1
|
Sun J, Zhao J, Huang H, Jia J, Yuan M, Xiao S, Xue C. Highly efficient gene knockout system in the maize pathogen Colletotrichum graminicola using Agrobacterium tumefaciens-mediated transformation (ATMT). J Microbiol Methods 2023; 212:106812. [PMID: 37625551 DOI: 10.1016/j.mimet.2023.106812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Colletotrichum graminicola, a hemibiotrophic pathogenic fungus, is the causal agent of anthracnose of maize, which causes significant yield losses worldwide, especially in warm and humid maize production regions. An efficient targeted genes knockout protocol is crucial to explore molecular mechanisms of fungal virulence to the host. In this study, we established a gene knockout transformation system by employing Agrobacterium tumefaciens-mediated transformation to knockout genes in M 1.001 strain of C. graminicola. The conidia germination status, induction medium type, and ratio of Agrobacterium cell and conidia suspension were optimized for the knockout of CgBRN1(OR352905), a gene relating to the fungal melanin biosynthesis pathway. Additionally, CgPKS18 (OR352906) and CgCDC25 (OR352903) were knocked out to test the applicability of the gene knockout transformation system. In this established system, transformation efficiency was 176 transformants per 1 × 105 conidia and the homologous recombination efficiency was 53.3 to 75%. Furthermore, disease index, lesion number and lesion size caused by the three above-mentioned mutant strains were found to be reduced significantly compared to the wild-type strain, which indicated reduction in fungal virulence due to the lack of those genes.
Collapse
Affiliation(s)
- Jiaying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, PR China
| | - Jiamei Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, PR China
| | - Hongming Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, PR China
| | - Jiaqi Jia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, PR China
| | - Mingyue Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, PR China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, PR China.
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, PR China.
| |
Collapse
|
2
|
Li Y, Shi R, Yuan R, Jiang Y. Comprehensive transcriptional analysis of pig facial skin development. PeerJ 2023; 11:e15955. [PMID: 37663277 PMCID: PMC10470455 DOI: 10.7717/peerj.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Background Skin development is a complex process that is influenced by many factors. Pig skin is used as an ideal material for xenografts because it is more anatomically and physiologically similar to human skin. It has been shown that the skin development of different pig breeds is different, and some Chinese pig breeds have the characteristics of skin thickness and facial skin folds, but the specific regulatory mechanism of this skin development is not yet clear. Methods In this study, the facial skin of Chenghua sows in the four developmental stages of postnatal Day 3 (D3) , Day 90 (D90) , Day 180 (D180), and Year 3 (Y3) were used as experimental materials, and RNA sequencing (RNA-seq) analysis was used to explore the changes in RNA expression in skin development at the four developmental stages, determine the differentially expressed messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), and perform functional analysis of related genes by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Results A pairwise comparison of the four developmental stages identified several differentially expressed genes (DEGs) and found that the number of differentially expressed RNAs (DE RNAs) increased with increasing developmental time intervals. Elastin (ELN) is an important component of the skin. Its content affects the relaxation of the epidermis and dermal connection, and its expression is continuously downregulated during the four developmental stages. The functions of DEGs at different developmental stages were examined by performing GO and KEGG analyses, and the GO terms and enrichment pathways of mRNAs, lncRNAs, miRNAs, and circRNAs highly overlapped, among which the PPAR signaling pathway, a classical pathway for skin development, was enriched by DEGs of D3 vs. D180, D90 vs. D180 and D180 vs. Y3. In addition, we constructed lncRNA-miRNA-mRNA and circRNA-miRNA interaction networks and found genes that may be associated with skin development, but their interactions need further study. Conclusions We identified a number of genes associated with skin development, performed functional analyses on some important DEGs and constructed interaction networks that facilitate further studies of skin development.
