Collapse
Affiliation(s)
- Matías N Sánchez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto Iguazú, Argentina; Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - Karen Y Gonzalez
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - Juliana M Sciani
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. São Francisco de Assis, 218, 12916-900 Bragança Paulista, SP, Brazil
| | - Micaela A Gritti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto Iguazú, Argentina
| | - Silvana L Maruñak
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - Flávio L Tavares
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Silvio Américo Sasdelli, 1842 - Vila A, Foz do Iguaçu, PR CEP 85866-000, Brazil
| | - Gladys P Teibler
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - María E Peichoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto Iguazú, Argentina; Universidade Federal da Integração Latino-Americana (UNILA), Av. Silvio Américo Sasdelli, 1842 - Vila A, Foz do Iguaçu, PR CEP 85866-000, Brazil.
| |
Collapse
|
17
|
Freitas-de-Sousa LA, Nachtigall PG, Portes-Junior JA, Holding ML, Nystrom GS, Ellsworth SA, Guimarães NC, Tioyama E, Ortiz F, Silva BR, Kunz TS, Junqueira-de-Azevedo ILM, Grazziotin FG, Rokyta DR, Moura-da-Silva AM. Size Matters: An Evaluation of the Molecular Basis of Ontogenetic Modifications in the Composition of Bothrops jararacussu Snake Venom. Toxins (Basel) 2020; 12:toxins12120791. [PMID: 33322460 PMCID: PMC7763748 DOI: 10.3390/toxins12120791] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ontogenetic changes in venom composition have been described in Bothrops snakes, but only a few studies have attempted to identify the targeted paralogues or the molecular mechanisms involved in modifications of gene expression during ontogeny. In this study, we decoded B. jararacussu venom gland transcripts from six specimens of varying sizes and analyzed the variability in the composition of independent venom proteomes from 19 individuals. We identified 125 distinct putative toxin transcripts, and of these, 73 were detected in venom proteomes and only 10 were involved in the ontogenetic changes. Ontogenetic variability was linearly related to snake size and did not correspond to the maturation of the reproductive stage. Changes in the transcriptome were highly predictive of changes in the venom proteome. The basic myotoxic phospholipases A2 (PLA2s) were the most abundant components in larger snakes, while in venoms from smaller snakes, PIII-class SVMPs were the major components. The snake venom metalloproteinases (SVMPs) identified corresponded to novel sequences and conferred higher pro-coagulant and hemorrhagic functions to the venom of small snakes. The mechanisms modulating venom variability are predominantly related to transcriptional events and may consist of an advantage of higher hematotoxicity and more efficient predatory function in the venom from small snakes.
Collapse
Affiliation(s)
- Luciana A. Freitas-de-Sousa
- Programa de Pós-Graduação em Ciências-Toxinologia, Laboratório de Imunopatologia, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (N.C.G.); (E.T.)
- Correspondence: (L.A.F.-d.-S.); (A.M.M.-d.-S.); Tel.: +55-11-2627-9779 (A.M.M.-d.-S.)
| | - Pedro G. Nachtigall
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (P.G.N.); (I.L.M.J.-d.-A.)
| | - José A. Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (J.A.P.-J.); (F.O.); (B.R.S.); (T.S.K.); (F.G.G.)
| | - Matthew L. Holding
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (M.L.H.); (G.S.N.); (S.A.E.); (D.R.R.)
| | - Gunnar S. Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (M.L.H.); (G.S.N.); (S.A.E.); (D.R.R.)
| | - Schyler A. Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (M.L.H.); (G.S.N.); (S.A.E.); (D.R.R.)
| | - Noranathan C. Guimarães
- Programa de Pós-Graduação em Ciências-Toxinologia, Laboratório de Imunopatologia, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (N.C.G.); (E.T.)
| | - Emilly Tioyama
- Programa de Pós-Graduação em Ciências-Toxinologia, Laboratório de Imunopatologia, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (N.C.G.); (E.T.)
| | - Flora Ortiz
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (J.A.P.-J.); (F.O.); (B.R.S.); (T.S.K.); (F.G.G.)
| | - Bruno R. Silva
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (J.A.P.-J.); (F.O.); (B.R.S.); (T.S.K.); (F.G.G.)
| | - Tobias S. Kunz
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (J.A.P.-J.); (F.O.); (B.R.S.); (T.S.K.); (F.G.G.)
| | | | - Felipe G. Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (J.A.P.-J.); (F.O.); (B.R.S.); (T.S.K.); (F.G.G.)
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (M.L.H.); (G.S.N.); (S.A.E.); (D.R.R.)
| | - Ana M. Moura-da-Silva
- Programa de Pós-Graduação em Ciências-Toxinologia, Laboratório de Imunopatologia, Instituto Butantan, 05503-900 São Paulo, SP, Brazil; (N.C.G.); (E.T.)
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, 69040-000 Manaus, AM, Brazil
- Correspondence: (L.A.F.-d.-S.); (A.M.M.-d.-S.); Tel.: +55-11-2627-9779 (A.M.M.-d.-S.)
| |
Collapse
|
18
|
Heyborne WH, Mackessy SP. Venoms of New World Vinesnakes (Oxybelis aeneus and O. fulgidus). Toxicon 2020; 190:22-30. [PMID: 33307109 DOI: 10.1016/j.toxicon.2020.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022]
Abstract
Species of Oxybelis are extremely elongate arboreal snakes that are broadly distributed in the Americas, from extreme southeastern Arizona (USA) to central South America. Primarily feeding on lizards and birds, Oxybelis venoms are poorly known in general, but a prominent taxon-specific three-finger toxin (fulgimotoxin) was isolated from and is a prominent component of O. fulgidus venom; a homolog is also present in O. aeneus venom. As part of ongoing characterization of venoms from rear-fanged snakes, we describe here the composition of two broadly distributed species, O. aeneus and O. fulgidus. Venom proteomes were of very low complexity, and four protein families (LAAO, PIII SVMP, CRiSP and 3FTx) account for more than 90% of total protein composition. Venoms from both species are moderately toxic to mice and to Hemidactylus geckos, but they are nearly an order of magnitude more toxic to Anolis lizards (a native prey species). These results reflect a trend in colubrid venom composition that is becoming increasingly more common: the presence of taxon-specific toxins, specifically three-finger toxins, preferentially targeting lizards and/or birds.
