1
|
Johnston W, Adil S, Cao C, Nipu N, Mennigen JA. Fish models to explore epigenetic determinants of hypoxia-tolerance. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111811. [PMID: 39778711 DOI: 10.1016/j.cbpa.2025.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The occurrence of environmental hypoxia in freshwater and marine aquatic systems has increased over the last century and is predicted to further increase with climate change. As members of the largest extant vertebrate group, freshwater fishes, and to a much lesser extent marine fishes, are vulnerable to increased occurrence of hypoxia. This is important as fishes render important ecosystem services and have important cultural and economic roles. Evolutionarily successful, fishes have adapted to diverse aquatic freshwater and marine habitats with different oxygen conditions. While some fishes exhibit genetic adaptions to tolerate hypoxia and even anoxia, others are limited to oxygen-rich habitats. Recent advances in molecular epigenetics have shown that some epigenetic machinery, especially histone- and DNA demethylases, is directly dependent on oxygen and modulates important transcription-regulating epigenetic marks in the process. At the post-transcriptional level, hypoxia has been shown to affect non-coding microRNA abundance. Together, this evidence adds a new molecular epigenetic basis to study hypoxia tolerance in fishes. Here, we review the documented and predicted changes in environmental hypoxia in aquatic systems and discuss the diversity and comparative physiology of hypoxia tolerance in fishes, including molecular and physiological adaptations. We then discuss how recent mechanistic advances in environmental epigenetics can inform future work probing the role of oxygen-dependent epigenetic marks in shaping organismal hypoxia-tolerance in fishes with a focus on within- and between-species variation, acclimation, inter- and multigenerational plasticity, and multiple climate-change stressors. We conclude by describing the translational potential of this approach for conservation physiology, ecotoxicology, and aquaculture.
Collapse
Affiliation(s)
- William Johnston
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Sally Adil
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Catherine Cao
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Wang X, Feng L, Lu Y, Zhang H. miR-122/PPARβ axis is involved in hypoxic exercise and modulates fatty acid metabolism in skeletal muscle of obese rats. Heliyon 2024; 10:e26572. [PMID: 38434053 PMCID: PMC10906430 DOI: 10.1016/j.heliyon.2024.e26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hypoxic exercise is an effective intervention for obesity, because it promotes weight loss by regulating fatty acid (FA) metabolism. The regulation of peroxisome proliferator-activated receptor β (PPARβ) by miR-122 may be involved in this process, but the detailed mechanisms are unknown. In order to address this issue, we probed how miR-122 affected the expression of factors associated with FA metabolism in skeletal muscle of obese rats undergoing hypoxic training. By injecting adeno-associated virus 9 containing miR-122 overexpression vector or miR-122 inhibitor into skeletal muscles of rats with a 4-week hypoxic exercise regimen, the miR-122 expression level can be regulated. Body composition and blood lipid levels were analyzed, and PPARβ, carnitine palmitoyltransferase 1b (CPT1b), acetylCoA carboxylase 2 (ACC2), and FA synthase (FAS) mRNA and protein levels were evaluated using quantitative reverse transcription quantitative PCR(RT-qPCR) and Western blot analysis. We found that miR-122 overexpression increased low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels and decreased PPARβ, ACC2, and FAS expression. Conversely, miR-122 inhibition decreased TG level, increased high-density lipoprotein cholesterol (HDL-C) level, and upregulated PPARβ, ACC2, FAS, and CPT1b. These data indicated that the negative regulation of PPARβ by miR-122 promotes FA metabolism by altering the levels of the factors related to FA metabolism in skeletal muscle of obese rat under hypoxic training, thus providing molecular-level insight into the beneficial effects of this intervention.
Collapse
Affiliation(s)
- Xuebing Wang
- College of Physical Education, Guangxi University, Nanning, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
3
|
Best C, Mennigen JA, Gilmour KM. Exploring transcriptional and post-transcriptional epigenetic regulation of crf and 11βhsd2 in rainbow trout brain during chronic social stress. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111557. [PMID: 38043640 DOI: 10.1016/j.cbpa.2023.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Using dominance hierarchies in juvenile rainbow trout (Oncorhynchus mykiss) as a model of chronic social stress in fish, we explored whether epigenetic transcriptional and post-transcriptional mechanisms are involved in the gene expression of corticotropin-releasing factor (crf) and 11β-hydroxysteroid dehydrogenase (11βhsd2), key factors involved in the regulation of the endocrine stress axis response. In juvenile rainbow trout pairs, subordinate individuals display sustained elevation of circulating cortisol concentrations. Cortisol production is controlled by the hypothalamic-pituitary-interrenal (HPI) axis in fish and initiated by CRF release from the preoptic area (POA). Given that crf is modulated during chronic social stress, and that such stress has been implicated in the epigenetic regulation of crf in other taxa, we probed a role for epigenetic regulation of crf transcript abundance in chronically stressed rainbow trout. We also investigated the regulation of the cortisol-metabolising enzyme 11βhsd2 in the POA, which is upregulated in subordinates. The potential involvement of DNA methylation and microRNAs (miRNAs) in the regulation of crf transcript abundance was investigated during social stress in the POA of fish, as was the potential involvement of miRNAs in 11βhsd2 regulation. Although transcript abundances of crf were elevated in subordinate fish after 4 days, DNA methylation profiles within putative promoter sequences upstream of the crf gene were not significantly affected by chronic stress. An inverse relationship between crf and its predicted posttranscriptional regulator miR-103a-3p in the POA suggests that miRNAs may be involved in mediating the effects of chronic social stress on key components of the endocrine stress axis.