Collapse
Affiliation(s)
- Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
3
|
Yang M, Zhou C, Yang H, Kuang R, Liu K, Huang B, Wei Y. Comparative transcriptomics and genomic analyses reveal differential gene expression related to Colletotrichum brevisporum resistance in papaya ( Carica papaya L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1038598. [PMID: 36618670 PMCID: PMC9816866 DOI: 10.3389/fpls.2022.1038598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Colletotrichum brevisporum is an important causal pathogen of anthracnose that seriously affects the fruit quality and yield of papaya (Carica papaya L.). Although many genes and biological processes involved in anthracnose resistance have been reported in other species, the molecular mechanisms involved in the response or resistance to anthracnose in post-harvest papaya fruits remain unclear. In this study, we compared transcriptome changes in the post-harvest fruits of the anthracnose-susceptible papaya cultivar Y61 and the anthracnose-resistant cultivar G20 following C. brevisporum inoculation. More differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElnRNAs) were identified in G20 than in Y61, especially at 24 h post-inoculation (hpi), suggesting a prompt activation of defense responses in G20 in the first 24 h after C. brevisporum inoculation. These DEGs were mainly enriched in plant-pathogen interaction, phenylpropanoid biosynthesis/metabolism, and peroxisome and flavonoid biosynthesis pathways in both cultivars. However, in the first 24 hpi, the number of DEGs related to anthracnose resistance was greater in G20 than in Y61, and changes in their expression levels were faster in G20 than in Y61. We also identified a candidate anthracnose-resistant gene cluster, which consisted of 12 genes, 11 in G20 and Y61, in response to C. brevisporum inoculation. Moreover, 529 resistance gene analogs were identified in papaya genome, most of which responded to C. brevisporum inoculation and were genetically different between papaya cultivars and wild-type populations. The total expression dose of the resistance gene analogs may help papaya resist C. brevisporum infection. This study revealed the mechanisms underlying different anthracnose resistance between the anthracnose-resistant and anthracnose-susceptible cultivars based on gene expression, and identified some potential anthracnose resistance-related candidate genes/major regulatory factors. Our findings provided potential targets for developing novel genetic strategies to overcome anthracnose in papaya.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chenping Zhou
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hu Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruibin Kuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Bingxiong Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuerong Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Belisário R, Robertson AE, Vaillancourt LJ. Maize Anthracnose Stalk Rot in the Genomic Era. PLANT DISEASE 2022; 106:2281-2298. [PMID: 35291814 DOI: 10.1094/pdis-10-21-2147-fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthracnose stalk rot (ASR) of maize results in millions of dollars in losses annually in the United States. ASR, together with anthracnose leaf blight and anthracnose top dieback, is caused by the fungus Colletotrichum graminicola. Current ASR management recommendations emphasize host resistance and reduction of plant stressors (e.g., drought, heat, low fertility, or soil acidity). Stress reduction may be more difficult to achieve in the future due to more high-intensity production protocols and climate change. Moreover, cultural and chemical management practices may conflict with other important goals, including environmental sustainability and maximization of yield potential. Thus, future ASR management may rely more heavily on host resistance, for which there are relatively few highly effective sources. The last comprehensive review of C. graminicola and maize anthracnose was written over two decades ago. The genomic age has brought important new insights into mechanisms governing the host-pathogen interaction from the application of molecular and cytological technologies. This review provides a summary of our current model of maize anthracnose etiology, including how increased knowledge of molecular and cellular events could contribute to better ASR management. Improved understanding of C. graminicola taxonomy has confirmed that the fungus is specific to Zea mays, and that it colonizes living maize tissues via a critical biotrophic phase. Successful biotrophic establishment relies on an array of secreted protein effectors and secondary metabolites produced at different stages of infection and dispersed to multiple locations. These molecules could provide therapeutic targets for the next generation of transgenic or gene-edited ASR-resistant hybrids.
