1
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
2
|
Walker ME, Watson TL, Large CRL, Berkovich Y, Lang TA, Dunham MJ, Formby S, Jiranek V. Directed evolution as an approach to increase fructose utilization in synthetic grape juice by wine yeast AWRI 796. FEMS Yeast Res 2022; 22:foac022. [PMID: 35472090 PMCID: PMC9329090 DOI: 10.1093/femsyr/foac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
In winemaking, slow or stuck alcoholic fermentation can impact processing efficiency and wine quality. Residual fructose in the later stages of fermentation can leave the wine 'out of specification' unless removed, which requires reinoculation or use of a more fructophilic yeast. As such, robust, fermentation efficient strains are still highly desirable to reduce this risk. We report on a combined EMS mutagenesis and Directed Evolution (DE) approach as a 'proof of concept' to improve fructose utilization and decrease fermentation duration. One evolved isolate, Tee 9, was evaluated against the parent, AWRI 796 in defined medium (CDGJM) and Semillon juice. Interestingly, Tee 9 exhibited improved fermentation in CDGJM at several nitrogen contents, but not in juice. Genomic comparison between AWRI 796 and Tee 9 identified 371 mutations, but no chromosomal copy number variation. A total of 95 noncoding and 276 coding mutations were identified in 297 genes (180 of which encode proteins with one or more substitutions). Whilst introduction of two of these, Gid7 (E726K) or Fba1 (G135S), into AWRI 796 did not lead to the fermentation improvement seen in Tee 9, similar allelic swaps with the other mutations are needed to understand Tee 9's adaption to CDGJM. Furthermore, the 378 isolates, potentially mutagenized but with the same genetic background, are likely a useful resource for future phenotyping and genome-wide association studies.
Collapse
Affiliation(s)
- Michelle E Walker
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Tommaso L Watson
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Christopher R L Large
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States
| | - Yan Berkovich
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Tom A Lang
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
| | - Sean Formby
- Bioinformatics Graduate Program, University of British Columbia, Genome Sciences Centre, BCCA, 100-570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Vladimir Jiranek
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
3
|
Gardner JM, Walker ME, Boss PK, Jiranek V. The effect of grape juice dilution and complex nutrient addition on oenological fermentation and wine chemical composition. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Abstract
When fermentation research requires the comparison of many strains or conditions, the major bottleneck is a technical one. Microplate approaches are not able to produce representative fermentative performance due to their inability to truly operate anaerobically, whilst more traditional methods do not facilitate sample density sufficient to assess enough candidates to be considered even medium throughput. Two robotic platforms have been developed that address these technological shortfalls. Both are built on commercially available liquid handling platforms fitted with custom labware. Results are presented detailing fermentation performance as compared to current best practice, i.e., shake flasks fitted with airlocks and sideports. The ‘TeeBot’ is capable sampling from 96 or 384 fermentations in 100 mL or 30 mL volumes, respectively, with airlock sealing and minimal headspace. Sampling and downstream analysis are facilitated by automated liquid handling, use of 96-well sample plate format and temporary cryo-storage (<0 °C).
Collapse
|
5
|
QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine. Appl Microbiol Biotechnol 2021; 105:5053-5066. [PMID: 34106310 DOI: 10.1007/s00253-021-11376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The two most commonly used wine microorganisms, Saccharomyces cerevisiae yeast and Oenococcus oeni bacteria, are responsible for completion of alcoholic and malolactic fermentation (MLF), respectively. For successful co-inoculation, S. cerevisiae and O. oeni must be able to complete fermentation; however, this relies on compatibility between yeast and bacterial strains. For the first time, quantitative trait loci (QTL) analysis was used to elucidate whether S. cerevisiae genetic makeup can play a role in the ability of O. oeni to complete MLF. Assessment of 67 progeny from a hybrid S. cerevisiae strain (SBxGN), co-inoculated with a single O. oeni strain, SB3, revealed a major QTL linked to MLF completion by O. oeni. This QTL encompassed a well-known translocation, XV-t-XVI, that results in increased SSU1 expression and is functionally linked with numerous phenotypes including lag phase duration and sulphite export and production. A reciprocal hemizygosity assay was performed to elucidate the effect of the gene SSU1 in the SBxGN background. Our results revealed a strong effect of SSU1 haploinsufficiency on O. oeni's ability to complete malolactic fermentation during co-inoculation and pave the way for the implementation of QTL mapping projects for deciphering the genetic bases of microbial interactions. KEY POINTS: • For the first time, QTL analysis has been used to study yeast-bacteria interactions. • A QTL encompassing a translocation, XV-t-XVI, was linked to MLF outcomes. • S. cerevisiae SSU1 haploinsufficiency positively impacted MLF by O. oeni.