Collapse
Affiliation(s)
- William H Heyborne
- School of Biological Sciences University of Northern Colorado, 501 20 th St., CB 92, Greeley, CO, 80639-0017, USA; Department of Biology Southern Utah University, 351 W University Blvd. Cedar City, UT, 84720, USA
| | - Stephen P Mackessy
- School of Biological Sciences University of Northern Colorado, 501 20 th St., CB 92, Greeley, CO, 80639-0017, USA.
| |
Collapse
|
19
|
Spontaneous Tumor Regression in Tasmanian Devils Associated with RASL11A Activation. Genetics 2020; 215:1143-1152. [PMID: 32554701 DOI: 10.1534/genetics.120.303428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Spontaneous tumor regression has been documented in a small proportion of human cancer patients, but the specific mechanisms underlying tumor regression without treatment are not well understood. Tasmanian devils are threatened with extinction from a transmissible cancer due to universal susceptibility and a near 100% case fatality rate. In over 10,000 cases, <20 instances of natural tumor regression have been detected. Previous work in this system has focused on Tasmanian devil genetic variation associated with the regression phenotype. Here, we used comparative and functional genomics to identify tumor genetic variation associated with tumor regression. We show that a single point mutation in the 5' untranslated region of the putative tumor suppressor RASL11A significantly contributes to tumor regression. RASL11A was expressed in regressed tumors but silenced in wild-type, nonregressed tumors, consistent with RASL11A downregulation in human cancers. Induced RASL11A expression significantly reduced tumor cell proliferation in vitro The RAS pathway is frequently altered in human cancers, and RASL11A activation may provide a therapeutic treatment option for Tasmanian devils as well as a general mechanism for tumor inhibition.
Collapse
|
20
|
Saviola AJ, Negrão F, Yates JR. Proteomics of Select Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:315-336. [PMID: 32109150 DOI: 10.1146/annurev-anchem-091619-093003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Technological advances in mass spectrometry have enabled the extensive identification, characterization, and quantification of proteins in any biological system. In disease processes proteins are often altered in response to external stimuli; therefore, proteomics, the large-scale study of proteins and their functions, represents an invaluable tool for understanding the molecular basis of disease. This review highlights the use of mass spectrometry-based proteomics to study the pathogenesis, etiology, and pathology of several neglected tropical diseases (NTDs), a diverse group of disabling diseases primarily associated with poverty in tropical and subtropical regions of the world. While numerous NTDs have been the subject of proteomic studies, this review focuses on Buruli ulcer, dengue, leishmaniasis, and snakebite envenoming. The proteomic studies highlighted provide substantial information on the pathogenic mechanisms driving these diseases; they also identify molecular targets for drug discovery and development and uncover promising biomarkers that can assist in early diagnosis.
Collapse
Affiliation(s)
- Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Fernanda Negrão
- Department of Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
21
|
Venomics of the Central American Lyre Snake Trimorphodon quadruplex (Colubridae: Smith, 1941) from Costa Rica. J Proteomics 2020; 220:103778. [DOI: 10.1016/j.jprot.2020.103778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
|
22
|
Barua A, Mikheyev AS. Many Options, Few Solutions: Over 60 My Snakes Converged on a Few Optimal Venom Formulations. Mol Biol Evol 2020; 36:1964-1974. [PMID: 31220860 PMCID: PMC6736290 DOI: 10.1093/molbev/msz125] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gene expression changes contribute to complex trait variations in both individuals and populations. However, the evolution of gene expression underlying complex traits over macroevolutionary timescales remains poorly understood. Snake venoms are proteinaceous cocktails where the expression of each toxin can be quantified and mapped to a distinct genomic locus and traced for millions of years. Using a phylogenetic generalized linear mixed model, we analyzed expression data of toxin genes from 52 snake species spanning the 3 venomous snake families and estimated phylogenetic covariance, which acts as a measure of evolutionary constraint. We find that evolution of toxin combinations is not constrained. However, although all combinations are in principle possible, the actual dimensionality of phylomorphic space is low, with envenomation strategies focused around only four major toxin families: metalloproteases, three-finger toxins, serine proteases, and phospholipases A2. Although most extant snakes prioritize either a single or a combination of major toxin families, they are repeatedly recruited and lost. We find that over macroevolutionary timescales, the venom phenotypes were not shaped by phylogenetic constraints, which include important microevolutionary constraints such as epistasis and pleiotropy, but more likely by ecological filtering that permits a small number of optimal solutions. As a result, phenotypic optima were repeatedly attained by distantly related species. These results indicate that venoms evolve by selection on biochemistry of prey envenomation, which permit diversity through parallelism, and impose strong limits, since only a few of the theoretically possible strategies seem to work well and are observed in extant snakes.
Collapse
Affiliation(s)
- Agneesh Barua
- Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology Graduate University, Onna, Japan.,Evolutionary Genomics Research Group, Ecology and Evolution Unit, Australian National University, Canberra, Australia
| |
Collapse
|
23
|
Antimicrobial Activity of Protein Fraction from Naja ashei Venom Against Staphylococcus epidermidis. Molecules 2020; 25:molecules25020293. [PMID: 31936872 PMCID: PMC7024148 DOI: 10.3390/molecules25020293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023] Open
Abstract
One of the key problems of modern infectious disease medicine is the growing number of drug-resistant and multi-drug-resistant bacterial strains. For this reason, many studies are devoted to the search for highly active antimicrobial substances that could be used in therapy against bacterial infections. As it turns out, snake venoms are a rich source of proteins that exert a strong antibacterial effect, and therefore they have become an interesting research material. We analyzed Naja ashei venom for such antibacterial properties, and we found that a specific composition of proteins can act to eliminate individual bacterial cells, as well as the entire biofilm of Staphylococcus epidermidis. In general, we used ion exchange chromatography (IEX) to obtain 10 protein fractions with different levels of complexity, which were then tested against certified and clinical strains of S. epidermidis. One of the fractions (F2) showed exceptional antimicrobial effects both alone and in combination with antibiotics. The protein composition of the obtained fractions was determined using mass spectrometry techniques, indicating a high proportion of phospholipases A2, three-finger toxins, and L-amino acids oxidases in F2 fraction, which are most likely responsible for the unique properties of this fraction. Moreover, we were able to identify a new group of low abundant proteins containing the Ig-like domain that have not been previously described in snake venoms.
Collapse
|
24
|
Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu Rev Anim Biosci 2019; 8:91-116. [PMID: 31702940 DOI: 10.1146/annurev-animal-021419-083626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Snake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure-function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes. In this review, we discuss examples of how the major venom protein superfamilies have diversified, as well as how newer technologies in the omics fields, such as genomics, transcriptomics, and proteomics, can be used to characterize both known and unknown toxins.Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as therapeutic and diagnostic agents, and successful examples of toxin applications in these areas are also reviewed. With the current rapid pace of technology, snake venom research and its applications will only continue to expand.
