1
|
Wang N, Song G, Zhang F, Shu X, Cheng G, Zhuang W, Wang T, Li Y, Wang Z. Characterization of the WRKY Gene Family Related to Anthocyanin Biosynthesis and the Regulation Mechanism under Drought Stress and Methyl Jasmonate Treatment in Lycoris radiata. Int J Mol Sci 2023; 24:ijms24032423. [PMID: 36768747 PMCID: PMC9917153 DOI: 10.3390/ijms24032423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Lycoris radiata, belonging to the Amaryllidaceae family, is a well-known Chinese traditional medicinal plant and susceptible to many stresses. WRKY proteins are one of the largest families of transcription factors (TFs) in plants and play significant functions in regulating physiological metabolisms and abiotic stress responses. The WRKY TF family has been identified and investigated in many medicinal plants, but its members and functions are not identified in L. radiata. In this study, a total of 31 L. radiata WRKY (LrWRKY) genes were identified based on the transcriptome-sequencing data. Next, the LrWRKYs were divided into three major clades (Group I-III) based on the WRKY domains. A motif analysis showed the members within same group shared a similar motif component, indicating a conservational function. Furthermore, subcellular localization analysis exhibited that most LrWRKYs were localized in the nucleus. The expression pattern of the LrWRKY genes differed across tissues and might be important for Lycoris growth and flower development. There were large differences among the LrWRKYs based on the transcriptional levels under drought stress and MeJA treatments. Moreover, a total of 18 anthocyanin components were characterized using an ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis and pelargonidin-3-O-glucoside-5-O-arabinoside as well as cyanidin-3-O-sambubioside were identified as the major anthocyanin aglycones responsible for the coloration of the red petals in L. radiata. We further established a gene-to-metabolite correlation network and identified LrWRKY3 and LrWRKY27 significant association with the accumulation of pelargonidin-3-O-glucoside-5-O-arabinoside in the Lycoris red petals. These results provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in anthocyanin biosynthesis and in response to drought stress and MeJA treatment.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guanghao Cheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weibing Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yuhang Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
2
|
Wang N, Shu X, Zhang F, Wang Z. Transcriptome-wide characterization of bHLH transcription factor genes in Lycoris radiata and functional analysis of their response to MeJA. FRONTIERS IN PLANT SCIENCE 2023; 13:975530. [PMID: 36704164 PMCID: PMC9872026 DOI: 10.3389/fpls.2022.975530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
As one of the biggest plant specific transcription factor (TF) families, basic helix-loop-helix (bHLH) protein, plays significant roles in plant growth, development, and abiotic stress responses. However, there has been minimal research about the effects of methyl jasmonate (MeJA) treatment on the bHLH gene family in Lycoris radiata (L'Her.) Herb. In this study, based on transcriptome sequencing data, 50 putative L. radiata bHLH (LrbHLH) genes with complete open reading frames (ORFs), which were divided into 20 bHLH subfamilies, were identified. The protein motif analyses showed that a total of 10 conserved motifs were found in LrbHLH proteins and motif 1 and motif 2 were the most highly conserved motifs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of LrbHLH genes revealed their involvement in regulation of plant growth, jasmonic acid (JA) mediated signaling pathway, photoperiodism, and flowering. Furthermore, subcellular localization revealed that most LrbHLHs were located in the nucleus. Expression pattern analysis of LrbHLH genes in different tissues and at flower developmental stages suggested that their expression differed across lineages and might be important for plant growth and organ development in Lycoris. In addition, all LrbHLH genes exhibited specific spatial and temporal expression patterns under MeJA treatment. Moreover, protein-protein interaction (PPI) network analysis and yeast two-hybrid assay showed that numerous LrbHLHs could interact with jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins. This research provides a theoretical basis for further investigation of LrbHLHs to find their functions and insights for their regulatory mechanisms involved in JA signaling pathway.