Collapse
Affiliation(s)
- Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
4
|
Verleih M, Visnovska T, Nguinkal JA, Rebl A, Goldammer T, Andreassen R. The Discovery and Characterization of Conserved and Novel miRNAs in the Different Developmental Stages and Organs of Pikeperch ( Sander lucioperca). Int J Mol Sci 2023; 25:189. [PMID: 38203361 PMCID: PMC10778745 DOI: 10.3390/ijms25010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Micro RNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional gene expression regulators. Genes regulated in vertebrates include those affecting growth and development or stress and immune response. Pikeperch (Sander lucioperca) is a species that is increasingly being considered for farming in recirculation aquaculture systems. We characterized the pikeperch miRNA repertoire to increase the knowledge of the genomic mechanisms affecting performance and health traits by applying small RNA sequencing to different developmental stages and organs. There were 234 conserved and 8 novel miRNA genes belonging to 104 families. A total of 375 unique mature miRNAs were processed from these genes. Many mature miRNAs showed high relative abundances or were significantly more expressed at early developmental stages, like the miR-10 and miR-430 family, let-7, the miRNA clusters 106-25-93, and 17-19-92. Several miRNAs associated with immune responses (e.g., slu-mir-731-5p, slu-mir-2188-5p, and slu-mir-8159-5p) were enriched in the spleen. The mature miRNAs slu-mir-203a-3p and slu-mir-205-5p were enriched in gills. These miRNAs are similarly abundant in many vertebrates, indicating that they have shared regulatory functions. There was also a significantly increased expression of the disease-associated miR-462/miR-731 cluster in response to hypoxia stress. This first pikeperch miRNAome reference resource paves the way for future functional studies to identify miRNA-associated variations that can be utilized in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Marieke Verleih
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0424 Oslo, Norway
| | - Julien A. Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet—Oslo Metropolitan University, 0167 Oslo, Norway;
| |
Collapse
|
5
|
Cardona E, Milhade L, Pourtau A, Panserat S, Terrier F, Lanuque A, Roy J, Marandel L, Bobe J, Skiba-Cassy S. Tissue origin of circulating microRNAs and their response to nutritional and environmental stress in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158584. [PMID: 36087674 DOI: 10.1016/j.scitotenv.2022.158584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 05/19/2023]
Abstract
Stresses associated with changes in diet or environmental disturbances are common situations that fish encounter during their lifetime. The stability and ease of measuring microRNAs (miRNAs) present in biological fluids make these molecules particularly interesting biomarkers for non-lethal assessment of stress in animals. Rainbow trout were exposed for four weeks to abiotic stress (moderate hypoxia) and/or nutritional stress (a high-carbohydrate/low-protein diet). Blood plasma and epidermal mucus were sampled at the end of the experiment, and miRNAs were assessed using small RNA sequencing. We identified four miRNAs (miR-122-5p, miR-184-3p, miR-192-5p and miR-194a-5p) and three miRNAs (miR-210-3p, miR-153a-3p and miR-218c-5p) that accumulated in response to stress in blood plasma and epidermal mucus, respectively. In particular, the abundance of miR-210-3p, a hypoxamiR in mammals, increased strongly in the epidermal mucus of rainbow trout subjected to moderate hypoxia, and can thus be considered a relevant biomarker of hypoxic stress in trout. We explored the contribution of 22 tissues/organs to the abundance of circulating miRNAs (c-miRNAs) in blood plasma and epidermal mucus influenced by the treatments. Some miRNAs were tissue-specific, while others were distributed among several tissues. Some c-miRNAs (e.g., miR-210-3p, miR184-3p) showed similar variations in both tissues and fluids, while others showed an inverse trend (e.g., miR-122-5p) or no apparent relationship (e.g. miR-192-5p, miR-194a-5p. Overall, these results demonstrate that c-miRNAs can be used as non-lethal biomarkers to study stress in fish. In particular, the upregulation of miR-210-3p in epidermal mucus induced by hypoxia demonstrates the potential of using epidermal mucus as a matrix for identifying non-invasive biomarkers of stress. This study provides information about the tissue sources of c-miRNAs and highlights the potential difficulty in relating variations in miRNA abundance in biological fluids to that in tissues.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France.
| | - Léo Milhade
- IRISA, INRIA, CNRS, University of Rennes 1, UMR 6074, F-35000, Rennes, France
| | - Angéline Pourtau
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, Gip Geves St Martin 0652, F-40390 Saint-Martin-de-Hinx, France
| | - Stéphane Panserat
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Fréderic Terrier
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Jérôme Roy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France
| | - Sandrine Skiba-Cassy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| |
Collapse
|
6
|
Farhat E, Talarico GGM, Grégoire M, Weber JM, Mennigen JA. Epigenetic and post-transcriptional repression support metabolic suppression in chronically hypoxic goldfish. Sci Rep 2022; 12:5576. [PMID: 35368037 PMCID: PMC8976842 DOI: 10.1038/s41598-022-09374-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Goldfish enter a hypometabolic state to survive chronic hypoxia. We recently described tissue-specific contributions of membrane lipid composition remodeling and mitochondrial function to metabolic suppression across different goldfish tissues. However, the molecular and especially epigenetic foundations of hypoxia tolerance in goldfish under metabolic suppression are not well understood. Here we show that components of the molecular oxygen-sensing machinery are robustly activated across tissues irrespective of hypoxia duration. Induction of gene expression of enzymes involved in DNA methylation turnover and microRNA biogenesis suggest a role for epigenetic transcriptional and post-transcriptional suppression of gene expression in the hypoxia-acclimated brain. Conversely, mechanistic target of rapamycin-dependent translational machinery activity is not reduced in liver and white muscle, suggesting this pathway does not contribute to lowering cellular energy expenditure. Finally, molecular evidence supports previously reported chronic hypoxia-dependent changes in membrane cholesterol, lipid metabolism and mitochondrial function via changes in transcripts involved in cholesterol biosynthesis, β-oxidation, and mitochondrial fusion in multiple tissues. Overall, this study shows that chronic hypoxia robustly induces expression of oxygen-sensing machinery across tissues, induces repressive transcriptional and post-transcriptional epigenetic marks especially in the chronic hypoxia-acclimated brain and supports a role for membrane remodeling and mitochondrial function and dynamics in promoting metabolic suppression.