Collapse
Affiliation(s)
- Cassandra M Modahl
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Rajeev Kungur Brahma
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077;
| | - Narumi Shioi
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , , .,Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan;
| | - R Manjunatha Kini
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| |
Collapse
|
25
|
Modahl CM, Mackessy SP. Venoms of Rear-Fanged Snakes: New Proteins and Novel Activities. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
Unveiling toxicological aspects of venom from the Aesculapian False Coral Snake Erythrolamprus aesculapii. Toxicon 2019; 164:71-81. [DOI: 10.1016/j.toxicon.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
|
27
|
Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis. Mar Drugs 2019; 17:md17030177. [PMID: 30893765 PMCID: PMC6471084 DOI: 10.3390/md17030177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Individual variation in animal venom has been linked to geographical location, feeding habit, season, size, and gender. Uniquely, cone snails possess the remarkable ability to change venom composition in response to predatory or defensive stimuli. To date, correlations between the venom gland transcriptome and proteome within and between individual cone snails have not been reported. In this study, we use 454 pyrosequencing and mass spectrometry to decipher the transcriptomes and proteomes of the venom gland and corresponding predation-evoked venom of two specimens of Conus imperialis. Transcriptomic analyses revealed 17 conotoxin gene superfamilies common to both animals, including 5 novel superfamilies and two novel cysteine frameworks. While highly expressed transcripts were common to both specimens, variation of moderately and weakly expressed precursor sequences was surprisingly diverse, with one specimen expressing two unique gene superfamilies and consistently producing more paralogs within each conotoxin gene superfamily. Using a quantitative labelling method, conotoxin variability was compared quantitatively, with highly expressed peptides showing a strong correlation between transcription and translation, whereas peptides expressed at lower levels showed a poor correlation. These results suggest that major transcripts are subject to stabilizing selection, while minor transcripts are subject to diversifying selection.
Collapse
|
28
|
Whittington AC, Mason AJ, Rokyta DR. A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin. Mol Biol Evol 2019; 35:887-898. [PMID: 29329419 DOI: 10.1093/molbev/msx334] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Evolutionary innovations and complex phenotypes seemingly require an improbable amount of genetic change to evolve. Rattlesnakes display two dramatically different venom phenotypes. Type I venoms are hemorrhagic with low systemic toxicity and high expression of tissue-destroying snake venom metalloproteinases. Type II venoms are highly neurotoxic and lack snake venom metalloproteinase expression and associated hemorrhagic activity. This dichotomy hinges on Mojave toxin (MTx), a phospholipase A2 (PLA2) based β-neurotoxin expressed in Type II venoms. MTx is comprised of a nontoxic acidic subunit that undergoes extensive proteolytic processing and allosterically regulates activity of a neurotoxic basic subunit. Evolution of the acidic subunit presents an evolutionary challenge because the need for high expression of a nontoxic venom component and the proteolytic machinery required for processing suggests genetic changes of seemingly little immediate benefit to fitness. We showed that MTx evolved through a cascading series of exaptations unlocked by a single nucleotide change. The evolution of one new cleavage site in the acidic subunit unmasked buried cleavage sites already present in ancestral PLA2s, enabling proteolytic processing. Snake venom serine proteases, already present in the venom to disrupt prey hemostasis, possess the requisite specificities for MTx acidic subunit proteolysis. The dimerization interface between MTx subunits evolved by exploiting a latent, but masked, hydrophobic interaction between ancestral PLA2s. The evolution of MTx through exaptation of existing functional and structural features suggests complex phenotypes that depend on evolutionary innovations can arise from minimal genetic change enabled by prior evolution.
Collapse
Affiliation(s)
- A Carl Whittington
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Andrew J Mason
- Department of Biology, University of Central Florida, Orlando, FL
- Department of Biological Sciences, Clemson University, Clemson, SC
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
29
|
Domínguez-Pérez D, Durban J, Agüero-Chapin G, López JT, Molina-Ruiz R, Almeida D, Calvete JJ, Vasconcelos V, Antunes A. The Harderian gland transcriptomes of Caraiba andreae, Cubophis cantherigerus and Tretanorhinus variabilis, three colubroid snakes from Cuba. Genomics 2018; 111:1720-1727. [PMID: 30508561 DOI: 10.1016/j.ygeno.2018.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023]
Abstract
The Harderian gland is a cephalic structure, widely distributed among vertebrates. In snakes, the Harderian gland is anatomically connected to the vomeronasal organ via the nasolacrimal duct, and in some species can be larger than the eyes. The function of the Harderian gland remains elusive, but it has been proposed to play a role in the production of saliva, pheromones, thermoregulatory lipids and growth factors, among others. Here, we have profiled the transcriptomes of the Harderian glands of three non-front-fanged colubroid snakes from Cuba: Caraiba andreae (Cuban Lesser Racer); Cubophis cantherigerus (Cuban Racer); and Tretanorhinus variabilis (Caribbean Water Snake), using Illumina HiSeq2000 100 bp paired-end. In addition to ribosomal and non-characterized proteins, the most abundant transcripts encode putative transport/binding, lipocalin/lipocalin-like, and bactericidal/permeability-increasing-like proteins. Transcripts coding for putative canonical toxins described in venomous snakes were also identified. This transcriptional profile suggests a more complex function than previously recognized for this enigmatic organ.
Collapse
Affiliation(s)
- Dany Domínguez-Pérez
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Jordi Durban
- Evolutionary and Translational Venomics Laboratory, CSIC, Jaume Roig, 11, 46010, Valencia, Spain.
| | - Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Javier Torres López
- Department of Ecology and Evolutionary Biology, The University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045, USA; Faculty of Biology, University of Havana, 25 St. 455, La Habana 10400, Cuba.
| | - Reinaldo Molina-Ruiz
- Centro de Bioactivos Químicos, Universidad Central "Marta Abreu" de Las Villas, 54830 Santa Clara, Cuba.