Collapse
|
6
|
Investigating the Antifungal Mechanism of Action of Polygodial by Phenotypic Screening in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22115756. [PMID: 34071169 PMCID: PMC8198865 DOI: 10.3390/ijms22115756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Polygodial is a "hot" peppery-tasting sesquiterpenoid that was first described for its anti-feedant activity against African armyworms. Using the haploid deletion mutant library of Saccharomyces cerevisiae, a genome-wide mutant screen was performed to shed more light on polygodial's antifungal mechanism of action. We identified 66 deletion strains that were hypersensitive and 47 that were highly resistant to polygodial treatment. Among the hypersensitive strains, an enrichment was found for genes required for vacuolar acidification, amino acid biosynthesis, nucleosome mobilization, the transcription mediator complex, autophagy and vesicular trafficking, while the resistant strains were enriched for genes encoding cytoskeleton-binding proteins, ribosomal proteins, mitochondrial matrix proteins, components of the heme activator protein (HAP) complex, and known regulators of the target of rapamycin complex 1 (TORC1) signaling. WE confirm that polygodial triggers a dose-dependent vacuolar alkalinization and that it increases Ca2+ influx and inhibits glucose-induced Ca2+ signaling. Moreover, we provide evidence suggesting that TORC1 signaling and its protective agent ubiquitin play a central role in polygodial resistance, suggesting that they can be targeted by polygodial either directly or via altered Ca2+ homeostasis.
Collapse
|
7
|
Saccharomyces cerevisiae Gene Expression during Fermentation of Pinot Noir Wines at an Industrially Relevant Scale. Appl Environ Microbiol 2021; 87:AEM.00036-21. [PMID: 33741633 PMCID: PMC8208162 DOI: 10.1128/aem.00036-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Saccharomyces cerevisiae metabolism produces ethanol and other compounds during the fermentation of grape must into wine. Thousands of genes change expression over the course of a wine fermentation, allowing S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns previously revealed genes that underlie cellular adaptation to the grape must and wine environments, involving metabolic specialization and ethanol tolerance. However, the majority of studies detailing gene expression patterns have occurred in controlled environments that may not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, an analysis of the S. cerevisiae RC212 gene expression program is presented, drawing from 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. A core gene expression program was observed across all fermentations irrespective of vintage, similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non-Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes under industry-relevant conditions. IMPORTANCE This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain undercharacterized, indicating the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.
Collapse
|
8
|
Ruiz J, de Celis M, Martín-Santamaría M, Benito-Vázquez I, Pontes A, Lanza VF, Sampaio JP, Santos A, Belda I. Global distribution of IRC7 alleles in Saccharomyces cerevisiae populations: a genomic and phenotypic survey within the wine clade. Environ Microbiol 2021; 23:3182-3195. [PMID: 33973343 DOI: 10.1111/1462-2920.15540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
The adaptation to the different biotic and abiotic factors of wine fermentation has led to the accumulation of numerous genomic hallmarks in Saccharomyces cerevisiae wine strains. IRC7, a gene encoding a cysteine-S-β-lyase enzyme related volatile thiols production in wines, has two alleles: a full-length allele (IRC7F ) and a mutated one (IRC7S ), harbouring a 38 bp-deletion. Interestingly, IRC7S -encoding a less active enzyme - appears widespread amongst wine populations. Studying the global distribution of the IRC7S allele in different yeast lineages, we confirmed its high prevalence in the Wine clade and demonstrated a minority presence in other domesticated clades (Wine-PDM, Beer and Bread) while it is completely missing in wild clades. Here, we show that IRC7S -homozygous (HS) strains exhibited both fitness and competitive advantages compared with IRC7F -homozygous (HF) strains. There are some pieces of evidence of the direct contribution of the IRC7S allele to the outstanding behaviour of HS strains (i.e., improved response to oxidative stress conditions and higher tolerance to high copper levels); however, we also identified a set of sequence variants with significant co-occurrence patterns with the IRC7S allele, which can be co-contributing to the fitness and competitive advantages of HS strains in wine fermentations.
Collapse
Affiliation(s)
- Javier Ruiz
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Miguel de Celis
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - María Martín-Santamaría
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Iván Benito-Vázquez
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Ana Pontes
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Val F Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, 28034, Spain
| | - José Paulo Sampaio
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
9
|
Walker ME, Zhang J, Sumby KM, Lee A, Houlès A, Li S, Jiranek V. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation. Yeast 2021; 38:367-381. [PMID: 33560525 DOI: 10.1002/yea.3553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide is a common wine fault, with a rotten-egg odour, which is directly related to yeast metabolism in response to nitrogen and sulfur availability. In grape juice, sulfate is the most abundant inorganic sulfur compound, which is taken up by yeast through two high-affinity sulfate transporters, Sul1p and Sul2p, and a low affinity transporter, Soa1p. Sulfate contributes to H2 S production under nitrogen limitation, by being reduced via the Sulfur Assimilation Pathway (SAP). Therefore, yeast strains with limited H2 S are highly desirable. We report on the use of toxic analogues of sulfate following ethyl methane sulfate treatment, to isolate six wine yeast mutants that produce no or reduced H2 S and SO2 during fermentation in synthetic and natural juice. Four amino acid substitutions (A99V, G380R, N588K and E856K) in Sul1p were found in all strains except D25-1 which had heterozygous alleles. Two changes were also identified in Sul2p (L268S and A470T). The Sul1p (G380R) and Sul2p (A470T) mutations were chosen for further investigation as these residues are conserved amongst SLC26 membrane proteins (including sulfate permeases). The mutations were introduced into EC1118 using Crispr cas9 technology and shown to reduce accumulation of H2 S and do not result in increased SO2 production during fermentation of model medium (chemically defined grape juice) or Riesling juice. The Sul1p (G380R) and Sul2p (A470T) mutations are newly reported as causal mutations. Our findings contribute to knowledge of the genetic basis of H2 S production as well as the potential use of these strains for winemaking and in yeast breeding programmes.