Collapse
Affiliation(s)
- Elie Farhat
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Giancarlo G M Talarico
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mélissa Grégoire
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
7
|
Navarro-Martín L, Martyniuk CJ, Mennigen JA. Comparative epigenetics in animal physiology: An emerging frontier. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100745. [PMID: 33126028 DOI: 10.1016/j.cbd.2020.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
8
|
Sun J, Liu Q, Zhao L, Cui C, Wu H, Liao L, Tang G, Yang S, Yang S. Potential regulation by miRNAs on glucose metabolism in liver of common carp (Cyprinus carpio) at different temperatures. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100628. [PMID: 31677400 DOI: 10.1016/j.cbd.2019.100628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Water temperature can affect the metabolism of fish. Common carp (Cyprinus carpio) is a representative eurythermic fish that can survive at a wide range of ambient temperatures, allowing it to live in an extensive geographical range. The goal of this work was to study the glucose metabolism of common carp at different temperatures and determine the miRNAs involved in the regulation of glucose metabolism. We determined the indicators related to glucose metabolism after long-term temperature stress and constructed nine small RNA libraries of livers under different temperature stress (5 °C, 17 °C, and 30 °C, with three biological replicates for each temperature), and subjected these samples to high-throughput sequencing. A positive relationship was observed between weight gain rate (WGR) and temperature increase after 18 days of temperature stress. However, the glucose level in the plasma maintained a gentle decrease. Unexpectedly, liver lactic acid levels were elevated in HTG (high temperature group) and LTG (low temperature group). Six down-regulated miRNAs (miR-122, miR-30b, miR-15b-5p, miR-20a-5p, miR-1, and miR-7b) were identified as involved in the regulation of glycolysis. Twelve genes were predicted as targets of these miRNAs, and these genes are in pathways related to pyruvate metabolism, glycolysis/gluconeogenesis, and the citrate cycle (TCA cycle). The results allowed prediction of a potential regulatory network of miRNAs involved in the regulation of glycolysis. The target genes of six down-regulated miRNAs were up-regulated under temperature stress, including Aldolase C, fructose-bisphosphate, b (ALDOCB), multiple inositol-polyphosphate phosphatase 1 (MINPP1), phosphoenolpyruvate carboxykinase 1 (PCK1), pyruvate dehydrogenase E1 alpha 1 (PDHA1), aldehyde dehydrogenase 9 family member A1a (ALDH9A1A), Acetyl-coenzyme A synthetase (ACSS), lactate dehydrogenase b (LDH-b), and glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Other key genes of glycolysis, glucose transporter 1 (GLUT-1), pyruvate kinase PKM (PKM), and mitochondrial pyruvate carrier (MPC) were significantly up-regulated in LTG and HTG. Overall, the results suggest that miRNAs maintain their energy requirements by regulating glycolysis and play an important role in the molecular response to cold and heat stress of common carp. These data provide the foundation for further studies of the role of miRNAs in environmental adaptation in fish.
Collapse
Affiliation(s)
- JunLong Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - LiuLan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hao Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - ShiYong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
9
|
Revealing liver specific microRNAs linked with carbohydrate metabolism of farmed carp, Labeo rohita (Hamilton, 1822). Genomics 2019; 112:32-44. [PMID: 31325488 DOI: 10.1016/j.ygeno.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
The role of microRNA in gene regulation during developmental biology has been well depicted in several organisms. The present study was performed to investigate miRNAs role in the liver tissues during carbohydrate metabolism and their targets in the farmed carp rohu, Labeo rohita, which is economically important species in aquaculture. Using Illumina-HiSeq technology, a total of 22,612,316; 44,316,046 and 13,338,434 clean reads were obtained from three small-RNA libraries. We have identified 138 conserved and 161 novel miRNAs and studies revealed that miR-22, miR-122, miR-365, miR-200, and miR-146 are involved in carbohydrate metabolism. Further analysis depicted mature miRNA and their predicted target sites in genes that were involved in developmental biology, cellular activities, transportation, etc. This is the first report of the presence of miRNAs in liver tissue of rohu and their comparative profile linked with metabolism serves as a vital resource as a biomarker.
Collapse
|
10
|
Kostyniuk DJ, Marandel L, Jubouri M, Dias K, de Souza RF, Zhang D, Martyniuk CJ, Panserat S, Mennigen JA. Profiling the rainbow trout hepatic miRNAome under diet-induced hyperglycemia. Physiol Genomics 2019; 51:411-431. [PMID: 31282806 DOI: 10.1152/physiolgenomics.00032.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Carnivorous rainbow trout exhibit prolonged postprandial hyperglycemia when fed a diet exceeding 20% carbohydrate content. This poor capacity to utilize carbohydrates has led to rainbow trout being classified as "glucose-intolerant" (GI). The metabolic phenotype has spurred research to identify the underlying cellular and molecular mechanisms of glucose intolerance, largely because carbohydrate-rich diets provide economic and ecological advantages over traditionally used fish meal, considered unsustainable for rainbow trout aquaculture operations. Evidence points to a contribution of hepatic intermediary carbohydrate and lipid metabolism, as well as upstream insulin signaling. Recently, microRNAs (miRNAs), small noncoding RNAs acting as negative posttranscriptional regulators affecting target mRNA stability and translation, have emerged as critical regulators of hepatic control of glucose-homeostasis in mammals, revealing that dysregulated hepatic miRNAs might play a role in organismal hyperglycemia in metabolic disease. To determine whether hepatic regulatory miRNA networks may contribute to GI in rainbow trout, we induced prolonged postprandial hyperglycemia in rainbow trout by using a carbohydrate-rich diet and profiled genome-wide hepatic miRNAs in hyperglycemic rainbow trout compared with fasted trout and trout fed a diet devoid of carbohydrates. Using small RNA next-generation sequencing and real-time RT-PCR validation, we identified differentially regulated hepatic miRNAs between these groups and used an in silico approach to predict bona fide mRNA targets and enriched pathways. Diet-induced hyperglycemia resulted in differential regulation of hepatic miRNAs compared with fasted fish. Some of the identified miRNAs, such as miRNA-27b-3p and miRNA-200a-3p, are known to be responsive to hyperglycemia in the liver of hyperglycemic glucose-tolerant fish and mammals, suggesting an evolutionary conserved regulation. Using Gene Ontology term-based enrichment analysis, we identify intermediate carbohydrate and lipid metabolism and insulin signaling as potential targets of posttranscriptional regulation by hyperglycemia-regulated miRNAs and provide correlative expression analysis of specific predicted miRNA-target pairs. This study identifies hepatic miRNAs in rainbow trout that exhibit differential postprandial expression in response to diets with different carbohydrate content and predicts posttranscriptionally regulated target mRNAs enriched for pathways involved in glucoregulation. Together, these results provide a framework for testable hypotheses of functional involvement of specific hepatic miRNAs in GI in rainbow trout.