| | - Daniela Almeida
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Jaume Roig, 11, 46010, Valencia, Spain.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| |
Collapse
|
30
|
Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus Aspidelaps), and revealing the likely efficacy of available antivenom. J Proteomics 2018; 198:186-198. [PMID: 30290233 DOI: 10.1016/j.jprot.2018.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/15/2018] [Accepted: 09/30/2018] [Indexed: 12/15/2022]
Abstract
While envenoming by the southern African shield-nosed or coral snakes (genus Aspidelaps) has caused fatalities, bites are uncommon. Consequently, this venom is not used in the mixture of snake venoms used to immunise horses for the manufacture of regional SAIMR (South African Institute for Medical Research) polyvalent antivenom. Aspidelaps species are even excluded from the manufacturer's list of venomous snakes that can be treated by this highly effective product. This leaves clinicians, albeit rarely, in a therapeutic vacuum when treating envenoming by these snakes. This is a significantly understudied small group of nocturnal snakes and little is known about their venom compositions and toxicities. Using a murine preclinical model, this study determined that the paralysing toxicity of venoms from Aspidelaps scutatus intermedius, A. lubricus cowlesi and A. l. lubricus approached that of venoms from highly neurotoxic African cobras and mambas. This finding was consistent with the cross-genus dominance of venom three-finger toxins, including numerous isoforms which showed extensive interspecific variation. Our comprehensive analysis of venom proteomes showed that the three Aspidelaps species possess highly similar venom proteomic compositions. We also revealed that the SAIMR polyvalent antivenom cross-reacted extensively in vitro with venom proteins of the three Aspidelaps. Importantly, this cross-genus venom-IgG binding translated to preclinical (in a murine model) neutralisation of A. s. intermedius venom-induced lethality by the SAIMR polyvalent antivenom, at doses comparable with those that neutralise venom from the cape cobra (Naja nivea), which the antivenom is directed against. Our results suggest a wider than anticipated clinical utility of the SAIMR polyvalent antivenom, and here we seek to inform southern African clinicians that this readily available antivenom is likely to prove effective for victims of Aspidelaps envenoming. BIOLOGICAL SIGNIFICANCE: Coral and shield-nosed snakes (genus Aspidelaps) comprise two species and several subspecies of potentially medically important venomous snakes distributed in Namibia, Botswana, Zimbabwe, Mozambique and South Africa. Documented human fatalities, although rare, have occurred from both A. lubricus and A. scutatus. However, their venom proteomes and the pathological effects of envenomings by this understudied group of nocturnal snakes remain uncharacterised. Furthermore, no commercial antivenom is made using venom from species of the genus Aspidelaps. To fill this gap, we have conducted a transcriptomics-guided comparative proteomics analysis of the venoms of the intermediate shield-nose snake (A. s. intermedius), southern coral snake (A. l. lubricus), and Cowle's shield snake (A. l. cowlesi); investigated the mechanism of action underpinning lethality by A. s. intermedius in the murine model; and assessed the in vitro immunoreactivity of the SAIMR polyvalent antivenom towards the venom toxins of A. l. lubricus and A. l. cowlesi, and the in vivo capability of this antivenom at neutralising the lethal effect of A. s. intermedius venom. Our data revealed a high degree of conservation of the global composition of the three Aspidelaps venom proteomes, all characterised by the overwhelming predominance of neurotoxic 3FTxs, which induced classical signs of systemic neurotoxicity in mice. The SAIMR polyvalent antivenom extensively binds to Aspidelaps venom toxins and neutralised, with a potency of 0.235 mg venom/mL antivenom, the lethal effect of A. s. intermedius venom. Our data suggest that the SAIMR antivenom could be a useful therapeutic tool for treating human envenomings by Aspidelaps species.
Collapse
|
31
|
Durban J, Sasa M, Calvete JJ. Venom gland transcriptomics and microRNA profiling of juvenile and adult yellow-bellied sea snake, Hydrophis platurus, from Playa del Coco (Guanacaste, Costa Rica). Toxicon 2018; 153:96-105. [DOI: 10.1016/j.toxicon.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
|
32
|
Chapeaurouge A, Silva A, Carvalho P, McCleary RJR, Modahl CM, Perales J, Kini RM, Mackessy SP. Proteomic Deep Mining the Venom of the Red-Headed Krait, Bungarus flaviceps. Toxins (Basel) 2018; 10:E373. [PMID: 30217057 PMCID: PMC6162843 DOI: 10.3390/toxins10090373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 01/20/2023] Open
Abstract
The use of -omics technologies allows for the characterization of snake venom composition at a fast rate and at high levels of detail. In the present study, we investigated the protein content of Red-headed Krait (Bungarus flaviceps) venom. This analysis revealed a high diversity of snake venom protein families, as evidenced by high-throughput mass spectrometric analysis. We found all six venom protein families previously reported in a transcriptome study of the venom gland of B. flaviceps, including phospholipases A₂ (PLA₂s), Kunitz-type serine proteinase inhibitors (KSPIs), three-finger toxins (3FTxs), cysteine-rich secretory proteins (CRISPs), snaclecs, and natriuretic peptides. A combined approach of automated database searches and de novo sequencing of tandem mass spectra, followed by sequence similarity searches, revealed the presence of 12 additional toxin families. De novo sequencing alone was able to identify 58 additional peptides, and this approach contributed significantly to the comprehensive description of the venom. Abundant protein families comprise 3FTxs (22.3%), KSPIs (19%), acetylcholinesterases (12.6%), PLA₂s (11.9%), venom endothelial growth factors (VEGFs, 8.4%), nucleotidases (4.3%), and C-type lectin-like proteins (snaclecs, 3.3%); an additional 11 toxin families are present at significantly lower concentrations, including complement depleting factors, a family not previously detected in Bungarus venoms. The utility of a multifaceted approach toward unraveling the proteome of snake venoms, employed here, allowed detection of even minor venom components. This more in-depth knowledge of the composition of B. flaviceps venom facilitates a better understanding of snake venom molecular evolution, in turn contributing to more effective treatment of krait bites.
Collapse
Affiliation(s)
- Alex Chapeaurouge
- Fundação Oswaldo Cruz-Ceará, Rua São José, 2º Pavimento, Precabura, Eusébio 61760-000, Brazil.
| | - Andreza Silva
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21045-900, Brazil.
| | - Paulo Carvalho
- Computational Mass Spectrometry& Proteomics Group, Carlos Chagas Institute, Fiocruz, Paraná 81350-010, Brazil.
| | - Ryan J R McCleary
- Department of Biology, Stetson University, 421 N. Woodland Blvd, DeLand, FL 32723, USA.
| | - Cassandra Marie Modahl
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21045-900, Brazil.
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA.
| |
Collapse
|
33
|
Three-Finger Toxin Diversification in the Venoms of Cat-Eye Snakes (Colubridae: Boiga). J Mol Evol 2018; 86:531-545. [PMID: 30206667 DOI: 10.1007/s00239-018-9864-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
The Asian genus Boiga (Colubridae) is among the better studied non-front-fanged snake lineages, because their bites have minor, but noticeable, effects on humans. Furthermore, B. irregularis has gained worldwide notoriety for successfully invading Guam and other nearby islands with drastic impacts on the local bird populations. One of the factors thought to allow B. irregularis to become such a noxious pest is irditoxin, a dimeric neurotoxin composed of two three-finger toxins (3FTx) joined by a covalent bond between two newly evolved cysteines. Irditoxin is highly toxic to diapsid (birds and reptiles) prey, but roughly 1000 × less potent to synapsids (mammals). Venom plays an important role in the ecology of all species of Boiga, but it remains unknown if any species besides B. irregularis produce irditoxin-like dimeric toxins. In this study, we use transcriptomic analyses of venom glands from five species [B. cynodon, B. dendrophila dendrophila, B. d. gemmicincta, B. irregularis (Brisbane population), B. irregularis (Sulawesi population), B. nigriceps, B. trigonata] and proteomic analyses of B. d. dendrophila and a representative of the sister genus Toxicodryas blandingii to investigate the evolutionary history of 3FTx within Boiga and its close relative. We found that 92.5% of Boiga 3FTx belong to a single clade which we refer to as denmotoxin-like because of the close relation between these toxins and the monomeric denmotoxin according to phylogenetic, sequence clustering, and protein similarity network analyses. We show for the first time that species beyond B. irregularis secrete 3FTx with additional cysteines in the same position as both the A and B subunits of irditoxin. Transcripts with the characteristic mutations are found in B. d. dendrophila, B. d. gemmicincta, B. irregularis (Brisbane population), B. irregularis (Sulawesi population), and B. nigriceps. These results are confirmed by proteomic analyses that show direct evidence of dimerization within the venom of B. d. dendrophila, but not T. blandingii. Our results also suggest the possibility of novel dimeric toxins in other genera such as Telescopus and Trimorphodon. All together, this suggests that the origin of these peculiar 3FTx is far earlier than was appreciated and their evolutionary history has been complex.
