1
|
Zhao S, Zhang T, Hasunuma T, Kondo A, Zhao XQ, Feng JX. Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Crit Rev Biotechnol 2024; 44:1241-1261. [PMID: 38035670 DOI: 10.1080/07388551.2023.2280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Schalamun M, Molin EM, Schmoll M. RGS4 impacts carbohydrate and siderophore metabolism in Trichoderma reesei. BMC Genomics 2023; 24:372. [PMID: 37400774 PMCID: PMC10316542 DOI: 10.1186/s12864-023-09467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Adaptation to complex, rapidly changing environments is crucial for evolutionary success of fungi. The heterotrimeric G-protein pathway belongs to the most important signaling cascades applied for this task. In Trichoderma reesei, enzyme production, growth and secondary metabolism are among the physiological traits influenced by the G-protein pathway in a light dependent manner. RESULTS Here, we investigated the function of the SNX/H-type regulator of G-protein signaling (RGS) protein RGS4 of T. reesei. We show that RGS4 is involved in regulation of cellulase production, growth, asexual development and oxidative stress response in darkness as well as in osmotic stress response in the presence of sodium chloride, particularly in light. Transcriptome analysis revealed regulation of several ribosomal genes, six genes mutated in RutC30 as well as several genes encoding transcription factors and transporters. Importantly, RGS4 positively regulates the siderophore cluster responsible for fusarinine C biosynthesis in light. The respective deletion mutant shows altered growth on nutrient sources related to siderophore production such as ornithine or proline in a BIOLOG phenotype microarray assay. Additionally, growth on storage carbohydrates as well as several intermediates of the D-galactose and D-arabinose catabolic pathway is decreased, predominantly in light. CONCLUSIONS We conclude that RGS4 mainly operates in light and targets plant cell wall degradation, siderophore production and storage compound metabolism in T. reesei.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Eva Maria Molin
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
- Division of Terrestrial Ecosystem Research, Centre of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| |
Collapse
|
3
|
Schmoll M, Hinterdobler W. Tools for adapting to a complex habitat: G-protein coupled receptors in Trichoderma. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:65-97. [PMID: 36357080 DOI: 10.1016/bs.pmbts.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sensing the environment and interpretation of the received signals are crucial competences of living organisms in order to properly adapt to their habitat, succeed in competition and to reproduce. G-protein coupled receptors (GPCRs) are members of a large family of sensors for extracellular signals and represent the starting point of complex signaling cascades regulating a plethora of intracellular physiological processes and output pathways in fungi. In Trichoderma spp. current research involves a wide range of topics from enzyme production, light response and secondary metabolism to sexual and asexual development as well as biocontrol, all of which require delicate balancing of resources in response to the environmental challenges or biotechnological needs at hand, which are crucially impacted by the surroundings of the fungi and their intercellular signaling cascades triggering a precisely tailored response. In this review we summarize recent findings on sensing by GPCRs in Trichoderma, including the function of pheromone receptors, glucose sensing by CSG1 and CSG2, regulation of secondary metabolism by GPR8 and impacts on mycoparasitism by GPR1. Additionally, we provide an overview on structural determinants, posttranslational modifications and interactions for regulation, activation and signal termination of GPCRs in order to inspire future in depth analyses of their function and to understand previous regulatory outcomes of natural and biotechnological processes modulated or enabled by GPCRs.
Collapse
Affiliation(s)
- Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
4
|
Yan S, Xu Y, Yu XW. From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. BIORESOUR BIOPROCESS 2021; 8:107. [PMID: 38650205 PMCID: PMC10991602 DOI: 10.1186/s40643-021-00461-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
The filamentous fungus Trichoderma reesei has been widely used for cellulase production that has extensive applications in green and sustainable development. Increasing costs and depletion of fossil fuels provoke the demand for hyper-cellulase production in this cellulolytic fungus. To better manipulate T. reesei for enhanced cellulase production and to lower the cost for large-scale fermentation, it is wise to have a comprehensive understanding of the crucial factors and complicated biological network of cellulase production that could provide new perspectives for further exploration and modification. In this review, we summarize recent progress and give an overview of the cellular process of cellulase production in T. reesei, including the carbon source-dependent cellulase induction, complicated transcriptional regulation network, and efficient protein assembly and trafficking. Among that, the key factors involved in cellulase production were emphasized, shedding light on potential perspectives for further engineering.