Collapse
|
3
|
Huang H, Miao Y, Zhang Y, Huang L, Cao J, Lin S. Comprehensive Analysis of Arabinogalactan Protein-Encoding Genes Reveals the Involvement of Three BrFLA Genes in Pollen Germination in Brassica rapa. Int J Mol Sci 2021; 22:ijms222313142. [PMID: 34884948 PMCID: PMC8658186 DOI: 10.3390/ijms222313142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023] Open
Abstract
Arabinogalactan proteins (AGPs) are a superfamily of hydroxyproline-rich glycoproteins that are massively glycosylated, widely implicated in plant growth and development. No comprehensive analysis of the AGP gene family has been performed in Chinese cabbage (Brassica rapa ssp. chinensis). Here, we identified a total of 293 putative AGP-encoding genes in B. rapa, including 25 classical AGPs, three lysine-rich AGPs, 30 AG-peptides, 36 fasciclin-like AGPs (FLAs), 59 phytocyanin-like AGPs, 33 xylogen-like AGPs, 102 other chimeric AGPs, two non-classical AGPs and three AGP/extensin hybrids. Their protein structures, phylogenetic relationships, chromosomal location and gene duplication status were comprehensively analyzed. Based on RNA sequencing data, we found that 73 AGP genes were differentially expressed in the floral buds of the sterile and fertile plants at least at one developmental stage in B. rapa, suggesting a potential role of AGPs in male reproductive development. We further characterized BrFLA2, BrFLA28 and BrFLA32, three FLA members especially expressed in anthers, pollen grains and pollen tubes. BrFLA2, BrFLA28 and BrFLA32 are indispensable for the proper timing of pollen germination under high relative humidity. Our study greatly extends the repertoire of AGPs in B. rapa and reveals a role for three members of the FLA subfamily in pollen germination.
Collapse
Affiliation(s)
- Huiting Huang
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (H.H.); (Y.M.); (Y.Z.)
| | - Yingjing Miao
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (H.H.); (Y.M.); (Y.Z.)
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Yuting Zhang
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (H.H.); (Y.M.); (Y.Z.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (J.C.); (S.L.)
| | - Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (H.H.); (Y.M.); (Y.Z.)
- Biomedicine Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
- Correspondence: (J.C.); (S.L.)
| |
Collapse
|
4
|
Qiao C, Yang J, Wan Y, Xiang S, Guan M, Du H, Tang Z, Lu K, Li J, Qu C. A Genome-Wide Survey of MATE Transporters in Brassicaceae and Unveiling Their Expression Profiles under Abiotic Stress in Rapeseed. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1072. [PMID: 32825473 PMCID: PMC7569899 DOI: 10.3390/plants9091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family is important in the export of toxins and other substrates, but detailed information on this family in the Brassicaceae has not yet been reported compared to Arabidopsis thaliana. In this study, we identified 57, 124, 81, 85, 130, and 79 MATE genes in A. thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Brassica juncea, and Brassica nigra, respectively, which were unevenly distributed on chromosomes owing to both tandem and segmental duplication events. Phylogenetic analysis showed that these genes could be classified into four subgroups, shared high similarity and conservation within each group, and have evolved mainly through purifying selection. Furthermore, numerous B. napusMATE genes showed differential expression between tissues and developmental stages and between plants treated with heavy metals or hormones and untreated control plants. This differential expression was especially pronounced for the Group 2 and 3 BnaMATE genes, indicating that they may play important roles in stress tolerance and hormone induction. Our results provide a valuable foundation for the functional dissection of the different BnaMATE homologs in B. napus and its parental lines, as well as for the breeding of more stress-tolerant B. napus genotypes.