Collapse
|
34
|
Modahl CM, Frietze S, Mackessy SP. Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. J Proteomics 2018; 187:223-234. [PMID: 30092380 DOI: 10.1016/j.jprot.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
High-throughput technologies were used to identify venom gland toxin expression and to characterize the venom proteomes of two rear-fanged snakes, Ahaetulla prasina (Asian Green Vine Snake) and Borikenophis portoricensis (Puerto Rican Racer). Sixty-nine complete toxin-coding transcripts from 12 venom protein superfamilies (A. prasina) and 50 complete coding transcripts from 11 venom protein superfamilies (B. portoricensis) were identified in the venom glands. However, only 18% (A. prasina) and 32% (B. portoricensis) of the translated protein isoforms were detected in the proteome of these venoms. Both venom gland transcriptomes and venom proteomes were dominated by P-III metalloproteinases. Three-finger toxins, cysteine-rich secretory proteins, and C-type lectins were present in moderate amounts, but other protein superfamilies showed very low abundances. Venoms contained metalloproteinase activity comparable to viperid snake venom levels, but other common venom enzymes were absent or present at negligible levels. Western blot analysis showed metalloproteinase and cysteine-rich secretory protein epitopes shared with the highly venomous Boomslang (Dispholidus typus). The abundance of metalloproteinases emphasizes the important trophic role of these toxins. Comprehensive, transcriptome-informed definition of proteomes and functional characterization of venom proteins in rear-fanged snake families help to elucidate toxin evolution and provide models for protein structure-function analyses.
Collapse
Affiliation(s)
- Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, 302 Rowell, Burlington, VT 05405, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA.
| |
Collapse
|
35
|
Modahl CM, Mrinalini, Frietze S, Mackessy SP. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc Biol Sci 2018; 285:rspb.2018.1003. [PMID: 30068680 DOI: 10.1098/rspb.2018.1003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Venom proteins evolve rapidly, and as a trophic adaptation are excellent models for predator-prey evolutionary studies. The key to a deeper understanding of venom evolution is an integrated approach, combining prey assays with analysis of venom gene expression and venom phenotype. Here, we use such an approach to study venom evolution in the Amazon puffing snake, Spilotes sulphureus, a generalist feeder. We identify two novel three-finger toxins: sulditoxin and sulmotoxin 1. These new toxins are not only two of the most abundant venom proteins, but are also functionally intriguing, displaying distinct prey-specific toxicities. Sulditoxin is highly toxic towards lizard prey, but is non-toxic towards mammalian prey, even at greater than 22-fold higher dosage. By contrast, sulmotoxin 1 exhibits the reverse trend. Furthermore, evolutionary analysis and structural modelling show highest sequence variability in the central loop of these proteins, probably driving taxon-specific toxicity. This is, to our knowledge, the first case in which a bimodal and contrasting pattern of toxicity has been shown for proteins in the venom of a single snake in relation to diet. Our study is an example of how toxin gene neofunctionalization can result in a venom system dominated by one protein superfamily and still exhibit flexibility in prey capture efficacy.
Collapse
Affiliation(s)
- Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO 80639-0017, USA
| | - Mrinalini
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Seth Frietze
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO 80639-0017, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO 80639-0017, USA
| |
Collapse
|
36
|
Sánchez MN, Teibler GP, López CA, Mackessy SP, Peichoto ME. Assessment of the potential toxicological hazard of the Green Parrot Snake (Leptophis ahaetulla marginatus): Characterization of its venom and venom-delivery system. Toxicon 2018; 148:202-212. [DOI: 10.1016/j.toxicon.2018.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/11/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
|
37
|
Pla D, Petras D, Saviola AJ, Modahl CM, Sanz L, Pérez A, Juárez E, Frietze S, Dorrestein PC, Mackessy SP, Calvete JJ. Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam. J Proteomics 2017; 174:71-84. [PMID: 29292096 DOI: 10.1016/j.jprot.2017.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
The Brown Treesnake (Boiga irregularis) is an arboreal, nocturnal, rear-fanged venomous snake native to northern and eastern regions of Australia, Papua New Guinea and the Solomon Islands. It was inadvertently introduced onto the island of Guam during the late 1940's to early 1950's, and it has caused massive declines and extirpations of the native bird, lizard, and mammal populations. In the current study, we report the characterization of the venom proteome of an adult and a neonate B. irregularis specimens from Guam by a combination of venom gland transcriptomic and venomic analyses. Venom gland transcriptomic analysis of an adult individual identified toxins belonging to 18 protein families, with three-finger toxin isoforms being the most abundantly expressed transcripts, comprising 94% of all venom protein transcript reads. Transcripts for PIII-metalloproteinases, C-type lectins, cysteine-rich secretory proteins, acetylcholinesterases, natriuretic peptides, ficolins, phospholipase A2 (PLA2) inhibitors, PLA2s, vascular endothelial growth factors, Kunitz-type protease inhibitors, cystatins, phospholipase Bs, cobra venom factors, waprins, SVMP inhibitors, matrix metalloproteinases, and hyaluronidases were also identified, albeit, at very low abundances ranging from 0.05% to 1.7% of the transcriptome. The venom proteomes of neonate and adult B. irregularis were also both overwhelmingly (78 and 84%, respectively) dominated by monomeric and dimeric 3FTxs, followed by moderately abundant (21% (N) and 13% (A)) CRISPs, low abundance (1% (N), 3% (A)) PIII-SVMPs, and very low abundance (<0.01%) PLA2 and SVMP inhibitors. The differences in relative toxin abundances identified between neonate and adult snakes likely correlates to shifts in prey preference between the two age classes, from nearly-exclusively lizards to lizards, birds and small mammals. Immunoaffinity antivenomics with experimentally designed rabbit anti-Brown Treesnake (anti-BTS) venom IgGs against homologous venom from adult snakes demonstrated that CRISPs, PIII-SVMPs, and 60-70% of 3FTxs were effectively immunocaptured. Western blot analysis showed that all venom proteins were recognized by anti-BTS IgGs, and cross-reactivity with other rear-fanged snake venoms was also observed. Incubation of anti-BTS venom IgGs with crude B. irregularis venom resulted in a significant decrease in proteolytic (SVMP) activity against azocasein. These results provide the first comparative venomic and anti-venomic analysis of neonate and adult B. irregularis from Guam, further highlighting evolutionary trends in venom composition among rear-fanged venomous snakes. SIGNIFICANCE PARAGRAPH The Brown Treesnake (Boiga irregularis) has caused extensive ecological and economic damage to the island of Guam where it has become a classic example of the negative impacts of invasive species. In the current study, we report the first combined transcriptomic and proteomic analysis of B. irregularis venom of Guam origin. The transcriptome of an adult snake contained toxin sequences belonging to 18 protein families, with three-finger toxin (3FTx) isoforms being the most abundant and representing 94% of all venom protein transcript reads. Our bottom-up and top-down venomic analyses confirmed that 3FTxs are the major components of B. irregularis venom, and a comparative analysis of neonate and adult venoms demonstrate a clear ontogenetic shift in toxin abundance, likely driven by dietary variation between the two age classes. Second-generation antivenomics and Western blot analysis using purified anti-Brown Treesnake rabbit serum IgGs (anti-BTS IgGs) showed strong immunoreactivity toward B. irregularis venom. Interestingly, our anti-BTS IgGs did not cross-react with 3FTxs found in several other rear-fanged snake venoms, or against 3FTxs in the venom of the elapid Ophiophagus hannah, indicating that epitopes in these 3FTx molecules are quite distinct.