Collapse
Affiliation(s)
- Su Yan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
5
|
Chen Y, Wang W, Liu P, Lin A, Fan X, Wu C, Li N, Wei L, Wei D. The novel repressor Rce2 competes with Ace3 to regulate cellulase gene expression in the filamentous fungus Trichoderma reesei. Mol Microbiol 2021; 116:1298-1314. [PMID: 34608686 DOI: 10.1111/mmi.14825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
The filamentous fungus Trichoderma reesei is widely used for industrial cellulase production. In T. reesei, cellulase gene expression is tightly controlled by a regulatory network involving multiple transcription factors. Here, we isolated a novel protein, Rce2, using a pull-down assay and mass spectrometry analysis, from a partial carbon catabolite de-repression mutant, T. reesei Rut-C30, cultured under glucose-repressing conditions. Deletion and overexpression of Rce2 in T. reesei wild-type QM6a and mutant Rut-C30 revealed that Rce2 acts as a repressor of cellulase gene expression. DNase I footprinting assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Rce2 was located in the nucleus and bound to the consensus sequences 5'-(T/A)NNNNCCG-3' and 5'-CGGNNNN(T/A)-3' in the promoters of cellulase-related genes to repress their transcription. Additionally, Rce2 antagonized Ace3 binding to the cbh1 promoter to repress its transcription. However, Rce2 was not involved in Cre1-mediated carbon catabolite repression. These results demonstrate the mechanism through which Rce2 represses the expression of cellulase genes and provide novel insights into the regulatory system of cellulases and methods that can be used for the regulation of gene expression in T. reesei.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pei Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Aibo Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xingjia Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chuan Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ni Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liujing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Pola-Sánchez E, Villalobos-Escobedo JM, Carreras-Villaseñor N, Martínez-Hernández P, Beltrán-Hernández EB, Esquivel-Naranjo EU, Herrera-Estrella A. A Global Analysis of Photoreceptor-Mediated Transcriptional Changes Reveals the Intricate Relationship Between Central Metabolism and DNA Repair in the Filamentous Fungus Trichoderma atroviride. Front Microbiol 2021; 12:724676. [PMID: 34566928 PMCID: PMC8456097 DOI: 10.3389/fmicb.2021.724676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Light provides critical information for the behavior and development of basically all organisms. Filamentous fungi sense blue light, mainly, through a unique transcription factor complex that activates its targets in a light-dependent manner. In Trichoderma atroviride, the BLR-1 and BLR-2 proteins constitute this complex, which triggers the light-dependent formation of asexual reproduction structures (conidia). We generated an ENVOY photoreceptor mutant and performed RNA-seq analyses in the mutants of this gene and in those of the BLR-1, CRY-1 and CRY-DASH photoreceptors in response to a pulse of low intensity blue light. Like in other filamentous fungi BLR-1 appears to play a central role in the regulation of blue-light responses. Phenotypic characterization of the Δenv-1 mutant showed that ENVOY functions as a growth and conidiation checkpoint, preventing exacerbated light responses. Similarly, we observed that CRY-1 and CRY-DASH contribute to the typical light-induced conidiation response. In the Δenv-1 mutant, we observed, at the transcriptomic level, a general induction of DNA metabolic processes and strong repression of central metabolism. An analysis of the expression level of DNA repair genes showed that they increase their expression in the absence of env-1. Consistently, photoreactivation experiments showed that Δenv-1 had increased DNA repair capacity. Our results indicate that light perception in T. atroviride is far more complex than originally thought.