Collapse
Affiliation(s)
| | - Lucie Marandel
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Mais Jubouri
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karine Dias
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Robson F de Souza
- Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Stéphane Panserat
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Social status regulates the hepatic miRNAome in rainbow trout: Implications for posttranscriptional regulation of metabolic pathways. PLoS One 2019; 14:e0217978. [PMID: 31194802 PMCID: PMC6563994 DOI: 10.1371/journal.pone.0217978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
Juvenile rainbow trout develop social hierarchies when held in dyads, and the development of socially subordinate (SS) and social dominance (SD) phenotypes in this context has been linked to specific changes in the hepatic energy metabolism of all major macronutrients. Following our recently reported finding that transcript abundance of drosha, a key component of the microRNA (miRNA) biogenesis pathway, is increased in paired juvenile rainbow trout irrespective of social status compared to socially isolated (SI) controls, we here determined global changes of the hepatic miRNA pathway genes in detail at the transcript and protein level. Both SD and SS rainbow trout exhibited increased Ago2 protein abundance compared to SI rainbow trout, suggesting that hepatic miRNA function is increased in rainbow trout maintained in dyads. Given the well-described differences in hepatic intermediary metabolism between SD and SS rainbow trout, and the important role of miRNAs in the posttranscriptional regulation of metabolic pathways, we also identified changes in hepatic miRNA abundance between SS and SD rainbow trout using small RNA next generation sequencing. We identified a total of 24 differentially regulated miRNAs, with 15 miRNAs that exhibited increased expression, and 9 miRNAs that exhibited decreased expression in the liver of SS trout compared to SD trout. To identify potential miRNA-dependent posttranscriptional regulatory pathways important for social status-dependent regulation of hepatic metabolism in rainbow trout, we used an in silico miRNA target prediction and pathway enrichment approach. We identified enrichment for pathways related to metabolism of carbohydrates, lipids and proteins in addition to organelle-specific processes involved in energy metabolism, especially mitochondrial fusion and fission. Select predicted miRNA-mRNA target pairs within these categories were quantitatively analyzed by real-time RT-PCR to validate candidates for future studies that will probe the functional metabolic roles of specific hepatic miRNAs in the development of SD and SS metabolic phenotypes.
Collapse
|
12
|
Panserat S, Marandel L, Seiliez I, Skiba-Cassy S. New Insights on Intermediary Metabolism for a Better Understanding of Nutrition in Teleosts. Annu Rev Anim Biosci 2019; 7:195-220. [DOI: 10.1146/annurev-animal-020518-115250] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid development of aquaculture production throughout the world over the past few decades has led to the emergence of new scientific challenges to improve fish nutrition. The diet formulations used for farmed fish have been largely modified in the past few years. However, bottlenecks still exist in being able to suppress totally marine resources (fish meal and fish oil) in diets without negatively affecting growth performance and flesh quality. A better understanding of fish metabolism and its regulation by nutrients is thus mandatory. In this review, we discuss four fields of research that are highly important for improving fish nutrition in the future: ( a) fish genome complexity and subsequent consequences for metabolism, ( b) microRNAs (miRNAs) as new actors in regulation of fish metabolism, ( c) the role of autophagy in regulation of fish metabolism, and ( d) the nutritional programming of metabolism linked to the early life of fish.
Collapse
Affiliation(s)
- S. Panserat
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - L. Marandel
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - I. Seiliez
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - S. Skiba-Cassy
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
13
|
Brzuzan P, Woźny M, Lewczuk B, Florczyk M, Gomułka P, Budzińska P, Wesołowski M, Dobosz S. In vivo miRNA delivery in whitefish: Synthetic MiR92b-3p uptake and the efficacy of gene expression silencing. Exp Biol Med (Maywood) 2019; 244:52-63. [PMID: 30664358 DOI: 10.1177/1535370218824573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT The delivery of short snippets of RNA, such as synthetic miRNA agents, is an essential step for achieving RNA-mediated knockdown, which has not been studied in sufficient detail in fish. Our results indicate that a MiR92b-3p mimic may be effectively delivered via intraperitoneal injection to the spleen and the liver of whitefish, and that it likely achieves functionality without causing any apparent toxic effects in the challenged animals. We report the novel finding that the MiR92b-3p mimic reduced the in vivo liver mRNA expression levels of its putative pro-apoptotic targets (p53, cdkn1a, and pcna), and important metabolic genes, e.g. cdo1. This shows that this methodology of MiR92b-3p mimic transfection in vivo may be a useful tool for studies that investigate the molecular pathways that confer pro-proliferative and anti-apoptotic phenotypes or those that regulate intracellular metabolism in fish and other vertebrates.
Collapse
Affiliation(s)
- Paweł Brzuzan
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Maciej Woźny
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Bogdan Lewczuk
- 2 Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn 10-713, Poland
| | - Maciej Florczyk
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Piotr Gomułka
- 3 Department of Ichthyology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-719, Poland
| | - Paulina Budzińska
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Michał Wesołowski
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Stefan Dobosz
- 4 Department of the Salmonid Research in Rutki, Inland Fisheries Institute in Olsztyn, Żukowo 83-330, Poland
| |
Collapse
|
14
|
Expanding the miRNA Repertoire in Atlantic Salmon; Discovery of IsomiRs and miRNAs Highly Expressed in Different Tissues and Developmental Stages. Cells 2019; 8:cells8010042. [PMID: 30641951 PMCID: PMC6356880 DOI: 10.3390/cells8010042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional gene expression regulators. Here, 448 different miRNA genes, including 17 novel miRNAs, encoding for 589 mature Atlantic salmon miRNAs were identified after sequencing 111 samples (fry, pathogen challenged fry, various developmental and adult tissues). This increased the reference miRNAome with almost one hundred genes. Prior to isomiR characterization (mature miRNA variants), the proportion of erroneous sequence variants (ESVs) arising in the analysis pipeline was assessed. The ESVs were biased towards 5’ and 3’ end of reads in unexpectedly high proportions indicating that measurements of ESVs rather than Phred score should be used to avoid misinterpreting ESVs as isomiRs. Forty-three isomiRs were subsequently discovered. The biological effect of the isomiRs measured as increases in target diversity was small (<3%). Five miRNA genes showed allelic variation that had a large impact on target gene diversity if present in the seed. Twenty-one miRNAs were ubiquitously expressed while 31 miRNAs showed predominant expression in one or few tissues, indicating housekeeping or tissue specific functions, respectively. The miR-10 family, known to target Hox genes, were highly expressed in the developmental stages. The proportion of miR-430 family members, participating in maternal RNA clearance, was high at the earliest developmental stage.