Collapse
Affiliation(s)
- Davinia Pla
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Daniel Petras
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Anthony J Saviola
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain; School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639, USA
| | - Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639, USA
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Alicia Pérez
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Elena Juárez
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Seth Frietze
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639, USA
| | - Pieter C Dorrestein
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639, USA.
| | - Juan J Calvete
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
38
|
Targeting Metastasis with Snake Toxins: Molecular Mechanisms. Toxins (Basel) 2017; 9:toxins9120390. [PMID: 29189742 PMCID: PMC5744110 DOI: 10.3390/toxins9120390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Metastasis involves the migration of cancer cells from a primary tumor to invade and establish secondary tumors in distant organs, and it is the main cause for cancer-related deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. This highlights the need to find new anti-metastatic drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer cells; only a reduced number of toxin classes have been reported on (i.e., disintegrins/disintegrin-like proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve (1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network.
Collapse
|
39
|
Venomics of Remipede Crustaceans Reveals Novel Peptide Diversity and Illuminates the Venom's Biological Role. Toxins (Basel) 2017; 9:toxins9080234. [PMID: 28933727 PMCID: PMC5577568 DOI: 10.3390/toxins9080234] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 01/15/2023] Open
Abstract
We report the first integrated proteomic and transcriptomic investigation of a crustacean venom. Remipede crustaceans are the venomous sister group of hexapods, and the venom glands of the remipede Xibalbanus tulumensis express a considerably more complex cocktail of proteins and peptides than previously thought. We identified 32 venom protein families, including 13 novel peptide families that we name xibalbins, four of which lack similarities to any known structural class. Our proteomic data confirm the presence in the venom of 19 of the 32 families. The most highly expressed venom components are serine peptidases, chitinase and six of the xibalbins. The xibalbins represent Inhibitory Cystine Knot peptides (ICK), a double ICK peptide, peptides with a putative Cystine-stabilized α-helix/β-sheet motif, a peptide similar to hairpin-like β-sheet forming antimicrobial peptides, two peptides related to different hormone families, and four peptides with unique structural motifs. Remipede venom components represent the full range of evolutionary recruitment frequencies, from families that have been recruited into many animal venoms (serine peptidases, ICKs), to those having a very narrow taxonomic range (double ICKs), to those unique for remipedes. We discuss the most highly expressed venom components to shed light on their possible functional significance in the predatory and defensive use of remipede venom, and to provide testable ideas for any future bioactivity studies.
Collapse
|
40
|
Tan KY, Tan CH, Chanhome L, Tan NH. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty. PeerJ 2017; 5:e3142. [PMID: 28392982 PMCID: PMC5384570 DOI: 10.7717/peerj.3142] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/03/2017] [Indexed: 11/20/2022] Open
Abstract
Background The monocled cobra (Naja kaouthia) is a medically important venomous snake in Southeast Asia. Its venom has been shown to vary geographically in relation to venom composition and neurotoxic activity, indicating vast diversity of the toxin genes within the species. To investigate the polygenic trait of the venom and its locale-specific variation, we profiled and compared the venom gland transcriptomes of N. kaouthia from Malaysia (NK-M) and Thailand (NK-T) applying next-generation sequencing (NGS) technology. Methods The transcriptomes were sequenced on the Illumina HiSeq platform, assembled and followed by transcript clustering and annotations for gene expression and function. Pairwise or multiple sequence alignments were conducted on the toxin genes expressed. Substitution rates were studied for the major toxins co-expressed in NK-M and NK-T. Results and discussion The toxin transcripts showed high redundancy (41–82% of the total mRNA expression) and comprised 23 gene families expressed in NK-M and NK-T, respectively (22 gene families were co-expressed). Among the venom genes, three-finger toxins (3FTxs) predominated in the expression, with multiple sequences noted. Comparative analysis and selection study revealed that 3FTxs are genetically conserved between the geographical specimens whilst demonstrating distinct differential expression patterns, implying gene up-regulation for selected principal toxins, or alternatively, enhanced transcript degradation or lack of transcription of certain traits. One of the striking features that elucidates the inter-geographical venom variation is the up-regulation of α-neurotoxins (constitutes ∼80.0% of toxin’s fragments per kilobase of exon model per million mapped reads (FPKM)), particularly the long-chain α-elapitoxin-Nk2a (48.3%) in NK-T but only 1.7% was noted in NK-M. Instead, short neurotoxin isoforms were up-regulated in NK-M (46.4%). Another distinct transcriptional pattern observed is the exclusively and abundantly expressed cytotoxin CTX-3 in NK-T. The findings suggested correlation with the geographical variation in proteome and toxicity of the venom, and support the call for optimising antivenom production and use in the region. Besides, the current study uncovered full and partial sequences of numerous toxin genes from N. kaouthia which have not been reported hitherto; these include N. kaouthia-specific l-amino acid oxidase (LAAO), snake venom serine protease (SVSP), cystatin, acetylcholinesterase (AChE), hyaluronidase (HYA), waprin, phospholipase B (PLB), aminopeptidase (AP), neprilysin, etc. Taken together, the findings further enrich the snake toxin database and provide deeper insights into the genetic diversity of cobra venom toxins.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | | | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
41
|
Liu T, Wang L, Chen H, Huang Y, Yang P, Ahmed N, Wang T, Liu Y, Chen Q. Molecular and Cellular Mechanisms of Apoptosis during Dissociated Spermatogenesis. Front Physiol 2017; 8:188. [PMID: 28424629 PMCID: PMC5372796 DOI: 10.3389/fphys.2017.00188] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is a tightly controlled process by which tissues eliminate unwanted cells. Spontaneous germ cell apoptosis in testis has been broadly investigated in mammals that have an associated spermatogenesis pattern. However, the mechanism of germ cell apoptosis in seasonally breeding reptiles following a dissociated spermatogenesis has remained enigmatic. In the present study, morphological evidence has clearly confirmed the dissociated spermatogenesis pattern in Pelodiscus sinensis. TUNEL and TEM analyses presented dynamic changes and ultrastructural characteristics of apoptotic germ cells during seasonal spermatogenesis, implying that apoptosis might be one of the key mechanisms to clear degraded germ cells. Furthermore, using RNA-Seq and digital gene expression (DGE) profiling, a large number of apoptosis-related differentially expressed genes (DEGs) at different phases of spermatogenesis were identified and characterized in the testis. DGE and RT-qPCR analysis revealed that the critical anti-apoptosis genes, such as Bcl-2, BAG1, and BAG5, showed up-regulated patterns during intermediate and late spermatogenesis. Moreover, the increases in mitochondrial transmembrane potential in July and October were detected by JC-1 staining. Notably, the low protein levels of pro-apoptotic cleaved caspase-3 and CytC in cytoplasm were detected by immunohistochemistry and western blot analyses, indicating that the CytC-Caspase model might be responsible for the effects of germ cell apoptosis on seasonal spermatogenesis. These results facilitate understanding the regulatory mechanisms of apoptosis during spermatogenesis and uncovering the biological process of the dissociated spermatogenesis system in reptiles.