Collapse
Affiliation(s)
- Enrique Pola-Sánchez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Pedro Martínez-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Emma Beatriz Beltrán-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Edgardo Ulises Esquivel-Naranjo
- Laboratorio de Microbiología Molecular, Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
7
|
Hinterdobler W, Beier S, Monroy AA, Berger H, Dattenböck C, Schmoll M. The G-protein Coupled Receptor GPR8 Regulates Secondary Metabolism in Trichoderma reesei. Front Bioeng Biotechnol 2020; 8:558996. [PMID: 33251193 PMCID: PMC7676458 DOI: 10.3389/fbioe.2020.558996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Changing environmental conditions are of utmost importance for regulation of secondary metabolism in fungi. Different environmental cues including the carbon source, light and the presence of a mating partner can lead to altered production of compounds. Thereby, the heterotrimeric G-protein pathway is of major importance for sensing and adjustment of gene regulation. Regulation of secondary metabolism is crucial in the biotechnological workhorse Trichoderma reesei for knowledge-based adjustment in industrial fermentations, but also with respect to the potential use as a host for heterologous compound production. We investigated the function of the class VII G-protein coupled receptor (GPCR) gene gpr8 that is localized in the vicinity of the SOR cluster, which is responsible for biosynthesis of sorbicillinoids. GPR8 positively impacts regulation of the genes in this cluster in darkness. Accordingly, abundance of trichodimerol and dihydrotrichotetronine as well as other secondary metabolites is decreased in the deletion mutant. Transcriptome analysis moreover showed the major role of GPR8 being exerted in darkness with a considerable influence on regulation of secondary metabolism. Genes regulated in Δgpr8 overlap with those regulated directly or indirectly by the transcription factor YPR2, especially concerning genes related to secondary metabolism. The predicted FAD/FMN containing dehydrogenase gene sor7, one of the positive targets of the cascade triggered by GPR8, has a positive effect on secondary metabolite production, but also cellulase gene expression. Hence SOR7 has some overlapping, but also additional functions compared to GPR8. The G-protein coupled receptor GPR8 exerts a light dependent impact on secondary metabolism, which is in part mediated by the transcription factor YPR2 and the function of SOR7. Hence, T. reesei may apply GPR8 to adjust production of secondary metabolites and hence chemical communication to signals from the environment.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Sabrina Beier
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Alberto Alonso Monroy
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Christoph Dattenböck
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Monika Schmoll
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
8
|
Hinterdobler W, Schuster A, Tisch D, Özkan E, Bazafkan H, Schinnerl J, Brecker L, Böhmdorfer S, Schmoll M. The role of PKAc1 in gene regulation and trichodimerol production in Trichoderma reesei. Fungal Biol Biotechnol 2019; 6:12. [PMID: 31528353 PMCID: PMC6734591 DOI: 10.1186/s40694-019-0075-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichoderma reesei represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes. Moreover, the cAMP pathway impacts growth and development. RESULTS Here, we investigated gene regulation by the catalytic subunit of protein kinase A (PKAc1) upon growth on cellulose. We found distinct gene sets for regulation upon growth in light and darkness with an overlap of only 13 genes. PKAc1 regulates metabolic genes as well as transport and defense functions. The overlap of gene regulation by PKAc1 with the genes representing the cAMP dependent regulatory output of the photoreceptor ENV1 indicates an involvement of PKA in this pathway, which counteracts its effects by contrasting regulation. Moreover, we found considerable overlap with the gene sets regulated under cellulase inducing conditions and by the carbon catabolite repressor CRE1. Our analysis also showed that PKAc1 regulates the genes of the SOR cluster associated with the biosynthesis of sorbicillinoids. The homologue of gin4, encoding a CAMK type kinase, which is regulated by PKAc1, CRE1 and YPR2 showed a moderate impact on trichodimerol production. We isolated trichodimerol as representative sorbicillin compound and established a method for its quantification in large sample sets using high performance thin layer chromatography (HPTLC), which can be broadly applied for secondary metabolite screening of mutants or different growth conditions. Due to the high expression levels of the SOR cluster under conditions of sexual development we crosschecked the relevance of PKAc1 under these conditions. We could show that PKAc1 impacts biosynthesis of trichodimerol in axenic growth and upon mating. CONCLUSIONS We conclude that PKAc1 is involved in light dependent regulation of plant cell wall degradation, including carbon catabolite repression as well as secondary metabolism and development in T. reesei.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - André Schuster