Collapse
Affiliation(s)
- Renata Belisário
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY 40546-0312
| | - Alison E Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, 1344 Advanced Teaching and Research Building, 2213 Pammel Drive, Ames, IA 50011
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY 40546-0312
| |
Collapse
|
5
|
Jeon J, Kim KT, Choi J, Cheong K, Ko J, Choi G, Lee H, Lee GW, Park SY, Kim S, Kim ST, Min CW, Kang S, Lee YH. Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biol 2022; 19:373-385. [PMID: 35311472 PMCID: PMC8942408 DOI: 10.1080/15476286.2022.2043040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alternative splicing (AS) contributes to diversifying and regulating cellular responses to environmental conditions and developmental cues by differentially producing multiple mRNA and protein isoforms from a single gene. Previous studies on AS in pathogenic fungi focused on profiling AS isoforms under a limited number of conditions. We analysed AS profiles in the rice blast fungus Magnaporthe oryzae, a global threat to rice production, using high-quality transcriptome data representing its vegetative growth (mycelia) and multiple host infection stages. We identified 4,270 AS isoforms derived from 2,413 genes, including 499 genes presumably regulated by infection-specific AS. AS appears to increase during infection, with 32.7% of the AS isoforms being produced during infection but absent in mycelia. Analysis of the isoforms observed at each infection stage showed that 636 AS isoforms were more abundant than corresponding annotated mRNAs, especially after initial hyphal penetration into host cell. Many such dominant isoforms were predicted to encode regulatory proteins such as transcription factors and phospho-transferases. We also identified the genes encoding distinct proteins via AS and confirmed the translation of some isoforms via a proteomic analysis, suggesting potential AS-mediated neo-functionalization of some genes during infection. Comprehensive profiling of the pattern of genome-wide AS during multiple stages of rice-M. oryzae interaction established a foundational resource that will help investigate the role and regulation of AS during rice infection.
Collapse
Affiliation(s)
- Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
| | - Hyunjun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
- Life and Energy Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA USA
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Cui Y, Gao X, Wang J, Shang Z, Zhang Z, Zhou Z, Zhang K. Full-Length Transcriptome Analysis Reveals Candidate Genes Involved in Terpenoid Biosynthesis in Artemisia argyi. Front Genet 2021; 12:659962. [PMID: 34239538 PMCID: PMC8258318 DOI: 10.3389/fgene.2021.659962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
Artemisia argyi is an important medicinal plant widely utilized for moxibustion heat therapy in China. The terpenoid biosynthesis process in A. argyi is speculated to play a key role in conferring its medicinal value. However, the molecular mechanism underlying terpenoid biosynthesis remains unclear, in part because the reference genome of A. argyi is unavailable. Moreover, the full-length transcriptome of A. argyi has not yet been sequenced. Therefore, in this study, de novo transcriptome sequencing of A. argyi's root, stem, and leaf tissues was performed to obtain those candidate genes related to terpenoid biosynthesis, by combining the PacBio single-molecule real-time (SMRT) and Illumina sequencing NGS platforms. And more than 55.4 Gb of sequencing data and 108,846 full-length reads (non-chimeric) were generated by the Illumina and PacBio platform, respectively. Then, 53,043 consensus isoforms were clustered and used to represent 36,820 non-redundant transcripts, of which 34,839 (94.62%) were annotated in public databases. In the comparison sets of leaves vs roots, and leaves vs stems, 13,850 (7,566 up-regulated, 6,284 down-regulated) and 9,502 (5,284 up-regulated, 4,218 down-regulated) differentially expressed transcripts (DETs) were obtained, respectively. Specifically, the expression profile and KEGG functional enrichment analysis of these DETs indicated that they were significantly enriched in the biosynthesis of amino acids, carotenoids, diterpenoids and flavonoids, as well as the metabolism processes of glycine, serine and threonine. Moreover, multiple genes encoding significant enzymes or transcription factors related to diterpenoid biosynthesis were highly expressed in the A. argyi leaves. Additionally, several transcription factor families, such as RLK-Pelle_LRR-L-1 and RLK-Pelle_DLSV, were also identified. In conclusion, this study offers a valuable resource for transcriptome information, and provides a functional genomic foundation for further research on molecular mechanisms underlying the medicinal use of A. argyi leaves.