Collapse
|
15
|
Analysis of miRNA-seq in the liver of common carp (Cyprinus carpio L.) in response to different environmental temperatures. Funct Integr Genomics 2018; 19:265-280. [DOI: 10.1007/s10142-018-0643-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/11/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
|
16
|
Zhu T, Corraze G, Plagnes-Juan E, Skiba-Cassy S. Circulating miRNA measurements are reflective of cholesterol-based changes in rainbow trout (Oncorhynchus mykiss). PLoS One 2018; 13:e0206727. [PMID: 30395627 PMCID: PMC6218197 DOI: 10.1371/journal.pone.0206727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which are known to posttranscriptionally regulate the expression of most genes in both animals and plants. Meanwhile, studies have shown that numbers of miRNAs are present in body fluids including the plasma. Despite the mode of action of these circulating miRNAs still remains unknown, they have been found to be promising biomarkers for disease diagnosis, prognosis and response to treatment. In order to evaluate the potential of miRNAs as non-invasive biomarkers in aquaculture, a time-course experiment was implemented to investigate the postprandial regulation of miRNAs levels in liver and plasma as well as the hepatic expression of genes involved in cholesterol metabolism. We showed that miR-1, miR-33a, miR-122, miR-128 and miR-223 were expressed in the liver of rainbow trout and present at detectable level in the plasma. We also demonstrated that hepatic expression of miR-1, miR-122 and miR-128 were regulated by feed intake and reached their highest levels 12 hours after the meal. Interestingly, we observed that circulating levels of miR-128 and miR-223 are subjected to postprandial regulations similar to that observed in their hepatic counterparts. Statistical correlations were observed between liver and plasma for miR-128 and miR-223 and between hepatic and circulating miR-122, miR-128 and miR-223 and expression of genes related to cholesterol synthesis and efflux or glucose phosphorylation. These results demonstrated that circulating miR-122, miR-128 and miR-223 are potential biomarkers of cholesterol metabolism in rainbow trout.
Collapse
Affiliation(s)
- Tengfei Zhu
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Geneviève Corraze
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Sandrine Skiba-Cassy
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
- * E-mail:
| |
Collapse
|
17
|
Tao YF, Qiang J, Bao JW, Chen DJ, Yin GJ, Xu P, Zhu HJ. Changes in Physiological Parameters, Lipid Metabolism, and Expression of MicroRNAs in Genetically Improved Farmed Tilapia ( Oreochromis niloticus) With Fatty Liver Induced by a High-Fat Diet. Front Physiol 2018; 9:1521. [PMID: 30425654 PMCID: PMC6218568 DOI: 10.3389/fphys.2018.01521] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
Tilapia is susceptible to hepatic steatosis when grown in intensive farming systems. The aim of this study was to explore the mechanism of fatty liver induced by a high-fat diet (HFD) in genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Juvenile GIFT were fed with HFD or a normal-fat diet (NFD) for 60 days. Substantial fat deposition in the liver of HFD-fed GIFT on days 20, 40, and 60 was observed using hematoxylin – eosin staining and oil red O staining. The increased fat deposition was consistent with increased triglyceride (TG) and total cholesterol (TC) levels in the liver of HFD-fed GIFT. There were significant differences (P < 0.05) in serum biochemical indexes (TG, TC, low density lipoprotein-cholesterol, and insulin contents, and alanine aminotransferase activity) between GIFT fed a HFD and GIFT fed a NFD on days 20, 40, and 60. Furthermore, 60 days of a HFD significantly changed (P < 0.05) the hepatic fatty acid composition, and led to increased polyunsaturated fatty acid levels and decreased saturated fatty acid and monounsaturated fatty acid levels. Hepatic antioxidant enzyme activities increased by day 20 and then declined, which led to an increase in malondialdehyde contents in the liver of HFD-fed GIFT. Molecular analyses revealed that the microRNAs miR-122, miR-29a, and miR-145-5p were upregulated, whereas miR-34a was downregulated in HFD-fed GIFT. SCD, ELOVL6, and SRD5A2 encode three important enzymes in lipid metabolism, and were identified as potential targets of miRNAs. The transcript levels of hepatic SCD and ELOVL6 were decreased and that of hepatic SRD5A2 was increased in GIFT fed a HFD. Overall, the results of this study revealed a potential link between miRNAs and fatty liver induced by HFD, and suggest that a HFD could lead to excess fat deposition in the GIFT liver, which may disrupt hepatic lipid metabolism and reduce the antioxidant defense capacity.
Collapse
Affiliation(s)
- Yi-Fan Tao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing-Wen Bao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - De-Ju Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Guo-Jun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hao-Jun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
18
|
Kostyniuk DJ, Culbert BM, Mennigen JA, Gilmour KM. Social status affects lipid metabolism in rainbow trout, Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2018; 315:R241-R255. [PMID: 29561648 DOI: 10.1152/ajpregu.00402.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Juvenile rainbow trout ( Oncorhynchus mykiss) confined in pairs form social hierarchies in which socially subordinate fish display characteristic traits, including reduced growth rates and altered glucose metabolism. These effects are, in part, mediated by chronically elevated cortisol levels and/or reduced feeding. To determine the effects of social status on lipid metabolism, trout were held in pairs for 4 days, following which organismal and liver-specific indexes of lipid metabolism were measured. At the organismal level, circulating triglycerides were elevated in dominant trout, whereas subordinate trout exhibited elevated concentrations of circulating free fatty acids (FFAs) and lowered plasma total cholesterol levels. At the molecular level, increased expression of lipogenic genes in dominant trout and cpt1a in subordinate trout was identified, suggesting a contribution of increased de novo lipogenesis to circulating triglycerides in dominant trout and reliance on circulating FFAs for β-oxidation in the liver of subordinates. Given the emerging importance of microRNAs (miRNA) in the regulation of hepatic lipid metabolism, candidate miRNAs were profiled, revealing increased expression of the lipogenic miRNA-33 in dominant fish. Because the Akt-TOR-S6-signaling pathway is an important upstream regulator of hepatic lipid metabolism, its signaling activity was quantified. However, the only difference detected among groups was a strong increase in S6 phosphorylation in subordinate trout. In general, the changes observed in lipid metabolism of subordinates were not mimicked by either cortisol treatment or fasting alone, indicating the existence of specific, emergent effects of subordinate social status itself on this fuel.