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Doris Tisch
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Ezgi Özkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Hoda Bazafkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Johann Schinnerl
- Chemodiversity Research Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
9
|
Poyedinok NL. INFLUENCE OF NITROGEN CONCENTRATION ON PHOTOINDUCED GROWTH, ENZYMATIC ACTIVITY AND MELANINE SYNTHESIS BY Inonotus obliquus (Ach.:Pers.) Pilát. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Zhang F, Bunterngsook B, Li JX, Zhao XQ, Champreda V, Liu CG, Bai FW. Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
The Duality of the MAPK Signaling Pathway in the Control of Metabolic Processes and Cellulase Production in Trichoderma reesei. Sci Rep 2018; 8:14931. [PMID: 30297963 PMCID: PMC6175961 DOI: 10.1038/s41598-018-33383-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, through global transcriptional analysis by RNA-Sequencing, we identified the main changes in gene expression that occurred in two functional mutants of the MAPK genes tmk1 and tmk2 in Trichoderma reesei during sugarcane bagasse degradation. We found that the proteins encoded by these genes regulated independent processes, sometimes in a cross-talk manner, to modulate gene expression in T. reesei. In the Δtmk2 strain, growth in sugarcane bagasse modulated the expression of genes involved in carbohydrate metabolism, cell growth and development, and G-protein-coupled receptor-mediated cell signaling. On the other hand, deletion of tmk1 led to decreased expression of the major genes for cellulases and xylanases. Furthermore, TMK1 found to be involved in the regulation of the expression of major facilitator superfamily transporters. Our results revealed that the MAPK signaling pathway in T. reesei regulates many important processes that allow the fungus to recognize, transport, and metabolize different carbon sources during plant cell wall degradation.
Collapse
|
12
|
Poyedinok N, Mykchaylova O, Sergiichuk N, Negriyko A. Realization of Macromycete Photoinduced Growth Activity: Influence of Cultivation Ways and the Concentration of Carbon and Nitrogen. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2018. [DOI: 10.20535/ibb.2018.2.3.134629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Schmoll M. Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biol Biotechnol 2018; 5:10. [PMID: 29713489 PMCID: PMC5913809 DOI: 10.1186/s40694-018-0052-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Trichoderma reesei (syn. Hypocrea jecorina) is the model organism for industrial production of plant cell wall degradating enzymes. The integration of light and nutrient signals for adaptation of enzyme production in T. reesei emerged as an important regulatory mechanism to be tackled for strain improvement. Gene regulation specific for cellulase inducing conditions is different in light and darkness with substantial regulation by photoreceptors. Genes regulated by light are clustered in the genome, with several of the clusters overlapping with CAZyme clusters. Major cellulase transcription factor genes and at least 75% of glycoside hydrolase encoding genes show the potential of light dependent regulation. Accordingly, light dependent protein complex formation occurs within the promoters of cellulases and their regulators. Additionally growth on diverse carbon sources is different between light and darkness and dependent on the presence of photoreceptors in several cases. Thereby, also light intensity plays a regulatory role, with cellulase levels dropping at higher light intensities dependent in the strain background. The heterotrimeric G-protein pathway is the most important nutrient signaling pathway in the connection with light response and triggers posttranscriptional regulation of cellulase expression. All G-protein alpha subunits impact cellulase regulation in a light dependent manner. The downstream cAMP pathway is involved in light dependent regulation as well. Connections between the regulatory pathways are mainly established via the photoreceptor ENV1. The effect of photoreceptors on plant cell wall degradation also occurs in the model filamentous fungus Neurospora crassa. In the currently proposed model, T. reesei senses the presence of plant biomass in its environment by detection of building blocks of cellulose and hemicellulose. Interpretation of the respective signals is subsequently adjusted to the requirements in light and darkness (or on the surface versus within the substrate) by an interconnection of nutrient signaling with light response. This review provides an overview on the importance of light, photoreceptors and related signaling pathways for formation of plant cell wall degrading enzymes in T. reesei. Additionally, the relevance of light dependent gene regulation for industrial fermentations with Trichoderma as well as strategies for exploitation of the observed effects are discussed.