Collapse
Affiliation(s)
- Yupeng Cui
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xinqiang Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jianshe Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zengzhen Shang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhibin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenxing Zhou
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
7
|
Gao S, Li N, Niran J, Wang F, Yin Y, Yu C, Jiao C, Yang C, Yao M. Transcriptome profiling of Capsicum annuum using Illumina- and PacBio SMRT-based RNA-Seq for in-depth understanding of genes involved in trichome formation. Sci Rep 2021; 11:10164. [PMID: 33986344 PMCID: PMC8119447 DOI: 10.1038/s41598-021-89619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Trichomes, specialized epidermal cells located in aerial parts of plants, play indispensable roles in resisting abiotic and biotic stresses. However, the regulatory genes essential for multicellular trichrome development in Capsicum annuum L. (pepper) remain unclear. In this study, the transcript profiles of peppers GZZY-23 (hairy) and PI246331 (hairless) were investigated to gain insights into the genes responsible for the formation of multicellular trichomes. A total of 40,079 genes, including 4743 novel genes and 13,568 differentially expressed genes (DEGs), were obtained. Functional enrichment analysis revealed that the most noticeable pathways were transcription factor activity, sequence-specific DNA binding, and plant hormone signal transduction, which might be critical for multicellular trichome formation in hairy plants. We screened 11 DEGs related to trichome development; 151 DEGs involved in plant hormone signal transduction; 312 DEGs belonging to the MYB, bHLH, HD-Zip, and zinc finger transcription factor families; and 1629 DEGs predicted as plant resistance genes (PRGs). Most of these DEGs were highly expressed in GZZY-23 or trichomes. Several homologs of trichome regulators, such as SlCycB2, SlCycB3, and H, were considerably upregulated in GZZY-23, especially in the trichomes. The transcriptomic data generated in this study provide a basis for future characterization of trichome formation in pepper.
Collapse
Affiliation(s)
- Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | | | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Chuying Yu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China.
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Tang J, Chen X, Yan Y, Huang J, Luo C, Tom H, Zheng L. Comprehensive transcriptome profiling reveals abundant long non-coding RNAs associated with development of the rice false smut fungus, Ustilaginoidea virens. Environ Microbiol 2021; 23:4998-5013. [PMID: 33587785 DOI: 10.1111/1462-2920.15432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in biological processes but regulation and function of lncRNAs remain largely unelucidated, especially in fungi. Ustilaginoidea virens is an economically important fungus causing a devastating disease of rice. By combining microscopic and RNA-seq analyses, we comprehensively characterized lncRNAs of this fungus in infection and developmental processes and defined four serial typical stages. RNA-seq analyses revealed 1724 lncRNAs in U. virens, including 1084 long intergenic non-coding RNAs (lincRNAs), 51 intronic RNAs (incRNAs), 566 natural antisense transcripts (lncNATs) and 23 sense transcripts. Gene Ontology enrichment of differentially expressed lincRNAs and lncNATs demonstrated that these were mainly involved in transport-related regulation. Functional studies of transport-related lncRNAs revealed that UvlncNAT-MFS, a cytoplasm localized lncNAT of a putative MFS transporter gene, UvMFS, could form an RNA duplex with UvMFS and was required for regulation of growth, conidiation and various stress responses. Our results were the first to elucidate the lncRNA profiles during infection and development of this important phytopathogen U. virens. The functional discovery of the novel lncRNA, UvlncNAT-MFS, revealed the potential of lncRNAs in regulation of life processes in fungi.
Collapse
Affiliation(s)
- Jintian Tang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China.,Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoyang Chen
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaqin Yan
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junbin Huang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hsiang Tom
- School of Environmental Sciences, University of Guelph, Guelph, N1G 2W1, Canada
| | - Lu Zheng
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Ibrahim HM, Kusch S, Didelon M, Raffaele S. Genome-wide alternative splicing profiling in the fungal plant pathogen Sclerotinia sclerotiorum during the colonization of diverse host families. MOLECULAR PLANT PATHOLOGY 2021; 22:31-47. [PMID: 33111422 PMCID: PMC7749757 DOI: 10.1111/mpp.13006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/16/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Sclerotinia sclerotiorum is a notorious generalist plant pathogen that threatens more than 600 host plants, including wild and cultivated species. The molecular bases underlying the broad compatibility of S. sclerotiorum with its hosts is not fully elucidated. In contrast to higher plants and animals, alternative splicing (AS) is not well studied in plant-pathogenic fungi. AS is a common regulated cellular process that increases cell protein and RNA diversity. In this study, we annotated spliceosome genes in the genome of S. sclerotiorum and characterized their expression in vitro and during the colonization of six host species. Several spliceosome genes were differentially expressed in planta, suggesting that AS was altered during infection. Using stringent parameters, we identified 1,487 S. sclerotiorum genes differentially expressed in planta and exhibiting alternative transcripts. The most common AS events during the colonization of all plants were retained introns and the alternative 3' receiver site. We identified S. sclerotiorum genes expressed in planta for which (a) the relative accumulation of alternative transcripts varies according to the host being colonized and (b) alternative transcripts harbour distinct protein domains. This notably included 42 genes encoding predicted secreted proteins showing high-confidence AS events. This study indicates that AS events are taking place in the plant pathogenic fungus S. sclerotiorum during the colonization of host plants and could generate functional diversity in the repertoire of proteins secreted by S. sclerotiorum during infection.