Collapse
Affiliation(s)
- Michelle E Walker
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Jin Zhang
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Krista M Sumby
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Glen Osmond, South Australia, Australia
| | - Andrea Lee
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Anne Houlès
- Sciences et Techniques, Université Montpellier 2 (UM2), Montpellier, France
| | - Sijing Li
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Glen Osmond, South Australia, Australia
| |
Collapse
|
10
|
Tavares MJ, Güldener U, Mendes-Ferreira A, Mira NP. Genome sequencing, annotation and exploration of the SO 2-tolerant non-conventional yeast Saccharomycodes ludwigii. BMC Genomics 2021; 22:131. [PMID: 33622260 PMCID: PMC7903802 DOI: 10.1186/s12864-021-07438-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saccharomycodes ludwigii belongs to the poorly characterized Saccharomycodeacea family and is known by its ability to spoil wines, a trait mostly attributable to its high tolerance to sulfur dioxide (SO2). To improve knowledge about Saccharomycodeacea our group determined whole-genome sequences of Hanseniaspora guilliermondii (UTAD222) and S. ludwigii (UTAD17), two members of this family. While in the case of H. guilliermondii the genomic information elucidated crucial aspects concerning the physiology of this species in the context of wine fermentation, the draft sequence obtained for S. ludwigii was distributed by more than 1000 contigs complicating extraction of biologically relevant information. In this work we describe the results obtained upon resequencing of S. ludwigii UTAD17 genome using PacBio as well as the insights gathered from the exploration of the annotation performed over the assembled genome. RESULTS Resequencing of S. ludwigii UTAD17 genome with PacBio resulted in 20 contigs totaling 13 Mb of assembled DNA and corresponding to 95% of the DNA harbored by this strain. Annotation of the assembled UTAD17 genome predicts 4644 protein-encoding genes. Comparative analysis of the predicted S. ludwigii ORFeome with those encoded by other Saccharomycodeacea led to the identification of 213 proteins only found in this species. Among these were six enzymes required for catabolism of N-acetylglucosamine, four cell wall β-mannosyltransferases, several flocculins and three acetoin reductases. Different from its sister Hanseniaspora species, neoglucogenesis, glyoxylate cycle and thiamine biosynthetic pathways are functional in S. ludwigii. Four efflux pumps similar to the Ssu1 sulfite exporter, as well as robust orthologues for 65% of the S. cerevisiae SO2-tolerance genes, were identified in S. ludwigii genome. CONCLUSIONS This work provides the first genome-wide picture of a S. ludwigii strain representing a step forward for a better understanding of the physiology and genetics of this species and of the Saccharomycodeacea family. The release of this genomic sequence and of the information extracted from it can contribute to guide the design of better wine preservation strategies to counteract spoilage prompted by S. ludwigii. It will also accelerate the exploration of this species as a cell factory, specially in production of fermented beverages where the use of Non-Saccharomyces species (including spoilage species) is booming.
Collapse
Affiliation(s)
- Maria J Tavares
- Department of Bioengineering, iBB- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Ulrich Güldener
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus von-Imhof- Forum 3, 85354, Freising, Germany
| | - Ana Mendes-Ferreira
- WM&B - Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal. .,BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Nuno P Mira
- Department of Bioengineering, iBB- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
11
|
Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations. Food Microbiol 2020; 96:103685. [PMID: 33494889 DOI: 10.1016/j.fm.2020.103685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023]
Abstract
Nitrogen requirements by S. cerevisiae during wine fermentation are highly strain-dependent. Different approaches were applied to explore the nitrogen requirements of 28 wine yeast strains. Based on the growth and fermentation behaviour displayed at different nitrogen concentrations, high and low nitrogen-demanding strains were selected and further verified by competition fermentation. Biomass production with increasing nitrogen concentrations in the exponential fermentation phase was analysed by chemostat cultures. Low nitrogen-demanding (LND) strains produced a larger amount of biomass in nitrogen-limited synthetic grape musts, whereas high nitrogen-demanding (HND) strains achieved a bigger biomass yield when the YAN concentration was above 100 mg/L. Constant rate fermentation was carried out with both strains to determine the amount of nitrogen required to maintain the highest fermentation rate. Large differences appeared in the analysis of the genomes of low and high-nitrogen demanding strains showed for heterozygosity and the amino acid substitutions between orthologous proteins, with nitrogen recycling system genes showing the widest amino acid divergences. The CRISPR/Cas9-mediated genome modification method was used to validate the involvement of GCN1 in the yeast strain nitrogen needs. However, the allele swapping of gene GCN1 from low nitrogen-demanding strains to high nitrogen-demanding strains did not significantly influence the fermentation rate.