Collapse
Affiliation(s)
| | - Brett M Culbert
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | | |
Collapse
|
19
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
20
|
Wang C, Sturgis EM, Chen X, Wei Q, Li G. A functional variant at miRNA-122 binding site in IL-1a 3' UTR predicts risk of recurrence in patients with oropharyngeal cancer. Oncotarget 2018; 7:34472-9. [PMID: 27121322 PMCID: PMC5085169 DOI: 10.18632/oncotarget.8908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/07/2016] [Indexed: 12/16/2022] Open
Abstract
IL-1α, an important regulator of immune and inflammation responses, has been implicated in cancer development and prognosis. An insertion (Ins)/deletion (Del) polymorphism (IL-1α rs3783553) in the 3′ UTR of IL-1α may disrupt a binding site for miRNA-122 and may affect its transcription level. Thus, this polymorphism may cause interindividual variation in immune and inflammation responses and thus may lead to different susceptibility to treatment response and prognosis of such patients. We evaluated the association of IL-1α rs3783553 polymorphism with risk of recurrence of squamous cell carcinoma of the oropharynx (SCCOP) in a cohort of 1008 patients. Log-rank test and univariate and multivariable Cox models were used to evaluate associations. Compared with patients with Del/Del homozygous genotype, the patients with Ins/Del+Ins/Ins variant genotypes had worse disease-free survival (log-rank P < 0.0001) and increased risk of SCCOP recurrence (HR, 2.4, 95% CI, 1.7-3.3) after multivariable adjustment. Furthermore, among patients with HPV16-positive tumors, the patients with Ins/Del+Ins/Ins variant genotypes of the IL-1α polymorphism had worse disease-free survival (log-rank P < 0.0001) and much higher recurrence risk than those with Del/Del homozygous genotype of this polymorphism (HR, 16.3, 95% CI, 5.0-52.7). Our findings suggest that IL-1α rs3783553 polymorphism may modulate the risk of SCCOP recurrence in patients, particularly for patients with HPV16-positive tumors. However, larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Chengyuan Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Otolaryngology-Head and Neck Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingming Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Han J, Chu Q, Huo R, Xu T. Inducible microRNA-122 modulates RIG-I signaling pathway via targeting DAK in miiuy croaker after poly(I:C) stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:52-60. [PMID: 28923593 DOI: 10.1016/j.dci.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
MicroRNA-122 (miR-122) was originally identified in mouse and then lots of researches on miR-122 had been performed in mammals. However, the functional study of miR-122 were restricted in fish. In miiuy croaker, miR-122 is sensitive to poly(I:C) stimulation. In this study, a combination of bioinformatics and experimental techniques were used to investigate the functions of miR-122. DAK is a putative target gene of miR-122 which was predicted by bioinformatics, and further the luciferase reporter assays were used to confirm the target sites in DAK 3'untranslated region. The inhibiting effect of miR-122 mimics or pre-miR-122 on DAK presented the dose and time dependent manners, and the pre-miR-122 showed stronger inhibiting effect on DAK than the miR-122 mimics. Therefore, the miR-122 participate in regulating RIG-I-like receptors signaling pathway via inhibiting DAK which is the inhibitors of MDA5. The expression of miR-122 and DAK showed negative relationship in both miiuy croaker spleen and macrophages, which imply that miR-122 may regulate DAK at the post-transcriptional level. These results will enhance our understanding about the regulation of miRNAs on immune response in fish.
Collapse
Affiliation(s)
- Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruixuan Huo
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
22
|
Tao YF, Qiang J, Yin GJ, Xu P, Shi Q, Bao JW. Identification and characterization of lipid metabolism-related microRNAs in the liver of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) by deep sequencing. FISH & SHELLFISH IMMUNOLOGY 2017; 69:227-235. [PMID: 28838655 DOI: 10.1016/j.fsi.2017.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) play vital roles in modulating diverse metabolic processes in the liver, including lipid metabolism. Genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China, is susceptible to hepatic steatosis when reared in intensive culture systems. To investigate the miRNAs involved in GIFT lipid metabolism, two hepatic small RNA libraries from high-fat diet-fed and normal-fat diet-fed GIFT were constructed and sequenced using high-throughput sequencing technology. A total of 204 known and 56 novel miRNAs were identified by aligning the sequencing data with known Danio rerio miRNAs listed in miRBase 21.0. Six known miRNAs (miR-30a-5p, miR-34a, miR-145-5p, miR-29a, miR-205-5p, and miR-23a-3p) that were differentially expressed between the high-fat diet and normal-fat diet groups were validated by quantitative real-time PCR. Bioinformatics tools were used to predict the potential target genes of these differentially expressed miRNAs, and Gene Ontology enrichment analysis indicated that these miRNAs may play important roles in diet-induced hepatic steatosis in GIFT. Our results provide a foundation for further studies of the role of miRNAs in tilapia lipid homeostasis regulation, and may help to identify novel targets for therapeutic interventions to reduce the occurrence of fatty liver disease in farmed tilapia.
Collapse
Affiliation(s)
- Yi-Fan Tao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guo-Jun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen 518083, China
| | - Jing-Wen Bao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
23
|
Zhu T, Corraze G, Plagnes-Juan E, Quillet E, Dupont-Nivet M, Skiba-Cassy S. Regulation of genes related to cholesterol metabolism in rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Am J Physiol Regul Integr Comp Physiol 2017; 314:R58-R70. [PMID: 28931545 DOI: 10.1152/ajpregu.00179.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
When compared with fish meal and fish oil, plant ingredients differ not only in their protein content and amino acid and fatty acid profiles but are also devoid of cholesterol, the major component of cell membrane and precursor of several bioactive compounds. Based on these nutritional characteristics, plant-based diets can affect fish physiology and cholesterol metabolism. To investigate the mechanisms underlying cholesterol homeostasis, rainbow trout were fed from 1 g body wt for 6 mo with a totally plant-based diet (V), a marine diet (M), and a marine-restricted diet (MR), with feed intake adjusted to that of the V group. The expression of genes involved in cholesterol synthesis, esterification, excretion, bile acid synthesis, and cholesterol efflux was measured in liver. Results showed that genes involved in cholesterol synthesis were upregulated in trout fed the V diet, whereas expression of genes related to bile acid synthesis ( cyp7a1) and cholesterol elimination ( abcg8) were reduced. Feeding trout the V diet also enhanced the expression of srebp-2 while reducing that of lxrα and miR-223. Overall, these data suggested that rainbow trout coped with the altered nutritional characteristics and absence of dietary cholesterol supply by increasing cholesterol synthesis and limiting cholesterol efflux through molecular mechanisms involving at least srebp-2, lxrα, and miR-223. However, plasma and body cholesterol levels in trout fed the V diet were lower than in fish fed the M diet, raising the question of the role of cholesterol in the negative effect of plant-based diet on growth.