Collapse
Affiliation(s)
- Heba M.M. Ibrahim
- LIPM, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
- Genetics DepartmentFaculty of AgricultureCairo UniversityGizaEgypt
- Present address:
Plant Health and ProtectionDivision of Plant BiotechnicsDepartment of BiosystemsFaculty of Bioscience EngineeringKU LeuvenLeuvenBelgium
| | - Stefan Kusch
- LIPM, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
- Present address:
Unit of Plant Molecular Cell BiologyInstitute for Biology IRWTH Aachen UniversityAachenGermany
| | - Marie Didelon
- LIPM, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
| | | |
Collapse
|
10
|
Fang S, Hou X, Qiu K, He R, Feng X, Liang X. The occurrence and function of alternative splicing in fungi. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Xu Z, Asakawa S. Physiological RNA dynamics in RNA-Seq analysis. Brief Bioinform 2020; 20:1725-1733. [PMID: 30010714 DOI: 10.1093/bib/bby045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Physiological RNA dynamics cause problems in transcriptome analysis. Physiological RNA accumulation affects the analysis of RNA quantification, and physiological RNA degradation affects the analysis of the RNA sequence length, feature site and quantification. In the present article, we review the effects of physiological degradation and accumulation of RNA on analysing RNA sequencing data. Physiological RNA accumulation and degradation probably led to such phenomena as incorrect estimations of transcription quantification, differential expressions, co-expressions, RNA decay rates, alternative splicing, boundaries of transcription, novel genes, new single-nucleotide polymorphisms, small RNAs and gene fusion. Thus, the transcriptomic data obtained up to date warrant further scrutiny. New and improved techniques and bioinformatics software are needed to produce accurate data in transcriptome research.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Zhao R, Li J, Liu N, Li H, Liu L, Yang F, Li L, Wang Y, He J. Transcriptomic Analysis Reveals the Involvement of lncRNA-miRNA-mRNA Networks in Hair Follicle Induction in Aohan Fine Wool Sheep Skin. Front Genet 2020; 11:590. [PMID: 33117415 PMCID: PMC7528302 DOI: 10.3389/fgene.2020.00590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNA) and microRNAs (miRNA) are new found classes of non-coding RNAs (ncRNAs) that are not translated into proteins but regulate various cellular and biological processes. In this study, we conducted a transcriptomic analysis of ncRNA and mRNA expression in Aohan fine wool sheep (AFWS) at different growth stages (embryonic day 90, embryonic day 120, and the day of birth), and explored their relationship with wool follicle growth. In total, 461 lncRNAs, 106 miRNAs, and 1,009 mRNAs were found to be differentially expressed during the three stages of wool follicle development. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to clarify the roles of the differentially expressed lncRNA, miRNA, and mRNA in the different stages of wool follicle development. Quantitative real-time PCR (qRT-PCR) was used to validate the results of RNA-seq analysis. lncRNA (MSTRG.223165) was found to act as a competing endogenous RNA (ceRNA) and may participate in wool follicle development by acting as an miR-21 sponge. Network prediction implicated the MSTRG.223165-miR-21-SOX6 axis in the wool follicle development. The targeting relationships of miR-21 with SOX6 and MSTRG.223165 were validated in dual-luciferase assays. This is the first report indicating the association of the lncRNA-miRNA-mRNA network with wool follicle development in AFWS. This study provides new insights into the regulation of the wool follicle growth and represents a solid foundation for wool sheep breeding programs.