Collapse
|
12
|
Huang J, Lin M, Liang S, Qin Q, Liao S, Lu B, Wang Q. Transcription Analysis of Recombinant Trichoderma reesei HJ-48 to Compare the Molecular Basis for Fermentation of Glucose and Xylose. J Microbiol Biotechnol 2020; 30:1467-1479. [PMID: 32699200 PMCID: PMC9745658 DOI: 10.4014/jmb.2004.04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Profiling the transcriptome changes involved in xylose metabolism by the fungus Trichoderma reesei allows for the identification of potential targets for ethanol production processing. In the present study, the transcriptome of T. reesei HJ-48 grown on xylose versus glucose was analyzed using nextgeneration sequencing technology. During xylose fermentation, numerous genes related to central metabolic pathways, including xylose reductase (XR) and xylitol dehydrogenase (XDH), were expressed at higher levels in T. reesei HJ-48. Notably, growth on xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways. In addition, increased expression of several sugar transporters was observed during xylose fermentation. This study provides a valuable dataset for further investigation of xylose fermentation and provides a deeper insight into the various genes involved in this process.
Collapse
Affiliation(s)
- Jun Huang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China,Corresponding author Phone: +86-0771-2503970 Fax: +86-0771-2503970 E-mail:
| | - Mei Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Shijie Liang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Qiurong Qin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Siming Liao
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Bo Lu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Qingyan Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| |
Collapse
|
13
|
Comparison of the Glycolytic and Alcoholic Fermentation Pathways of Hanseniaspora vineae with Saccharomyces cerevisiae Wine Yeasts. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hanseniaspora species can be isolated from grapes and grape musts, but after the initiation of spontaneous fermentation, they are displaced by Saccharomyces cerevisiae. Hanseniaspora vineae is particularly valuable since this species improves the flavour of wines and has an increased capacity to ferment relative to other apiculate yeasts. Genomic, transcriptomic, and metabolomic studies in H. vineae have enhanced our understanding of its potential utility within the wine industry. Here, we compared gene sequences of 12 glycolytic and fermentation pathway enzymes from five sequenced Hanseniaspora species and S. cerevisiae with the corresponding enzymes encoded within the two sequenced H. vineae genomes. Increased levels of protein similarity were observed for enzymes of H. vineae and S. cerevisiae, relative to the remaining Hanseniaspora species. Key differences between H. vineae and H. uvarum pyruvate kinase enzymes might explain observed differences in fermentative capacity. Further, the presence of eight putative alcohol dehydrogenases, invertase activity, and sulfite tolerance are distinctive characteristics of H. vineae, compared to other Hanseniaspora species. The definition of two clear technological groups within the Hanseniaspora genus is discussed within the slow and fast evolution concept framework previously discovered in these apiculate yeasts.
Collapse
|
14
|
Song Y, Gibney P, Cheng L, Liu S, Peck G. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation. Front Microbiol 2020; 11:1264. [PMID: 32670223 PMCID: PMC7326769 DOI: 10.3389/fmicb.2020.01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The fermentation of apple juice into hard cider is a complex biochemical process that transforms sugars into alcohols by yeast, of which Saccharomyces cerevisiae is the most widely used species. Among many factors, hydrogen sulfide (H2S) production by yeast during cider fermentation is affected by yeast strain and yeast assimilable nitrogen (YAN) concentration in the apple juice. In this study, we investigated the regulatory mechanism of YAN concentration on S. cerevisiae H2S formation. Two S. cerevisiae strains, UCD522 (a H2S-producing strain) and UCD932 (a non-H2S-producing strain), were used to ferment apple juice that had Low, Intermediate, and High diammonium phosphate (DAP) supplementation. Cider samples were collected 24 and 72 h after yeast inoculation. Using RNA-Seq, differentially expressed genes (DEGs) identification and annotation, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, we found that gene expression was dependent on yeast strain, fermentation duration, H2S formation, and the interaction of these three factors. For UCD522, under the three DAP treatments, a total of 30 specific GO terms were identified. Of the 18 identified KEGG pathways, “Sulfur metabolism,” “Glycine, serine and threonine metabolism,” and “Biosynthesis of amino acids” were significantly enriched. Both GO and KEGG analyses revealed that the “Sulfate Reduction Sequence (SRS) pathway” was significantly enriched. We also found a complex relationship between H2S production and stress response genes. For UCD522, we confirm that there is a non-linear relationship between YAN and H2S production, with the Low and Intermediate treatments having greater H2S production than the High treatment. By integrating results obtained through the transcriptomic analysis with yeast physiological data, we present a mechanistic view into the H2S production by yeast as a result of different concentrations of YAN during cider fermentation.