Collapse
Affiliation(s)
- Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| |
Collapse
|
14
|
Fuller KK, Dunlap JC, Loros JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 2018; 102:3849-3863. [PMID: 29569180 DOI: 10.1007/s00253-018-8887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA. .,Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
15
|
Stappler E, Walton JD, Beier S, Schmoll M. Abundance of Secreted Proteins of Trichoderma reesei Is Regulated by Light of Different Intensities. Front Microbiol 2017; 8:2586. [PMID: 29375497 PMCID: PMC5770571 DOI: 10.3389/fmicb.2017.02586] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
In Trichoderma reesei light is an important factor in the regulation of glycoside hydrolase gene expression. We therefore investigated the influence of different light intensities on cellulase activity and protein secretion. Differentially secreted proteins in light and darkness as identified by mass spectrometry included members of different glycoside hydrolase families, such as CBH1, Cel3A, Cel61B, XYN2, and XYN4. Several of the associated genes showed light-dependent regulation on the transcript level. Deletion of the photoreceptor genes blr1 and blr2 resulted in a diminished difference of protein abundance between light and darkness. The amount of secreted proteins including that of the major exo-acting beta-1,4-glucanases CBH1 and CBH2 was generally lower in light-grown cultures than in darkness. In contrast, cbh1 transcript levels increased with increasing light intensity from 700 to 2,000 lux but dopped at high light intensity (5,000 lux). In the photoreceptor mutants Δblr1 and Δblr2 cellulase activity in light was reduced compared to activity in darkness, showing a discrepancy between transcript levels and secreted cellulase activity. Furthermore, evaluation of different light sensitivities revealed an increased light tolerance with respect to cellulase expression of QM9414 compared to its parental strain QM6a. Investigation of one of the differentially expressed proteins between light and darkness, CLF1, revealed its function as a factor involved in regulation of secreted protease activity. T. reesei secretes a different set of proteins in light compared to darkness, this difference being mainly due to the function of the major known photoreceptors. Moreover, cellulase regulation is adjusted to light intensity and improved light tolerance was correlated with increased cellulase production. Our findings further support the hypothesis of a light intensity dependent post-transcriptional regulation of cellulase gene expression in T. reesei.
Collapse
Affiliation(s)
- Eva Stappler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Jonathan D. Walton
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Sabrina Beier
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
16
|
Light, stress, sex and carbon - The photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. Fungal Biol 2017; 122:479-486. [PMID: 29801792 DOI: 10.1016/j.funbio.2017.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
Abstract
Trichoderma reesei represents one of the most prolific producers of homologous and heterologous proteins. Discovery of the photoreceptor ENV1 as a regulator of cellulase gene expression initiated analysis of light response pathways and their physiological relevance for T. reesei. The function of ENV1 in regulation of plant cell wall degrading enzymes is conserved in Neurospora crassa. ENV1 emerged as a central checkpoint for integration of nutrient sensing, light response and development. This photoreceptor exerts its function by influencing transcript abundance and feedback cycles of the alpha subunits of the heterotrimeric G-protein pathway and impacts regulation of the beta and gamma subunits via mutual regulation with the phosducin PhLP1. The output of regulation by ENV1 is in part mediated by the cAMP pathway and likely aimed at cellulose recognition. Lack of ENV1 causes deregulation of the pheromone system and female sterility in light. A regulatory interconnection with VEL1 and influence on other regulators of secondary metabolism like YPR2 as well as polyketide synthase encoding genes indicates a function in secondary metabolism. The function of ENV1 in integrating light response with signaling of osmotic and oxidative stress is evolutionary conserved in Hypocreales and distinct from other sordariomycetes including N. crassa.
Collapse
|
17
|
|
18
|
Monroy AA, Stappler E, Schuster A, Sulyok M, Schmoll M. A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei. PLoS One 2017; 12:e0182530. [PMID: 28809958 PMCID: PMC5557485 DOI: 10.1371/journal.pone.0182530] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Changing light conditions, caused by the rotation of earth resulting in day and night or growth on the surface or within a substrate, result in considerably altered physiological processes in fungi. For the biotechnological workhorse Trichoderma reesei, regulation of glycoside hydrolase gene expression, especially cellulase expression was shown to be a target of light dependent gene regulation. Analysis of regulatory targets of the carbon catabolite repressor CRE1 under cellulase inducing conditions revealed a secondary metabolite cluster to be differentially regulated in light and darkness and by photoreceptors. We found that this cluster is involved in production of trichodimerol and that the two polyketide synthases of the cluster are essential for biosynthesis of dihydrotrichotetronine (syn. bislongiquinolide or bisorbibutenolide). Additionally, an indirect influence on production of the peptaibol antibiotic paracelsin was observed. The two polyketide synthetase genes as well as the monooxygenase gene of the cluster were found to be connected at the level of transcription in a positive feedback cycle in darkness, but negative feedback in light, indicating a cellular sensing and response mechanism for the products of these enzymes. The transcription factor TR_102497/YPR2 residing within the cluster regulates the cluster genes in a light dependent manner. Additionally, an interrelationship of this cluster with regulation of cellulase gene expression was detected. Hence the regulatory connection between primary and secondary metabolism appears more widespread than previously assumed, indicating a sophisticated distribution of resources either to degradation of substrate (feed) or to antagonism of competitors (fight), which is influenced by light.