Collapse
Affiliation(s)
- Tengfei Zhu
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Geneviève Corraze
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Edwige Quillet
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathilde Dupont-Nivet
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| |
Collapse
|
24
|
Tu J, Tian C, Zhao P, Sun J, Wang M, Fan Q, Yuan Y. Identification and profiling of growth-related microRNAs in Chinese perch (Siniperca chuatsi). BMC Genomics 2017; 18:489. [PMID: 28659132 PMCID: PMC5490230 DOI: 10.1186/s12864-017-3851-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/07/2017] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play important roles in the regulation of diverse biological processes in eukaryotes. Chinese perch (Siniperca chuatsi) is one of the most economically important fish species widely cultured in China. Growth is an extremely important characteristic in fish. Individual differences in body size are common in Siniperca chuatsi, which significantly influence the aquaculture production of Siniperca chuatsi. However, the underline growth-related regulatory factors, such as miRNAs, are still unknown. Results To investigate the growth-related miRNAs in Siniperca chuatsi, two RNA libraries from four growth-related tissues (brain, pituitary, liver, and muscle) of Siniperca chuatsi at 6-month stage with relatively high or low growth rates (big-size group or small-size group) were obtained and sequenced using Solexa sequencing. A total of 252 known miRNAs and 12 novel miRNAs were identified. The expression patterns of these miRNAs in big-size group and small-size group were compared, and the results showed that 31 known and 5 novel miRNAs were differently expressed (DE). Furthermore, to verify the Solexa sequencing, five DE miRNAs were randomly selected and quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results showed that their expression patterns were consistent with those of Solexa sequencing. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of target genes of DE miRNAs was performed. It showed that the target genes were involved in multiple biological processes including metabolic process, suggesting that metabolic process played an important role in growth of fish. Conclusions Siniperca chuatsi is a popular and economically important species in aquaculture. In this study, miRNAs in Siniperca chuatsi with different growth rates were identified, and their expression profiles were compared. The data provides the first large-scale miRNA profiles related to growth of Siniperca chuatsi, which is expected to contribute to a better understanding of the role of miRNAs in regulating the biological processes of growth and possibly useful for Siniperca chuatsi breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3851-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiagang Tu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changxu Tian
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Peiqi Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junxiao Sun
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qixue Fan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei, 430070, China.
| |
Collapse
|
25
|
MicroTrout: A comprehensive, genome-wide miRNA target prediction framework for rainbow trout, Oncorhynchus mykiss. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:19-26. [DOI: 10.1016/j.cbd.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 11/17/2022]
|
26
|
Juanchich A, Bardou P, Rué O, Gabillard JC, Gaspin C, Bobe J, Guiguen Y. Characterization of an extensive rainbow trout miRNA transcriptome by next generation sequencing. BMC Genomics 2016; 17:164. [PMID: 26931235 PMCID: PMC4774146 DOI: 10.1186/s12864-016-2505-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in a wide variety of physiological processes. They can control both temporal and spatial gene expression and are believed to regulate 30 to 70 % of the genes. Data are however limited for fish species, with only 9 out of the 30,000 fish species present in miRBase. The aim of the current study was to discover and characterize rainbow trout (Oncorhynchus mykiss) miRNAs in a large number of tissues using next-generation sequencing in order to provide an extensive repertoire of rainbow trout miRNAs. Results A total of 38 different samples corresponding to 16 different tissues or organs were individually sequenced and analyzed independently in order to identify a large number of miRNAs with high confidence. This led to the identification of 2946 miRNA loci in the rainbow trout genome, including 445 already known miRNAs. Differential expression analysis was performed in order to identify miRNAs exhibiting specific or preferential expression among the 16 analyzed tissues. In most cases, miRNAs exhibit a specific pattern of expression in only a few tissues. The expression data from sRNA sequencing were confirmed by RT-qPCR. In addition, novel miRNAs are described in rainbow trout that had not been previously reported in other species. Conclusion This study represents the first characterization of rainbow trout miRNA transcriptome from a wide variety of tissue and sets an extensive repertoire of rainbow trout miRNAs. It provides a starting point for future studies aimed at understanding the roles of miRNAs in major physiological process such as growth, reproduction or adaptation to stress. These rainbow trout miRNAs repertoire provide a novel resource to advance genomic research in salmonid species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2505-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Philippe Bardou
- INRA, UMR1388, Plate-forme SIGENAE/GenPhySE, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | - Olivier Rué
- INRA, UR875 Plate-forme GenoToul Bioinfo, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | | | - Christine Gaspin
- INRA, UR875 Plate-forme GenoToul Bioinfo, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| |
Collapse
|
27
|
Mennigen JA. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:115-125. [PMID: 26384523 DOI: 10.1016/j.cbpb.2015.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions.