Collapse
Affiliation(s)
- Yangbo Song
- College of Enology, Northwest A&F University, Yangling, China.,Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Patrick Gibney
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling, China
| | - Gregory Peck
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Molinet J, Salinas F, Guillamón JM, Martínez C. GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Front Genet 2020; 11:519. [PMID: 32523604 PMCID: PMC7261904 DOI: 10.3389/fgene.2020.00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 01/18/2023] Open
Abstract
The TORC1 pathway coordinates cell growth in response to nitrogen availability present in the medium, regulating genes related to nitrogen transport and metabolism. Therefore, the adaptation of Saccharomyces cerevisiae to changes in nitrogen availability implies variations in the activity of this signaling pathway. In this sense, variations in nitrogen detection and signaling pathway are one of the main causes of differences in nitrogen assimilation during alcoholic fermentation. Previously, we demonstrated that allelic variants in the GTR1 gene underlying differences in ammonium and amino acids consumption between Wine/European (WE) and West African (WA) strains impact the expression of nitrogen transporters. The GTR1 gene encodes a GTPase that participates in the EGO complex responsible for TORC1 activation in response to amino acids availability. In this work, we assessed the role of the GTR1 gene on nitrogen consumption under fermentation conditions, using a high sugar concentration medium with nitrogen limitation and in the context of the WE and WA genetic backgrounds. The gtr1Δ mutant presented a reduced TORC1 activity and increased expression levels of nitrogen transporters, which in turn favored ammonium consumption, but decreased amino acid assimilation. Furthermore, to identify the SNPs responsible for differences in nitrogen consumption during alcoholic fermentation, we studied the polymorphisms present in the GTR1 gene. We carried out swapping experiments for the promoter and coding regions of GTR1 between the WE and WA strains. We observed that polymorphisms in the coding region of the WA GTR1 gene are relevant for TORC1 activity. Altogether, our results highlight the role of the GTR1 gene on nitrogen consumption in S. cerevisiae under fermentation conditions.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José Manuel Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
16
|
Transcriptome analysis reveals the protection mechanism of proanthocyanidins for Saccharomyces cerevisiae during wine fermentation. Sci Rep 2020; 10:6676. [PMID: 32317674 PMCID: PMC7174367 DOI: 10.1038/s41598-020-63631-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/31/2020] [Indexed: 11/08/2022] Open
Abstract
Grape-derived proanthocyanidins could act as a protector against various environmental stresses for Saccharomyces cerevisiae during wine fermentation, resulting in the increased physiological activity, fermentation efficiency and improved wine quality. In order to explore the possible protection mechanism of proanthocyanidins globally, RNA-seq analysis for wine yeast AWRI R2 cultivated with 0 g/L (group A), 0.1 g/L (group B), 1.0 g/L (group C) proanthocyanidins were applied in this study. Differentially expressed genes were enriched into six metabolic pathways including vitamin B6, thiamine, amino acids, aminoacyl-tRNA, carbohydrate and steroid based on KEGG enrichment analysis. Four key genes (SNZ2, THI6, THI21 and THI80), participated in the biosynthesis of vitamin B6 and thiamine, were up-regulated significantly in proanthocyanidins treated yeast cells and the gene expression levels were verified by RT-qPCR. Yeast cells supplemented with proanthocyanidins performed increased intracellular levels of vitamin B6 and thiamine and higher cell viability compared to the control group. In addition, the composition of intracellular fatty acids showed an obvious alternation in proanthocyanidins-treated yeast cells, in which the UFAs content increased whereas the SFA content decreased. In general, we provided an indirect protection effect of proanthocyanidins on the yeast cells to alleviate environmental stresses during wine fermentation.
Collapse
|
17
|
Mardanov AV, Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV. Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Front Microbiol 2020; 11:538. [PMID: 32308650 PMCID: PMC7145950 DOI: 10.3389/fmicb.2020.00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Flor strains of Saccharomyces cerevisiae are principal microbial agents responsible for biological wine aging used for production of sherry-like wines. The flor yeast velum formed on the surface of fortified fermented must is a major adaptive and technological characteristic of flor yeasts that helps them to withstanding stressful winemaking conditions and ensures specific biochemical and sensory oxidative alterations typical for sherry wines. We have applied RNAseq technology for transcriptome analysis of an industrial flor yeast strain at different steps of velum development over 71 days under experimental winemaking conditions. Velum growth and maturation was accompanied by accumulation of aldehydes and acetales. We have identified 1490 differentially expressed genes including 816 genes upregulated and 674 downregulated more than 2-fold at mature biofilm stage as compared to the early biofilm. Distinct expression patterns of genes involved in carbon and nitrogen metabolism, respiration, cell cycle, DNA repair, cell adhesion, response to various stresses were observed. Many genes involved in response to different stresses, oxidative carbon metabolism, high affinity transport of sugars, glycerol utilization, sulfur metabolism, protein quality control and recycling, cell wall biogenesis, apoptosis were induced at the mature biofilm stage. Strong upregulation was observed for FLO11 flocculin while expression of other flocculins remained unaltered or moderately downregulated. Downregulated genes included those for proteins involved in glycolysis, transportation of ions, metals, aminoacids, sugars, indicating repression of some major transport and metabolic process at the mature biofilm stage. Presented results are important for in-depth understanding of cell response elicited by velum formation and sherry wine manufacturing conditions, and for the comprehension of relevant regulatory mechanisms. Such knowledge may help to better understand the molecular mechanisms that flor yeasts use to adapt to winemaking environments, establish the functions of previously uncharacterized genes, improve the technology of sherry- wine production, and find target genes for strain improvement.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Tanashchuk
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A Kishkovskaya