Collapse
Affiliation(s)
- Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Taozhi Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
42
|
Abstract
Proteins from TCTP/HRF family were identified as venom toxins of spiders from different genus. We have found a TCTP toxin in the venom gland of Loxosceles intermedia, a venomous spider very common in South Brazil. TCTP from L. intermedia, named LiTCTP, was cloned, produced in a heterologous prokaryotic system, and the recombinant toxin was biochemically characterized. Our results point that LiTCTP is involved in the inflammatory events of Loxocelism, the clinical signs triggered after Loxosceles sp. bite, which include intense inflammatory reaction at the bite site followed by local necrosis. TCTP toxins were also identified in spiders from different genus. There are very few articles about TCTP toxins in other venomous animals in the literature, although a NCBI database search on the protein sequences reveals TCTP on snake's venom glands transcriptomic and genomic studies. Studies on TCTP as a venom toxin are very few and its biological role as a venom component in prey capture is still unknown.
Collapse
|
43
|
Hill AG, McKillop L. Fatal self-envenomation in a brown tree snake, Boiga irregularis, from south-east Queensland. Toxicon 2016; 126:1-3. [PMID: 27974231 DOI: 10.1016/j.toxicon.2016.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
The case history and clinical signs of a fatal self-envenomation event by a brown tree snake, Boiga irregularis, in South-east Queensland, Australia, are presented. Clinical signs began 20 minutes post-envenomation with muscle twitching, ataxia, and heat seeking behavior which progressed to partial paralysis by 6 hours, generalised paralysis and respiratory arrest at 10 hours and cardiac arrest by 12 hours post-envenomation. Clinical signs are suggestive of potent neurotoxicity for B. irregularis to its own venom.
Collapse
Affiliation(s)
- Andrew Gordon Hill
- Currumbin Wildlife Sanctuary, 28 Tomewin St, Currumbin, 4223, Australia.
| | - Lewis McKillop
- Currumbin Wildlife Sanctuary, 28 Tomewin St, Currumbin, 4223, Australia.
| |
Collapse
|
44
|
Pla D, Sanz L, Sasa M, Acevedo ME, Dwyer Q, Durban J, Pérez A, Rodriguez Y, Lomonte B, Calvete JJ. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J Proteomics 2016; 152:1-12. [PMID: 27777178 DOI: 10.1016/j.jprot.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 01/17/2023]
Abstract
Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA2s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP-rich venom, whereas in B. schlegelii the age-dependent compositional shift generates a PLA2-rich venom. Overall, genus-wide venomics illustrate the high evolvability of palm-pitviper venoms. The integration of the pattern of venom variation across Bothriechis into a phylogenetic and biogeographic framework may lay the foundation for assessing, in future studies, the evolutionary path that led to the present-day variability of the venoms of palm-pitvipers. SIGNIFICANCE Bothriechis represents a monophyletic basal genus of eleven arboreal palm-pitvipers that range from southern Mexico to northern South America. Despite palm-pitvipers' putative status as diet generalists, previous proteomic analyses have revealed remarkable divergence between the venoms of Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. Our current proteomic study of Guatemalan species, B. thalassinus, B. aurifer, and B. bicolor, Honduran B. marchi, and neonate B. lateralis and B. schlegelii from Costa Rica was undertaken to deepen our understanding of the evolutionary pattern of venom proteome diversity across Bothriechis. Ancestral characters are often, but not always, preserved in an organism's development. Venoms of neonate B. lateralis and B. schlegelii are more similar to each other than to adults of their respective species, suggesting that the high evolvability of palm-pitviper venoms may represent an inherent feature of Bothriechis common ancestor. Our genus-wide data identified four nodes of venom phenotype differentiation across the phylogeny of Bothriechis. Integrated into a phylogenetic and biogeographic framework, the pattern of venom variation across Bothriechis may lay the groundwork to establish whether divergence was driven by selection for efficient resource exploitation in arboreal 'islands', thereby contributing to the ecological speciation of the genus.
Collapse
Affiliation(s)
- Davinia Pla
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Libia Sanz
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Manuel E Acevedo
- Centro de Estudios Conservacionistas, Centro de Datos para la Conservacion, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala
| | - Quetzal Dwyer
- Parque Reptilandia, Platanillo between Dominical & San Isidro, 8000 Dominical, Puntarenas, Costa Rica
| | - Jordi Durban
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Alicia Pérez
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Yania Rodriguez
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|
45
|
McBride TD, Andrew U, Ly N, Soto JG. RNA sequence analyses of r-Moj-DM treated cells: TXNIP is required to induce apoptosis of SK-Mel-28. Toxicon 2016; 121:1-9. [PMID: 27567705 DOI: 10.1016/j.toxicon.2016.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Abstract
RNA sequencing of untreated and r-Moj-DM treated SK-Mel-28 cells was performed after 6 h, to begin unraveling the apoptotic pathway induced by r-Moj-DM. Bioinformatic analyses of RNA sequencing data yielded 40 genes that were differentially expressed. Nine genes were upregulated and 31 were downregulated. qRT-PCR was used to validate differential expression of 13 genes with known survival or apoptotic-inducing activities. Expression of BNiP3, IGFBP3, PTPSF, Prune 2, TGF-ß, and TXNIP were compared from cells treated with r-Moj-DN (a strong apoptotic inducer) or r-Moj-DA (a non-apoptotic inducer) for 1 h, 2 h, 4 h, and 6 h after treatment. Our results demonstrate that significant differences in expression are only detected after 4 h of treatment. In addition, expression of TXNIP (an apoptotic inducer) remains elevated at 4 h and 6 h only in r-Moj-DN treated cells. Based on the consistency of elevated TXNIP expression, we further studied TXNIP as a novel target of disintegrin activation. Confocal microscopy of anti-TXNIP stained SK-Mel-28 cells suggests nuclear localization of TXNIP after r-Moj-DM treatment. A stable TXNIP knockdown SK-Mel-28 cell line was produced to test TXNIP' role in the apoptotic induction by r-Moj-DM. High cell viability (74.3% ±9.1) was obtained after r-Moj-DM treatment of TXNIP knocked down SK-Mel-28 cells, compared to 34% ±0.187 for untransduced cells. These results suggest that TXNIP is required early in the apoptotic-inducing pathway resulting from r-Moj-DM binding to the αv integrin subunit.