Collapse
Affiliation(s)
- Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yuanyuan Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Sirou Xiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhanglin Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Miao L, Gao Y, Zhao K, Kong L, Yu S, Li R, Liu K, Yu X. Comparative analysis of basic helix-loop-helix gene family among Brassica oleracea, Brassica rapa, and Brassica napus. BMC Genomics 2020; 21:178. [PMID: 32093614 PMCID: PMC7041300 DOI: 10.1186/s12864-020-6572-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/10/2020] [Indexed: 01/24/2024] Open
Abstract
Background The basic helix–loop–helix (bHLH) is the second largest gene family in the plant, some members play important roles in pistil development and response to drought, waterlogging, cold stress and salt stress. The bHLH gene family has been identified in many species, except for Brassica oleracea and B. napus thus far. This study aims to identify the bHLH family members in B. oleracea, B. rapa and B. napus, and elucidate the expression, duplication, phylogeny and evolution characters of them. Result A total of 268 bHLH genes in B. oleracea, 440 genes in B. napus, and 251 genes in B. rapa, including 21 new bHLH members, have been identified. Subsequently, the analyses of the phylogenetic trees, conserved motifs and gene structures showed that the members in the same subfamily were highly conserved. Most Ka/Ks values of homologous gene were < 1, which indicated that these genes suffered from strong purifying selection for retention. The retention rates of BrabHLH and BolbHLH genes were 51.6 and 55.1%, respectively. The comparative expression patterns between B. rapa and B. napus showed that they had similar expression patterns in the root and contrasting patterns in the stems, leaves, and reproductive tissues. In addition, there were 41 and 30 differential expression bHLH genes under the treatments of ABA and JA, respectively, and the number of down regulation genes was significantly more than up regulation genes. Conclusion In the present study, we identified and performed the comparative genomics analysis of bHLH gene family among B. oleracea, B. rapa and B. napus, and also investigated their diversity. The expression patterns between B. rapa and B. napus shows that they have the similar expression pattern in the root and opposite patterns in the stems, leaves, and reproduction tissues. Further analysis demonstrated that some bHLH gene members may play crucial roles under the abiotic and biotic stress conditions. This is the first to report on the bHLH gene family analysis in B. oleracea and B. napus, which can offer useful information on the functional analysis of the bHLH gene in plants.
Collapse
Affiliation(s)
- Liming Miao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang, 310058, Hangzhou, China
| | - Yingying Gao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang, 310058, Hangzhou, China
| | - Kun Zhao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang, 310058, Hangzhou, China
| | - Lijun Kong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang, 310058, Hangzhou, China
| | - Shubo Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang, 310058, Hangzhou, China
| | - Rongrong Li
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang, 310058, Hangzhou, China
| | - Kaiwen Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang, 310058, Hangzhou, China
| | - Xiaolin Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, Hangzhou, China. .,Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
6
|
Identification, Evolution, and Expression Profiling of Histone Lysine Methylation Moderators in Brassica rapa. PLANTS 2019; 8:plants8120526. [PMID: 31756989 PMCID: PMC6963287 DOI: 10.3390/plants8120526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
Histone modifications, such as methylation and demethylation, are vital for regulating chromatin structure, thus affecting its expression patterns. The objective of this study is to understand the phylogenetic relationships, genomic organization, diversification of motif modules, gene duplications, co-regulatory network analysis, and expression dynamics of histone lysine methyltransferases and histone demethylase in Brassica rapa. We identified 60 SET (HKMTases), 53 JmjC, and 4 LSD (HDMases) genes in B. rapa. The domain composition analysis subcategorized them into seven and nine subgroups, respectively. Duplication analysis for paralogous pairs of SET and JmjC (eight and nine pairs, respectively) exhibited variation. Interestingly, three pairs of SET exhibited Ka/Ks > 1.00 values, signifying positive selection, whereas the remaining underwent purifying selection with values less than 1.00. Furthermore, RT-PCR validation analysis and RNA-sequence data acquired on six different tissues (i.e., leaf, stem, callus, silique, flower, and root) revealed dynamic expression patterns. This comprehensive study on the abundance, classification, co-regulatory network analysis, gene duplication, and responses to heat and cold stress of SET and JmjC provides insights into the structure and diversification of these family members in B. rapa. This study will be helpful to reveal functions of these putative SET and JmjC genes in B. rapa.