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Molinet J, Cubillos FA, Salinas F, Liti G, Martínez C. Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS One 2019; 14:e0220515. [PMID: 31348805 PMCID: PMC6660096 DOI: 10.1371/journal.pone.0220515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of the main sources of phenotypic diversity in nitrogen consumption. This emphasizes the possible roles that allelic variants from the TORC1 pathway have in the nitrogen consumption differences observed in yeast during the alcoholic fermentation. Here, we studied the allelic diversity in the TORC1 pathway across four yeast strains and determined how these polymorphisms directly impact nitrogen consumption during alcoholic fermentation. Using a reciprocal hemizygosity approach combined with phenotyping under fermentative conditions, we found that allelic variants of GTR1, TOR2, SIT4, SAP185, EAP1, NPR1 and SCH9 underlie differences in the ammonium and amino acids consumption phenotypes. Among these, GTR1 alleles from the Wine/European and West African genetic backgrounds showed the greatest effects on ammonium and amino acid consumption, respectively. Furthermore, we identified allelic variants of SAP185, TOR2, SCH9 and NPR1 from an oak isolate that increased the amino acid consumption preference over ammonium; representing putative candidates coming from a non-domesticated strain that could be used for genetic improvement programs. In conclusion, our results demonstrated that a large number of allelic variants within the TORC1 pathway significantly impacts on regulatory mechanisms of nitrogen assimilation during alcoholic fermentation.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), INSERM, University of Côte d’Azur, Nice, France
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
19
|
Seixas I, Barbosa C, Mendes-Faia A, Güldener U, Tenreiro R, Mendes-Ferreira A, Mira NP. Genome sequence of the non-conventional wine yeast Hanseniaspora guilliermondii UTAD222 unveils relevant traits of this species and of the Hanseniaspora genus in the context of wine fermentation. DNA Res 2019; 26:67-83. [PMID: 30462193 PMCID: PMC6379042 DOI: 10.1093/dnares/dsy039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
Hanseanispora species, including H. guilliermondii, are long known to be abundant in wine grape-musts and to play a critical role in vinification by modulating, among other aspects, the wine sensory profile. Despite this, the genetics and physiology of Hanseniaspora species remains poorly understood. The first genomic sequence of a H. guilliermondii strain (UTAD222) and the discussion of its potential significance are presented in this work. Metabolic reconstruction revealed that H. guilliermondii is not equipped with a functional gluconeogenesis or glyoxylate cycle, nor does it harbours key enzymes for glycerol or galactose catabolism or for biosynthesis of biotin and thiamine. Also, no fructose-specific transporter could also be predicted from the analysis of H. guilliermondii genome leaving open the mechanisms underlying the fructophilic character of this yeast. Comparative analysis involving H. guilliermondii, H. uvarum, H. opuntiae and S. cerevisiae revealed 14 H. guilliermondii-specific genes (including five viral proteins and one β-glucosidase). Furthermore, 870 proteins were only found within the Hanseniaspora proteomes including several β-glucosidases and decarboxylases required for catabolism of biogenic amines. The release of H. guilliermondii genomic sequence and the comparative genomics/proteomics analyses performed, is expected to accelerate research focused on Hanseniaspora species and to broaden their application in the wine industry and in other bio-industries in which they could be explored as cell factories.
Collapse
Affiliation(s)
- Isabel Seixas
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Catarina Barbosa
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Arlete Mendes-Faia
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Ulrich Güldener
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus von-Imhof-Forum 3, Freising, Germany
| | - Rogério Tenreiro
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Ana Mendes-Ferreira
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
- To whom correspondence should be addressed. Tel. +351218419181. (N.P.M.); Tel. +351 259 350 550. (A.M.-F.)
| | - Nuno P Mira
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon, Portugal
- To whom correspondence should be addressed. Tel. +351218419181. (N.P.M.); Tel. +351 259 350 550. (A.M.-F.)
| |
Collapse
|
20
|
Jiang J, Sumby KM, Sundstrom JF, Grbin PR, Jiranek V. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV, Mardanov AV. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts. Front Microbiol 2018; 9:965. [PMID: 29867869 PMCID: PMC5962777 DOI: 10.3389/fmicb.2018.00965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known "non-reference" loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation.
Collapse
Affiliation(s)
- Mikhail A. Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N. Tanashchuk
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A. Kishkovskaya
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Steenwyk JL, Rokas A. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation. Front Microbiol 2018; 9:288. [PMID: 29520259 PMCID: PMC5826948 DOI: 10.3389/fmicb.2018.00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond.
Collapse
Affiliation(s)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
23
|
Peter JJ, Watson TL, Walker ME, Gardner JM, Lang TA, Borneman A, Forgan A, Tran T, Jiranek V. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions. FEMS Yeast Res 2018; 18:4841842. [DOI: 10.1093/femsyr/foy009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Josephine J Peter
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tommaso L Watson
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Jennifer M Gardner
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tom A Lang
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Angus Forgan
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tina Tran
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
24
|
Schelezki OJ, Smith PA, Hranilovic A, Bindon KA, Jeffery DW. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on polysaccharide and tannin content and composition. Food Chem 2017; 244:50-59. [PMID: 29120804 DOI: 10.1016/j.foodchem.2017.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
A changing climate has led to winegrapes being harvested with increased sugar levels and at greater risk of berry shrivel. A suggested easy-to-adopt strategy to manage the associated rising wine alcohol levels is the pre-fermentative substitution of juice with either "green harvest wine" or water. Our study investigates the effects of this approach on Vitis vinifera L. cv. Cabernet Sauvignon wine quality attributes. Wines were also made from fruit collected at consecutive earlier harvest time points to produce wines comparable in alcohol to the substituted wines. Tannin concentrations and colour did not change significantly in the wines with modified alcohol content even at higher juice substitution rates. Differences in polysaccharide and tannin composition indicated variability in extraction dynamics according to substitution rate and type of blending component. In scenarios where berry shrivel is inevitable, the incorporation of water in particular offers much promise as part of a strategy to manage wine alcohol content.