Collapse
Affiliation(s)
- Ranran Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Qufu Animal Husbandry and Veterinary Technical Service Center, Qufu, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hegang Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lanlan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Noble JD, Balmant KM, Dervinis C, de los Campos G, Resende MFR, Kirst M, Barbazuk WB. The Genetic Regulation of Alternative Splicing in Populus deltoides. FRONTIERS IN PLANT SCIENCE 2020; 11:590. [PMID: 32582229 PMCID: PMC7291814 DOI: 10.3389/fpls.2020.00590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Alternative splicing (AS) is a mechanism of regulation of the proteome via enabling the production of multiple mRNAs from a single gene. To date, the dynamics of AS and its effects on the protein sequences of individuals in a large and genetically unrelated population of trees have not been investigated. Here we describe the diversity of AS events within a previously genotyped population of 268 individuals of Populus deltoides and their putative downstream functional effects. Using a robust bioinformatics pipeline, the AS events and resulting transcript isoforms were discovered and quantified for each individual in the population. Analysis of the AS revealed that, as expected, most AS isoforms are conserved. However, we also identified a substantial collection of new, unannotated splice junctions and transcript isoforms. Heritability estimates for the expression of transcript isoforms showed that approximately half of the isoforms are heritable. The genetic regulators of these AS isoforms and splice junction usage were then identified using a genome-wide association analysis. The expression of AS isoforms was predominately cis regulated while splice junction usage was generally regulated in trans. Additionally, we identified 696 genes encoding alternatively spliced isoforms that changed putative protein domains relative to the longest protein coding isoform of the gene, and 859 genes exhibiting this same phenomenon relative to the most highly expressed isoform. Finally, we found that 748 genes gained or lost micro-RNA binding sites relative to the longest protein coding isoform of a given gene, while 940 gained or lost micro-RNA binding sites relative to the most highly expressed isoform. These results indicate that a significant fraction of AS events are genetically regulated and that this isoform usage can result in protein domain architecture changes.
Collapse
Affiliation(s)
- Jerald D. Noble
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Kelly M. Balmant
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States
| | - Márcio F. R. Resende
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Matias Kirst
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - William Brad Barbazuk
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Li X, Cooper NGF, O'Toole TE, Rouchka EC. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. BMC Genomics 2020; 21:75. [PMID: 31992223 PMCID: PMC6986029 DOI: 10.1186/s12864-020-6502-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background High-throughput RNA sequencing (RNA-seq) has evolved as an important analytical tool in molecular biology. Although the utility and importance of this technique have grown, uncertainties regarding the proper analysis of RNA-seq data remain. Of primary concern, there is no consensus regarding which normalization and statistical methods are the most appropriate for analyzing this data. The lack of standardized analytical methods leads to uncertainties in data interpretation and study reproducibility, especially with studies reporting high false discovery rates. In this study, we compared a recently developed normalization method, UQ-pgQ2, with three of the most frequently used alternatives including RLE (relative log estimate), TMM (Trimmed-mean M values) and UQ (upper quartile normalization) in the analysis of RNA-seq data. We evaluated the performance of these methods for gene-level differential expression analysis by considering the factors, including: 1) normalization combined with the choice of a Wald test from DESeq2 and an exact test/QL (Quasi-likelihood) F-Test from edgeR; 2) sample sizes in two balanced two-group comparisons; and 3) sequencing read depths. Results Using the MAQC RNA-seq datasets with small sample replicates, we found that UQ-pgQ2 normalization combined with an exact test can achieve better performance in term of power and specificity in differential gene expression analysis. However, using an intra-group analysis of false positives from real and simulated data, we found that a Wald test performs better than an exact test when the number of sample replicates is large and that a QL F-test performs the best given sample sizes of 5, 10 and 15 for any normalization. The RLE, TMM and UQ methods performed similarly given a desired sample size. Conclusion We found the UQ-pgQ2 method combined with an exact test/QL F-test is the best choice in order to control false positives when the sample size is small. When the sample size is large, UQ-pgQ2 with a QL F-test is a better choice for the type I error control in an intra-group analysis. We observed read depths have a minimal impact for differential gene expression analysis based on the simulated data.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA.