Collapse
Affiliation(s)
- Alberto Alonso Monroy
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| | - Eva Stappler
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| | - Andre Schuster
- TU Wien, Institute of Chemical Engineering, Research Area Molecular Biotechnology, Vienna, Austria
| | - Michael Sulyok
- University of Natural Resources and Life Sciences Vienna, Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Tulln, Austria
| | - Monika Schmoll
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| |
Collapse
|
19
|
Stappler E, Dattenböck C, Tisch D, Schmoll M. Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing. mSphere 2017; 2:e00089-17. [PMID: 28497120 PMCID: PMC5425790 DOI: 10.1128/msphere.00089-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/14/2017] [Indexed: 01/16/2023] Open
Abstract
In fungi, most metabolic processes are subject to regulation by light. Trichoderma reesei is adapted to degradation of plant cell walls and regulates production of the required enzymes in a manner dependent on the nutrient source and the light status. Here we investigated the interrelated relevance of two regulation levels of the transcriptome of T. reesei: light regulation and carbon source-dependent control. We show that the carbon source (cellulose, lactose, sophorose, glucose, or glycerol) is the major source of variation, with light having a modulating effect on transcript regulation. A total of 907 genes were regulated under cellulase-inducing conditions in light, and 947 genes were regulated in darkness, with 530 genes overlapping (1,324 in total). Only 218 of the 1,324 induction-specific genes were independent of light and not regulated by the BLR1, BLR2, and ENV1 photoreceptors. Analysis of the genomic distribution of genes regulated by light upon growth on cellulose revealed considerable overlap of light-regulated clusters with induction-specific clusters and carbohydrate-active enzyme (CAZyme) clusters. Further, we found evidence for the operation of a sensing mechanism for solid cellulosic substrates, with regulation of genes such as swo1, cip1, and cip2 or of genes encoding hydrophobins which is related to the cyclic AMP (cAMP)-dependent regulatory output of ENV1. We identified class XIII G-protein-coupled receptors (GPCRs) CSG1 and CSG2 in T. reesei as putative cellulose/glucose-sensing GPCRs. Our data indicate that the cellulase regulation pathway is bipartite, comprising a section corresponding to transcriptional regulation and one corresponding to posttranscriptional regulation, with the two connected by the function of CSG1. IMPORTANCE In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei, light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to unravel the relationship between regulation of enzymes by the carbon source and regulation of enzymes by light. Our two-dimensional analysis included inducing and repressing carbon sources which we used to compare light-specific regulation to dark-specific regulation and to rule out effects specific for a single carbon source. We found close connections with respect to gene regulation as well as significant differences in dealing with carbon in the environment in light and darkness. Moreover, our analyses showed an intricate regulation mechanism for substrate degradation potentially involving surface sensing and provide a basis for knowledge-based screening for strain improvement.