Collapse
Affiliation(s)
- Olaf J Schelezki
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | - Paul A Smith
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
| | - Ana Hranilovic
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | - Keren A Bindon
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
| | - David W Jeffery
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
25
|
Nguyen TD, Walker ME, Gardner JM, Jiranek V. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation. Food Microbiol 2017; 70:262-268. [PMID: 29173635 DOI: 10.1016/j.fm.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/05/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Abstract
Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L-1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L-1 or 200 g L-1. These findings offer insight to the importance of VA to cell growth in high sugar media.
Collapse
Affiliation(s)
- Trung D Nguyen
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Michelle E Walker
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Jennifer M Gardner
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Vladimir Jiranek
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia; Australian Research Council Training Centre for Innovative Wine Production, Australia.
| |
Collapse
|
26
|
Singh N, Yadav KK, Rajasekharan R. Effect of zinc deprivation on the lipid metabolism of budding yeast. Curr Genet 2017; 63:977-982. [PMID: 28500379 DOI: 10.1007/s00294-017-0704-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
Zinc is an essential micronutrient for all living cells. It serves as a structural and catalytic cofactor for numerous proteins, hence maintaining a proper level of cellular zinc is essential for normal functioning of the cell. Zinc homeostasis is sustained through various ways under severe zinc-deficient conditions. Zinc-dependent proteins play an important role in biological systems and limitation of zinc causes a drastic change in their expression. In budding yeast, a zinc-responsive transcription factor Zap1p controls the expression of genes required for uptake and mobilization of zinc under zinc-limiting conditions. It also regulates the polar lipid levels under zinc-limiting conditions to maintain membrane integrity. Deletion of ZAP1 causes an increase in triacylglyerol levels which is due to the increased biosynthesis of acetate that serves as a precursor for triacylglycerol biosynthesis. In this review, we expanded our recent work role of Zap1p in nonpolar lipid metabolism of budding yeast.
Collapse
Affiliation(s)
- Neelima Singh
- Department of Lipid Science, Council of Scientific and Industrial Research (CSIR), Central Food Technological Research Institute (CFTRI), Mysore, 570020, Karnataka, India
| | - Kamlesh Kumar Yadav
- Department of Lipid Science, Council of Scientific and Industrial Research (CSIR), Central Food Technological Research Institute (CFTRI), Mysore, 570020, Karnataka, India
| | - Ram Rajasekharan
- Department of Lipid Science, Council of Scientific and Industrial Research (CSIR), Central Food Technological Research Institute (CFTRI), Mysore, 570020, Karnataka, India.
| |
Collapse
|
27
|
Martí-Raga M, Peltier E, Mas A, Beltran G, Marullo P. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2017; 7:399-412. [PMID: 27903630 PMCID: PMC5295589 DOI: 10.1534/g3.116.037283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/14/2016] [Indexed: 01/12/2023]
Abstract
Hybridization is known to improve complex traits due to heterosis and phenotypic robustness. However, these phenomena have been rarely explained at the molecular level. Here, the genetic determinism of Saccharomyces cerevisiae fermentation performance was investigated using a QTL mapping approach on an F1-progeny population. Three main QTL were detected, with positive alleles coming from both parental strains. The heterosis effect found in the hybrid was partially explained by three loci showing pseudooverdominance and dominance effects. The molecular dissection of those QTL revealed that the adaptation to second fermentation is related to pH, lipid, or osmotic regulation. Our results suggest that the stressful conditions of second fermentation have driven the selection of rare genetic variants adapted to maintain yeast cell homeostasis and, in particular, to low pH conditions.
Collapse
Affiliation(s)
- Maria Martí-Raga
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Unité de recherche OEnologie, EA 4577, ISVV, Université Bordeaux, 33882 Villenave d'Ornon, France
| | - Emilien Peltier
- Unité de recherche OEnologie, EA 4577, ISVV, Université Bordeaux, 33882 Villenave d'Ornon, France
- Biolaffort, 33100 Bordeaux, France
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Philippe Marullo
- Unité de recherche OEnologie, EA 4577, ISVV, Université Bordeaux, 33882 Villenave d'Ornon, France
- Biolaffort, 33100 Bordeaux, France
| |
Collapse
|
28
|
Eldarov MA, Kishkovskaia SA, Tanaschuk TN, Mardanov AV. Genomics and biochemistry of Saccharomyces cerevisiae wine yeast strains. BIOCHEMISTRY (MOSCOW) 2017; 81:1650-1668. [DOI: 10.1134/s0006297916130046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Salvadó Z, Ramos-Alonso L, Tronchoni J, Penacho V, García-Ríos E, Morales P, Gonzalez R, Guillamón JM. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. Int J Food Microbiol 2016; 236:38-46. [PMID: 27442849 DOI: 10.1016/j.ijfoodmicro.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/23/2016] [Accepted: 07/09/2016] [Indexed: 01/17/2023]
Abstract
Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature.