| | - Nigel G F Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | | | - Eric C Rouchka
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
| |
Collapse
|
15
|
Eisermann I, Weihmann F, Krijger JJ, Kröling C, Hause G, Menzel M, Pienkny S, Kiesow A, Deising HB, Wirsel SGR. Two genes in a pathogenicity gene cluster encoding secreted proteins are required for appressorial penetration and infection of the maize anthracnose fungus Colletotrichum graminicola. Environ Microbiol 2019; 21:4773-4791. [PMID: 31599055 DOI: 10.1111/1462-2920.14819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
Abstract
To avoid pathogen-associated molecular pattern recognition, the hemibiotrophic maize pathogen Colletotrichum graminicola secretes proteins mediating the establishment of biotrophy. Targeted deletion of 26 individual candidate genes and seven gene clusters comprising 32 genes of C. graminicola identified a pathogenicity cluster (CLU5) of five co-linear genes, all of which, with the exception of CLU5b, encode secreted proteins. Targeted deletion of all genes of CLU5 revealed that CLU5a and CLU5d are required for full appressorial penetration competence, with virulence deficiencies independent of the host genotype and organ inoculated. Cytorrhysis experiments and microscopy showed that Δclu5a mutants form pressurized appressoria, but they are hampered in forming penetration pores and fail to differentiate a penetration peg. Whereas Δclu5d mutants elicited WT-like papillae, albeit at increased frequencies, papillae induced by Δclu5a mutants were much smaller than those elicited by the WT. Synteny of CLU5 is not only conserved in Colletotrichum spp. but also in additional species of Sordariomycetes including insect pathogens and saprophytes suggesting importance of CLU5 for fungal biology. Since CLU5a and CLU5d also occur in non-pathogenic fungi and since they are expressed prior to plant invasion and even in vegetative hyphae, the encoded proteins probably do not act primarily as effectors.
Collapse
Affiliation(s)
- Iris Eisermann
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Fabian Weihmann
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Jorrit-Jan Krijger
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Christian Kröling
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany.,Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Abteilung Obst-, Gemüse- und Weinbau, August-Böckstiegel-Str. 1, D-01326, Dresden-Pillnitz, Germany
| | - Gerd Hause
- Biozentrum der Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, D-06120, Halle (Saale), Germany
| | - Matthias Menzel
- Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen, Biologische und makromolekulare Materialien, Walter-Hülse-Str. 1, D-06120, Halle (Saale), Germany
| | - Silke Pienkny
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Andreas Kiesow
- Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen, Biologische und makromolekulare Materialien, Walter-Hülse-Str. 1, D-06120, Halle (Saale), Germany
| | - Holger B Deising
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Stefan G R Wirsel
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
16
|
Zheng J, Liu F, Zhu C, Li X, Dai X, Yang B, Zou X, Ma Y. Identification, expression, alternative splicing and functional analysis of pepper WRKY gene family in response to biotic and abiotic stresses. PLoS One 2019; 14:e0219775. [PMID: 31329624 PMCID: PMC6645504 DOI: 10.1371/journal.pone.0219775] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
WRKY proteins are a large group of plant transcription factors that are involved in various biological processes, including biotic and abiotic stress responses, hormone response, plant development, and metabolism. WRKY proteins have been identified in several plants, but only a few have been identified in Capsicum annuum. Here, we identified a total of 62 WRKY genes in the latest pepper genome. These genes were classified into three groups (Groups 1–3) based on the structural features of their proteins. The structures of the encoded proteins, evolution, and expression under normal growth conditions were analyzed and 35 putative miRNA target sites were predicted in 20 CaWRKY genes. Moreover, the response to cold or CMV treatments of selected WRKY genes were examined to validate the roles under stresses. And alternative splicing (AS) events of some CaWRKYs were also identified under CMV infection. Promoter analysis confirmed that CaWRKY genes are involved in growth, development, and biotic or abiotic stress responses in hot pepper. The comprehensive analysis provides fundamental information for better understanding of the signaling pathways involved in the WRKY-mediated regulation of developmental processes, as well as biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Jingyuan Zheng
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Feng Liu
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chunhui Zhu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuefeng Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiongze Dai
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Bozhi Yang
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuexiao Zou
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yanqing Ma
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
- * E-mail:
| |
Collapse
|
17
|
Zhu C, Li X, Zheng J. Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Gene 2018; 666:123-133. [PMID: 29730427 DOI: 10.1016/j.gene.2018.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Hot pepper (Capsicum annuum L.) is becoming an increasingly important vegetable crop in the world. Cucumber mosaic virus (CMV) is a destructive virus that can cause leaf distortion and fruit lesions, affecting pepper production. However, studies on the response to CMV infection in pepper at the transcriptional level are limited. In this study, the transcript profiles of pepper leaves after CMV infection were investigated using Illumina and single-molecule real-time (SMRT) RNA-sequencing (RNA-seq). A total of 2143 differentially expressed genes (DEGs) were identified at five different stages. Gene ontology (GO) and KEGG analysis revealed that these DEGs were involved in the response to stress, defense response and plant-pathogen interaction pathways. Among these DEGs, several key genes that consistently appeared in studies of plant-pathogen interactions had increased transcript abundance after inoculation, including chitinase, pathogenesis-related (PR) protein, TMV resistance protein, WRKY transcription factor and jasmonate ZIM-domain protein. Four of these DEGs were further validated by quantitative real-time RT-PCR (qRT-PCR). Furthermore, a total of 73, 597 alternative splicing (AS) events were identified in the pepper leaves after CMV infection, distributed in 12, 615 genes. The intron retention of WRKY33 (Capana09g001251) might be involved in the regulation of CMV infection. Taken together, our study provides a transcriptome-wide insight into the molecular basis of resistance to CMV infection in pepper leaves and potential candidate genes for improving resistance cultivars.