Collapse
Affiliation(s)
- Eva Stappler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Christoph Dattenböck
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Doris Tisch
- TU Wien, Insitute of Chemical Engineering, Research Area Molecular Biotechnology, Vienna, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
20
|
Bazafkan H, Dattenböck C, Stappler E, Beier S, Schmoll M. Interrelationships of VEL1 and ENV1 in light response and development in Trichoderma reesei. PLoS One 2017; 12:e0175946. [PMID: 28423024 PMCID: PMC5397039 DOI: 10.1371/journal.pone.0175946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/03/2017] [Indexed: 12/25/2022] Open
Abstract
Sexual development is regulated by a complex regulatory mechanism in fungi. For Trichoderma reesei, the light response pathway was shown to impact sexual development, particularly through the photoreceptor ENVOY. Moreover, T. reesei communicates chemically with a potential mating partner in its vicinity, a response which is mediated by the velvet family protein VEL1 and its impact on secondary metabolism. We therefore studied the regulatory interactions of ENV1 and VEL1 with a focus on sexual development. Although individual mutants in both genes are female sterile under standard crossing conditions (light-dark cycles), an altered light regime enabled sexual development, which we found to be due to conditional female sterility of Δenv1, but not Δvel1. Phenotypes of growth and asexual sporulation as well as regulation of the peptide pheromone precursors of double mutants suggested that ENV1 and VEL1 balance positive and negative regulators of these functions. Additionally, VEL1 contributed to the strong deregulation of the pheromone system observed in env1 mutants. Female sterility of Δvel1 was rescued by deletion of env1 in darkness in MAT1-1, indicating a block of sexual development by ENV1 in darkness that is balanced by VEL1 in the wild-type. We conclude that ENV1 and VEL1 exert complementing functions in development of T. reesei. Our results further showed that the different developmental phenotypes of vel1/veA mutants in T. reesei and Aspergillus nidulans are not due to the presence or function of ENV1 in the VELVET regulatory pathway in T. reesei.
Collapse
Affiliation(s)
- Hoda Bazafkan
- AIT Austrian Institute of Technology GmbH, Department Health and Environment, Bioresources, Tulln, Austria
| | - Christoph Dattenböck
- AIT Austrian Institute of Technology GmbH, Department Health and Environment, Bioresources, Tulln, Austria
| | - Eva Stappler
- AIT Austrian Institute of Technology GmbH, Department Health and Environment, Bioresources, Tulln, Austria
| | - Sabrina Beier
- AIT Austrian Institute of Technology GmbH, Department Health and Environment, Bioresources, Tulln, Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Department Health and Environment, Bioresources, Tulln, Austria
| |
Collapse
|
21
|
Terán Hilares R, Orsi CA, Ahmed MA, Marcelino PF, Menegatti CR, da Silva SS, Dos Santos JC. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode. BIORESOURCE TECHNOLOGY 2017; 230:76-81. [PMID: 28161623 DOI: 10.1016/j.biortech.2017.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Pullulan is a polymer produced by Aureobasidium pullulans and the main bottleneck for its industrial production is the presence of melanin pigment. In this study, light-emitting diodes (LEDs) of different wavelengths were used to assist the fermentation process aiming to produce low-melanin containing pullulan by wild strain of A. pullulans LB83 with different carbon sources. Under white light using glucose-based medium, 11.75g.L-1 of pullulan with high melanin content (45.70UA540nm.g-1) was obtained, this production improved in process assisted by blue LED light, that resulted in 15.77g.L-1 of pullulan with reduced content of melanin (4.46UA540nm.g-1). By using sugarcane bagasse (SCB) hydrolysate as carbon source, similar concentration of pullulan (about 20g.L-1) was achieved using white and blue LED lights, with lower melanin contents in last. Use of LED light was found as a promising approach to assist biotechnological process for low-melanin containing pullulan production.
Collapse
Affiliation(s)
- Ruly Terán Hilares
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil.
| | - Camila Ayres Orsi
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Muhammad Ajaz Ahmed
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Paulo Franco Marcelino
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Carlos Renato Menegatti
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| |
Collapse
|
22
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
23
|
Zhang F, Bai F, Zhao X. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library. Biotechnol J 2016; 11:1282-1290. [PMID: 27578229 DOI: 10.1002/biot.201600227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 01/03/2023]
Abstract
Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products.
Collapse
Affiliation(s)
- Fei Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.,State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
The Post-genomic Era of Trichoderma reesei: What's Next? Trends Biotechnol 2016; 34:970-982. [PMID: 27394390 DOI: 10.1016/j.tibtech.2016.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 11/21/2022]
Abstract
The ascomycete Trichoderma reesei is one of the most well studied cellulolytic microorganisms. This fungus is widely used in the biotechnology industry, mainly in the production of biofuels. Due to its importance, its genome was sequenced in 2008, opening new avenues to study this microorganism. In this 'post-genomic' era, a transcriptomic and proteomic era has emerged. Here, we present an overview of new findings in the gene expression regulation network of T. reesei. We also discuss new rational strategies to obtain mutants that produce hydrolytic enzymes with a higher yield, using metabolic engineering. Finally, we present how synthetic biology strategies can be used to create engineered promoters to efficiently synthesize enzymes for biomass degradation to produce bioethanol.