Collapse
Affiliation(s)
- Zoel Salvadó
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain; Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Lucía Ramos-Alonso
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Vanessa Penacho
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Estéfani García-Ríos
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
30
|
Abstract
The capacity to map traits over large cohorts of individuals—phenomics—lags far behind the explosive development in genomics. For microbes, the estimation of growth is the key phenotype because of its link to fitness. We introduce an automated microbial phenomics framework that delivers accurate, precise, and highly resolved growth phenotypes at an unprecedented scale. Advancements were achieved through the introduction of transmissive scanning hardware and software technology, frequent acquisition of exact colony population size measurements, extraction of population growth rates from growth curves, and removal of spatial bias by reference-surface normalization. Our prototype arrangement automatically records and analyzes close to 100,000 growth curves in parallel. We demonstrate the power of the approach by extending and nuancing the known salt-defense biology in baker’s yeast. The introduced framework represents a major advance in microbial phenomics by providing high-quality data for extensive cohorts of individuals and generating well-populated and standardized phenomics databases
Collapse
|
31
|
Singh N, Yadav KK, Rajasekharan R. ZAP1-mediated modulation of triacylglycerol levels in yeast by transcriptional control of mitochondrial fatty acid biosynthesis. Mol Microbiol 2016; 100:55-75. [PMID: 26711224 DOI: 10.1111/mmi.13298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 02/03/2023]
Abstract
The transcriptional activator Zap1p maintains zinc homeostasis in Saccharomyces cerevisiae. In this study, we examined the role of Zap1p in triacylglycerol (TAG) metabolism. The expression of ETR1 is reduced in zap1Δ. The altered expression of ETR1 results in reduced mitochondrial fatty acid biosynthesis and reduction in lipoic acid content in zap1Δ. The transcription factor Zap1 positively regulates ETR1 expression. Deletion of ETR1 also causes the accumulation of TAG, and the introduction of ETR1 in zap1Δ strain rescues the TAG level. These results demonstrated that the compromised mitochondrial fatty acid biosynthesis causes a reduction in lipoic acid and loss of mitochondrial function in zap1Δ. Functional mitochondria are required for the ATP production and defect in mitochondria slow down the process which may channeled carbon towards lipid biosynthesis and stored in the form of TAG.
Collapse
Affiliation(s)
- Neelima Singh
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Karnataka, Mysore, 570020, India.,Academy of Scientific & Innovative Research, CSIR-CFTRI, Mysore, India
| | - Kamlesh Kumar Yadav
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Karnataka, Mysore, 570020, India.,Academy of Scientific & Innovative Research, CSIR-CFTRI, Mysore, India
| | - Ram Rajasekharan
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Karnataka, Mysore, 570020, India.,Academy of Scientific & Innovative Research, CSIR-CFTRI, Mysore, India
| |
Collapse
|
32
|
Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl Microbiol Biotechnol 2015. [DOI: 10.1007/s00253-015-6810-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
López-Malo M, García-Rios E, Melgar B, Sanchez MR, Dunham MJ, Guillamón JM. Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics 2015; 16:537. [PMID: 26194190 PMCID: PMC4509780 DOI: 10.1186/s12864-015-1755-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Wine produced at low temperature is often considered to improve sensory qualities. However, there are certain drawbacks to low temperature fermentations: e.g. low growth rate, long lag phase, and sluggish or stuck fermentations. Selection and development of new Saccharomyces cerevisiae strains well adapted at low temperature is interesting for future biotechnological applications. This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature through evolutionary engineering, and to decipher the process underlying the obtained phenotypes. RESULTS We used a pool of 27 commercial yeast strains and set up batch serial dilution experiments to mimic wine fermentation conditions at 12 °C. Evolutionary engineering was accomplished by using the natural yeast mutation rate and mutagenesis procedures. One strain (P5) outcompeted the others under both experimental conditions and was able to impose after 200 generations. The evolved strains showed improved growth and low-temperature fermentation performance compared to the ancestral strain. This improvement was acquired only under inositol limitation. The transcriptomic comparison between the evolved and parental strains showed the greatest up-regulation in four mannoprotein coding genes, which belong to the DAN/TIR family (DAN1, TIR1, TIR4 and TIR3). Genome sequencing of the evolved strain revealed the presence of a SNP in the GAA1 gene and the construction of a site-directed mutant (GAA1 (Thr108)) in a derivative haploid of the ancestral strain resulted in improved fermentation performance. GAA1 encodes a GPI transamidase complex subunit that adds GPI, which is required for inositol synthesis, to newly synthesized proteins, including mannoproteins. CONCLUSIONS In this study we demonstrate the importance of inositol and mannoproteins in yeast adaptation at low temperature and the central role of the GAA1 gene by linking both metabolisms.
Collapse
Affiliation(s)
- María López-Malo
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Estéfani García-Rios
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Bruno Melgar
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Monica R Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain.
| |
Collapse
|
34
|
Yeast toxicogenomics: lessons from a eukaryotic cell model and cell factory. Curr Opin Biotechnol 2015; 33:183-91. [DOI: 10.1016/j.copbio.2015.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/16/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
|
35
|
Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS One 2015; 10:e0122709. [PMID: 25884705 PMCID: PMC4401569 DOI: 10.1371/journal.pone.0122709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12 h, 24 h and 96 h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape-musts and the development of strategies to optimize yeast performance in industrial fermentations.
Collapse
|