Collapse
Affiliation(s)
- Terri D McBride
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - U Andrew
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Nicko Ly
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Julio G Soto
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA.
| |
Collapse
|
46
|
Campos PF, Andrade-Silva D, Zelanis A, Paes Leme AF, Rocha MMT, Menezes MC, Serrano SMT, Junqueira-de-Azevedo IDLM. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi. Genome Biol Evol 2016; 8:2266-87. [PMID: 27412610 PMCID: PMC5010889 DOI: 10.1093/gbe/evw149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution.
Collapse
Affiliation(s)
- Pollyanna Fernandes Campos
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - André Zelanis
- Departamento de Ciência E Tecnologia, Universidade Federal de São Paulo, São José Dos Campos, Brazil
| | | | | | - Milene Cristina Menezes
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
47
|
Junqueira-de-Azevedo ILM, Campos PF, Ching ATC, Mackessy SP. Colubrid Venom Composition: An -Omics Perspective. Toxins (Basel) 2016; 8:E230. [PMID: 27455326 PMCID: PMC4999846 DOI: 10.3390/toxins8080230] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 01/12/2023] Open
Abstract
Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets.
Collapse
Affiliation(s)
- Inácio L M Junqueira-de-Azevedo
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Pollyanna F Campos
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Ana T C Ching
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639-0017, USA.
| |
Collapse
|
48
|
Modahl CM, Mackessy SP. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution. PLoS Negl Trop Dis 2016; 10:e0004587. [PMID: 27280639 PMCID: PMC4900637 DOI: 10.1371/journal.pntd.0004587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/08/2016] [Indexed: 12/24/2022] Open
Abstract
Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides access to cDNA sequences in the absence of living specimens, even from commercial venom sources, to evaluate important regional differences in venom composition and to study snake venom protein evolution. This work demonstrates that full-length venom protein messenger RNAs are present in secreted venoms and can be used to acquire full-length protein sequences of toxins from both front-fanged (Elapidae, Viperidae) and rear-fanged (Colubridae) snake venoms, eliminating the need to use venom glands. Full-length transcripts were obtained from venom samples that were fresh, newly lyophilized, old, field desiccated or commercially prepared, representing a significant advance over previous attempts which produced only partial sequence transcripts. Transcripts for all major venom protein families (metalloproteinases, serine proteases, C-type lectins, phospholipases A2 and three-finger toxins) responsible for clinically significant snakebite symptoms were obtained from venoms. These sequences aid in the identification and characterization of venom proteome profiles, allowing for the identification of peptide sequences, specific isoforms, and novel venom proteins. The application of this technique will help to provide venom protein sequences for many snake species, including understudied rear-fanged snakes. Venom protein transcripts offer important insights into potential snakebite envenomation profiles and the molecular evolution of venom protein multigene families. By requiring only venom to obtain venom protein cDNAs, the approach detailed here will provide access to cDNA-based protein sequences from commercial and other venom sources, facilitating study of snake venom protein composition and evolution.
Collapse
Affiliation(s)
- Cassandra M. Modahl
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
| | - Stephen P. Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
- * E-mail:
| |
Collapse
|
49
|
Whiteley G, Logan RAE, Leung KYD, Newberry FJ, Rowley PD, Dunbar JP, Wagstaff SC, Casewell NR, Harrison RA. Stabilising the Integrity of Snake Venom mRNA Stored under Tropical Field Conditions Expands Research Horizons. PLoS Negl Trop Dis 2016; 10:e0004615. [PMID: 27280729 PMCID: PMC4900621 DOI: 10.1371/journal.pntd.0004615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/17/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications. METHODOLOGY/PRINCIPAL FINDINGS Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4-37°C) for a range of durations (0-48 hours), followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4-19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98-99% identity) to those found in the venom gland. CONCLUSIONS/SIGNIFICANCE The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons to rare, endangered or protected snake species and provide more flexibility to performing fieldwork on venomous snakes in tropical conditions.
Collapse
Affiliation(s)
- Gareth Whiteley
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rhiannon A. E. Logan
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kam-Yin D. Leung
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Fiona J. Newberry
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul D. Rowley
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John P. Dunbar
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon C. Wagstaff
- Bioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A. Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
50
|
Margres MJ, Walls R, Suntravat M, Lucena S, Sánchez EE, Rokyta DR. Functional characterizations of venom phenotypes in the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for expression-driven divergence in toxic activities among populations. Toxicon 2016; 119:28-38. [PMID: 27179420 DOI: 10.1016/j.toxicon.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 01/12/2023]
Abstract
Phenotypes frequently vary across and within species. The connection between specific phenotypic effects and function, however, is less understood despite being essential to our understanding of the adaptive process. Snake venoms are ideal for identifying functionally important phenotypic variation because venom variation is common, and venoms can be functionally characterized through simple assays and toxicity measurements. Previous work with the eastern diamondback rattlesnake (Crotalus adamanteus) used multivariate statistical approaches to identify six unique venom phenotypes. We functionally characterized hemolytic, gelatinase, fibrinogenolytic, and coagulant activity for all six phenotypes, as well as one additional venom, to determine if the statistically significant differences in toxin expression levels previously documented corresponded to differences in venom activity. In general, statistical differences in toxin expression predicted the identified functional differences, or lack thereof, in toxic activity, demonstrating that the statistical approach used to characterize C. adamanteus venoms was a fair representation of biologically meaningful differences. Minor differences in activity not accounted for by the statistical model may be the result of amino-acid differences and/or post-translational modifications, but overall we were able to link variation in protein expression levels to variation in function as predicted by multivariate statistical approaches.
Collapse
Affiliation(s)
- Mark J Margres
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Robert Walls
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Sara Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA; Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|