Collapse
|
25
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
26
|
Nguyen EV, Imanishi SY, Haapaniemi P, Yadav A, Saloheimo M, Corthals GL, Pakula TM. Quantitative Site-Specific Phosphoproteomics of Trichoderma reesei Signaling Pathways upon Induction of Hydrolytic Enzyme Production. J Proteome Res 2016; 15:457-67. [PMID: 26689635 DOI: 10.1021/acs.jproteome.5b00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation system controlling hydrolase genes involves various signaling pathways. T. reesei was cultivated in the presence of sorbitol, a carbon source that does not induce the production of cellulases and hemicellulases, and then exposed to either sophorose or spent-grain extract, which are efficient inducers of the enzyme production. Specific changes at phosphorylation sites were investigated in relation to the production of cellulases and hemicellulases using an MS-based framework. Proteome-wide phosphorylation following carbon source exchange was investigated in the early stages of induction: 0, 2, 5, and 10 min. The workflow involved sequential trypsin digestion, TiO2 enrichment, and MS analysis using a Q Exactive mass spectrometer. We report on the identification and quantitation of 1721 phosphorylation sites. Investigation of the data revealed a complex signaling network activated upon induction involving components related to light-mediated cellulase induction, osmoregulation, and carbon sensing. Changes in protein phosphorylation were detected in the glycolytic pathway, suggesting an inhibition of glucose catabolism at 10 min after the addition of sophorose and as early as 2 min after the addition of spent-grain extract. Differential phosphorylation of factors related to carbon storage, intracellular trafficking, cytoskeleton, and cellulase gene regulation were also observed.
Collapse
Affiliation(s)
- Elizabeth V Nguyen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland.,Biochemistry and Molecular Biology, Monash University , 3861 Victoria, Australia
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland.,Faculty of Pharmacy, Meijo University , Nagoya 468-8503, Japan
| | - Pekka Haapaniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland
| | - Avinash Yadav
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, FI-02044 VTT, Finland
| | - Garry L Corthals
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
27
|
|
28
|
Vaga S, Bernardo-Faura M, Cokelaer T, Maiolica A, Barnes CA, Gillet LC, Hegemann B, van Drogen F, Sharifian H, Klipp E, Peter M, Saez-Rodriguez J, Aebersold R. Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast. Mol Syst Biol 2014; 10:767. [PMID: 25492886 PMCID: PMC4300490 DOI: 10.15252/msb.20145112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells respond to environmental stimuli via specialized signaling pathways. Concurrent stimuli trigger multiple pathways that integrate information, predominantly via protein phosphorylation. Budding yeast responds to NaCl and pheromone via two mitogen-activated protein kinase cascades, the high osmolarity, and the mating pathways, respectively. To investigate signal integration between these pathways, we quantified the time-resolved phosphorylation site dynamics after pathway co-stimulation. Using shotgun mass spectrometry, we quantified 2,536 phosphopeptides across 36 conditions. Our data indicate that NaCl and pheromone affect phosphorylation events within both pathways, which thus affect each other at more levels than anticipated, allowing for information exchange and signal integration. We observed a pheromone-induced down-regulation of Hog1 phosphorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct Ste20 and Pbs2 phosphosites responded differently to the two stimuli, suggesting these proteins as key mediators of the information exchange. A set of logic models was then used to assess the role of measured phosphopeptides in the crosstalk. Our results show that the integration of the response to different stimuli requires complex interconnections between signaling pathways.
Collapse
Affiliation(s)
- Stefania Vaga
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland
| | - Marti Bernardo-Faura
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge, UK
| | - Thomas Cokelaer
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge, UK
| | - Alessio Maiolica
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland
| | - Christopher A Barnes
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Ludovic C Gillet
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland
| | - Björn Hegemann
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Frank van Drogen
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Hoda Sharifian
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Edda Klipp
- Department of Biology, Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge, UK
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|