Collapse
|
7
|
Liu T, Yu H, Xiong X, Yu Y, Yue X, Liu J, Cao J. Genome-Wide Identification and Characterization of Pectin Methylesterase Inhibitor Genes in Brassica oleracea. Int J Mol Sci 2018; 19:ijms19113338. [PMID: 30373125 PMCID: PMC6274938 DOI: 10.3390/ijms19113338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
The activities of pectin methylesterases (PMEs) are regulated by pectin methylesterase inhibitors (PMEIs), which consequently control the pectin methylesterification status. However, the role of PMEI genes in Brassica oleracea, an economically important vegetable crop, is poorly understood. In this study, 95 B. oleracea PMEI (BoPMEI) genes were identified. A total of 77 syntenic ortholog pairs and 10 tandemly duplicated clusters were detected, suggesting that the expansion of BoPMEI genes was mainly attributed to whole-genome triplication (WGT) and tandem duplication (TD). During diploidization after WGT, BoPMEI genes were preferentially retained in accordance with the gene balance hypothesis. Most homologous gene pairs experienced purifying selection with ω (Ka/Ks) ratios lower than 1 in evolution. Five stamen-specific BoPMEI genes were identified by expression pattern analysis. By combining the analyses of expression and evolution, we speculated that nonfunctionalization, subfunctionalization, neofunctionalization, and functional conservation can occur in the long evolutionary process. This work provides insights into the characterization of PMEI genes in B. oleracea and contributes to the further functional studies of BoPMEI genes.
Collapse
Affiliation(s)
- Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Hui Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an 311300, China.
| | - Xiaoyan Yue
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Jinlong Liu
- Laboratory of Molecular Biology and Gene Engineering, School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| |
Collapse
|
8
|
Byeon B, Bilichak A, Kovalchuk I. Tissue-specific heat-induced changes in the expression of ncRNA fragments in Brassica rapa plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Han T, Dong H, Cui J, Li M, Lin S, Cao J, Huang L. Genomic, Molecular Evolution, and Expression Analysis of Genes Encoding Putative Classical AGPs, Lysine-Rich AGPs, and AG Peptides in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2017; 8:397. [PMID: 28424711 PMCID: PMC5372829 DOI: 10.3389/fpls.2017.00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/08/2017] [Indexed: 05/27/2023]
Abstract
Arabinogalactan proteins (AGPs) belong to a class of Pro/Hyp-rich glycoproteins and are some of the most complex types of macromolecules found in plants. In the economically important plant species, Brassica rapa, only chimeric AGPs have been identified to date. This has significantly limited our understanding of the functional roles of AGPs in this plant. In this study, 64 AGPs were identified in the genome of B. rapa, including 33 classical AGPs, 28 AG peptides and three lys-rich AGPs. Syntenic gene analysis between B. rapa and A. thaliana suggested that the whole genome triplication event dominated the expansion of the AGP gene family in B. rapa. This resulted in a high retained proportion of the AGP family in the B. rapa genome, especially in the least fractionated subgenome. Phylogenetic and motif analysis classified the classical AGPs into six clades and three orphan genes, and the AG peptides into three clades and five orphan genes. Classical AGPs has a faster rate of molecular evolution than AG peptides revealed by estimation of molecular evolution rates. However, no significant differences were observed between classical AGPs and lys-rich AGPs. Under control conditions and in response to phytohormones treatment, a complete expression profiling experiment has identified five anther-specific AGPs and quite a number of AGPs responding to abscisic acid, methyl jasmonate and/or gibberellin. In this study, we presented a bioinformatics approach to identify important types of AGPs. Moreover, the association between their function and their protein structure, as well as the evolution and the expression of AGP genes were investigated, which might provide fundamental information for revealing the roles of AGPs in B. rapa.
Collapse
Affiliation(s)
- Tianyu Han
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Heng Dong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Jie Cui
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Ming Li
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Sue Lin
- Institute of Vegetable Science, Wenzhou Vocational College of Science and TechnologyWenzhou, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Li Huang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
10
|
Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nat Biotechnol 2017; 35:377-382. [DOI: 10.1038/nbt.3823] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/27/2017] [Indexed: 12/31/2022]
|
11
|
Lysak MA, Mandáková T, Schranz ME. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:108-15. [PMID: 26945766 DOI: 10.1016/j.pbi.2016.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
A decade ago the concept of the Ancestral Crucifer Karyotype (ACK) and the definition of 24 conserved genomic blocks was presented. Subsequently, 35 cytogenetic reconstructions and/or draft genome sequences of crucifer species (members of the Brassicaceae family) have been analyzed in the context of this system; placing crucifers at the forefront of plant phylogenomics. In this review, we highlight how the ACK and genomic blocks have facilitated and guided genomic analysis of crucifers in the last 10 years and provide an update of this robust model.