Collapse
Affiliation(s)
- Jan A Mennigen
- College of Pharmacy, Department of Toxicology and Pharmacology, University of Austin at Texas, 107 W Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
28
|
Zhang Y, Sturgis EM, Sun Y, Sun C, Wei Q, Huang Z, Li G. A functional variant at miRNA-122 binding site in IL-1α 3' UTR predicts risk and HPV-positive tumours of oropharyngeal cancer. Eur J Cancer 2015; 51:1415-23. [PMID: 25981582 PMCID: PMC4768464 DOI: 10.1016/j.ejca.2015.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic polymorphisms in the 3' untranslated regions (3' UTRs) targeted by miRNAs alter the strength of miRNA binding in a manner that affects the behaviour of individual miRNAs. An insertion (Ins)/deletion (Del) polymorphism (rs3783553) in the 3' UTR of IL-1α may disrupt a binding site for miRNA-122. IL-1α plays an important role in inflammation, immunity and defense against infection. Thus, we hypothesised that the rs3783553 polymorphism affects individual susceptibility to human papillomavirus (HPV)-associated oral squamous cell carcinoma (OSCC). METHODS We genotyped the rs3783553 polymorphism; and determined HPV16 L1 serology, tumour HPV16 DNA and serum IL-1α expression. Univariate/multivariable logistic regression models were used to calculate associations. RESULTS We found that HPV16 L1 seropositivity alone was associated with an increased risk of OSCC (Odds ratio (OR), 3.1; 95% confidence interval (CI), 2.1-4.6), and the risk of HPV16-associated OSCC was modified by the rs3783553 polymorphism. Patients with both HPV16 L1 seropositivity and Del/Del genotype for the rs3783553 had the highest risk of OSCC when using patients with HPV16 L1 seronegativity and Ins/Del+Ins/Ins genotypes as a comparison group. Notably, that effect modification was particularly pronounced in several subgroups (e.g. SCCOP, never-smokers and never-drinkers). The patients with Del/Del genotype were approximately 3.0 times more likely to have HPV16-positive squamous cell carcinoma of the oropharynx (SCCOP) tumours compared to those patients with Ins/Del+Ins/Ins genotypes. Additionally, functional relevance of this variant was characterised to explore the genotype-phenotype correlation. CONCLUSION These results suggest that IL-1α 3' UTR rs3783553 polymorphism may be functional and influence susceptibility to HPV16-associated OSCC, particularly for SCCOP. Validation of our findings is warranted.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing Institute of Otolaryngology, Beijing 100730, China; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Sun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Otorhinolaryngology and Head and Neck Surgery, Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chuanzheng Sun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Head and Neck Surgery, The Tumor Hospital of Yunnan Province, Kunming 650118, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing Institute of Otolaryngology, Beijing 100730, China; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Wang X, Shao F, Yu J, Jiang H, Gong D, Gu Z. MicroRNA-122 targets genes related to liver metabolism in chickens. Comp Biochem Physiol B Biochem Mol Biol 2015; 184:29-35. [PMID: 25711929 DOI: 10.1016/j.cbpb.2015.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/03/2015] [Accepted: 02/16/2015] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting mRNAs. MicroRNA-122 (miR-122) has important functions in mammalian and fish livers, but its functions in the poultry liver are largely unknown. In this study, we determined the expression patterns of miR-122 in the chicken and identified its target genes in the chicken liver. We found that chicken miR-122 was highly expressed in the liver and that its expression in the liver was up-regulated during the early posthatch life. By bioinformatics and reporter gene analyses, we identified PKM2, TGFB3, FABP5 and ARCN1 as miR-122 target genes in the chicken liver. miR-122 knockdown in primary chicken hepatocytes and expression analysis of miR-122 and predicted target mRNAs in the chicken liver suggested that the expression of PKM2 and FABP5 in the chicken liver is regulated by miR-122. Knockdown of miR-122 affected the expression of 123 genes in cultured chicken hepatocytes. Among these genes, the largest cluster, which consisted of 21 genes, was involved in liver metabolism. These findings suggest that miR-122 plays a role in liver metabolism in the chicken by directly or indirectly regulating the expression of genes involved in liver metabolism.
Collapse
Affiliation(s)
- Xingguo Wang
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500, PR China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Fang Shao
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500, PR China
| | - Jianfeng Yu
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500, PR China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China.
| | - Zhiliang Gu
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500, PR China.
| |
Collapse
|
30
|
Isasawin S, Aketarawong N, Lertsiri S, Thanaphum S. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain. BMC Genet 2014; 15 Suppl 2:S2. [PMID: 25471905 PMCID: PMC4255791 DOI: 10.1186/1471-2156-15-s2-s2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. RESULTS Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. CONCLUSIONS Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.
Collapse
|
31
|
Campos C, Sundaram AYM, Valente LMP, Conceição LEC, Engrola S, Fernandes JMO. Thermal plasticity of the miRNA transcriptome during Senegalese sole development. BMC Genomics 2014; 15:525. [PMID: 24966054 PMCID: PMC4097167 DOI: 10.1186/1471-2164-15-525] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 06/17/2014] [Indexed: 12/17/2022] Open
Abstract
Background Several miRNAs are known to control myogenesis in vertebrates. Some of them are specifically expressed in muscle while others have a broader tissue expression but are still involved in establishing the muscle phenotype. In teleosts, water temperature markedly affects embryonic development and larval growth. It has been previously shown that higher embryonic temperatures promoted faster development and increased size of Senegalese sole (Solea senegalensis) larvae relatively to a lower temperature. The role of miRNAs in thermal-plasticity of growth is hitherto unknown. Hence, we have used high-throughput SOLiD sequencing to determine potential changes in the miRNA transcriptome in Senegalese sole embryos that were incubated at 15°C or 21°C until hatching and then reared at a common temperature of 21°C. Results We have identified 320 conserved miRNAs in Senegalese sole, of which 48 had not been previously described in teleosts. mir-17a-5p, mir-26a, mir-130c, mir-206-3p, mir-181a-5p, mir-181a-3p and mir-199a-5p expression levels were further validated by RT- qPCR. The majority of miRNAs were dynamically expressed during early development, with peaks of expression at pre-metamorphosis or metamorphosis. Also, a higher incubation temperature (21°C) was associated with expression of some miRNAs positively related with growth (e.g., miR-17a, miR-181-5p and miR-206) during segmentation and at hatching. Target prediction revealed that these miRNAs may regulate myogenesis through MAPK and mTOR pathways. Expression of miRNAs involved in lipid metabolism and energy production (e.g., miR-122) also differed between temperatures. A miRNA that can potentially target calpain (miR-181-3p), and therefore negatively regulate myogenesis, was preferentially expressed during segmentation at 15°C compared to 21°C. Conclusions Temperature has a strong influence on expression of miRNAs during embryonic and larval development in fish. Higher expression levels of miR-17a, miR-181-5p and miR-206-3p and down-regulation of miR-181a-3p at 21°C may promote myogenesis and are in agreement with previous studies in Senegalese sole, which reported enhanced growth at higher embryonic temperatures compared to 15°C. Moreover, miRNAs involved in lipid metabolism and energy production may also contribute to increased larval growth at 21°C compared to 15°C. Taken together, our data indicate that miRNAs may play a role in temperature-induced phenotypic plasticity of growth in teleosts. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-525) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway.
| |
Collapse
|