Collapse
Affiliation(s)
- Martin A Lysak
- Plant Cytogenomics Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - Terezie Mandáková
- Plant Cytogenomics Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - M Eric Schranz
- Biosystematics Group, Wageningen University (WU), Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| |
Collapse
|
12
|
Dong H, Liu D, Han T, Zhao Y, Sun J, Lin S, Cao J, Chen ZH, Huang L. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication. Sci Rep 2015; 5:16851. [PMID: 26596461 PMCID: PMC4657036 DOI: 10.1038/srep16851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.
Collapse
Affiliation(s)
- Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Hangzhou, 310058, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Hangzhou, 310058, China
| | - Tianyu Han
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Hangzhou, 310058, China
| | - Yuxue Zhao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Hangzhou, 310058, China
| | - Ji Sun
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Sue Lin
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Hangzhou, 310058, China
| | - Zhong-Hua Chen
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Hangzhou, 310058, China
| |
Collapse
|
13
|
Genomic and Post-Translational Modification Analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa. PLoS One 2015; 10:e0142255. [PMID: 26588465 PMCID: PMC4654520 DOI: 10.1371/journal.pone.0142255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022] Open
Abstract
Among several receptor-like kinases (RLKs), leucine-rich-repeat receptor-like kinases (LRR-RLKs) are a major group of genes that play crucial roles in growth, development and stress responses in plant systems. Given that they have several functional roles, it is important to investigate their roles in Brassica rapa. In the present study, 303 LRR-RLKs were identified in the genome of B. rapa and comparative phylogenetic analysis of 1213 combined LRR-RLKs of B. rapa, Arabidopsis thaliana, Oryza sativa and Populus trichocarpa helped us to categorize the gene family into 15 subfamilies based on their sequence and structural similarities. The chromosome localizations of 293 genes allowed the prediction of duplicates, and motif conservation and intron/exon patterns showed differences among the B. rapa LRR-RLK (BrLRR-RLK) genes. Additionally, computational function annotation and expression analysis was used to predict their possible functional roles in the plant system. Biochemical results for 11 selected genes showed variations in phosphorylation activity. Interestingly, BrBAK1 showed strong auto-phosphorylation and trans-phosphorylation on its tyrosine and threonine residues compared with AtBAK1 in previous studies. The AtBAK1 receptor kinase is involved in plant growth and development, plant innate immunity, and programmed cell death, and our results suggest that BrBAK1 might also be involved in the same functions. Another interesting result was that BrBAK1, BrBRI1, BrPEPR1 and BrPEPR2 showed activity with both anti-phosphotyrosine and anti-phosphothreonine antibodies, indicating that they might have dual-specificity kinase activity. This study provides comprehensive results for the BrLRR-RLKs, revealing expansion of the gene family through gene duplications, structural similarities and variations among the genes, and potential functional roles according to gene ontology, transcriptome profiling and biochemical analysis.
Collapse
|
14
|
Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, Pires JC, Tan DY, Zhong Y, Ma H. Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution. Mol Biol Evol 2015; 33:394-412. [PMID: 26516094 PMCID: PMC4866547 DOI: 10.1093/molbev/msv226] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene–Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Renran Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Biology, The Huck Institute of the Life Sciences, Pennsylvania State University
| | - Liping Zeng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC
| | - Liming Cai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia
| | - Dun-Yan Tan
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Yang Zhong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Karn RC, Chung AG, Laukaitis CM. Did androgen-binding protein paralogs undergo neo- and/or Subfunctionalization as the Abp gene region expanded in the mouse genome? PLoS One 2014; 9:e115454. [PMID: 25531410 PMCID: PMC4274081 DOI: 10.1371/journal.pone.0115454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.
Collapse
Affiliation(s)
- Robert C. Karn
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
- * E-mail:
| | - Amanda G. Chung
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
| | - Christina M. Laukaitis
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|