Collapse
Affiliation(s)
- Chunhui Zhu
- Institute of Plant Protection, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xuefeng Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Jingyuan Zheng
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
18
|
Ferrareze PAG, Streit RSA, Santos PRD, Santos FMD, Almeida RMCD, Schrank A, Kmetzsch L, Vainstein MH, Staats CC. Transcriptional Analysis Allows Genome Reannotation and Reveals that Cryptococcus gattii VGII Undergoes Nutrient Restriction during Infection. Microorganisms 2017; 5:microorganisms5030049. [PMID: 28832534 PMCID: PMC5620640 DOI: 10.3390/microorganisms5030049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus gattii is a human and animal pathogen that infects healthy hosts and caused the Pacific Northwest outbreak of cryptococcosis. The inhalation of infectious propagules can lead to internalization of cryptococcal cells by alveolar macrophages, a niche in which C. gattii cells can survive and proliferate. Although the nutrient composition of macrophages is relatively unknown, the high induction of amino acid transporter genes inside the phagosome indicates a preference for amino acid uptake instead of synthesis. However, the presence of countable errors in the R265 genome annotation indicates significant inhibition of transcriptomic analysis in this hypervirulent strain. Thus, we analyzed RNA-Seq data from in vivo and in vitro cultures of C. gattii R265 to perform the reannotation of the genome. In addition, based on in vivo transcriptomic data, we identified highly expressed genes and pathways of amino acid metabolism that would enable C. gattii to survive and proliferate in vivo. Importantly, we identified high expression in three APC amino acid transporters as well as the GABA permease. The use of amino acids as carbon and nitrogen sources, releasing ammonium and generating carbohydrate metabolism intermediaries, also explains the high expression of components of several degradative pathways, since glucose starvation is an important host defense mechanism.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Rodrigo Silva Araujo Streit
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Patricia Ribeiro Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Francine Melise Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | | | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Livia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| |
Collapse
|
19
|
Donaldson ME, Ostrowski LA, Goulet KM, Saville BJ. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression. BMC Genomics 2017; 18:340. [PMID: 28464849 PMCID: PMC5414199 DOI: 10.1186/s12864-017-3720-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Abstract
Background Biotrophic fungal plant pathogens cause billions of dollars in losses to North American crops annually. The model for functional investigation of these fungi is Ustilago maydis. Its 20.5 Mb annotated genome sequence has been an excellent resource for investigating biotrophic plant pathogenesis. Expressed-sequence tag libraries and microarray hybridizations have provided insight regarding the type of transcripts produced by U. maydis but these analyses were not comprehensive and there were insufficient data for transcriptome comparison to other smut fungi. To improve transcriptome annotation and enable comparative analyses, comprehensive strand-specific RNA-seq was performed on cell-types of three related smut species: U. maydis (common smut of corn), Ustilago hordei (covered smut of barley), and Sporisorium reilianum (head smut of corn). Results In total, >1 billion paired-end sequence reads were obtained from haploid cell, dikaryon and teliospore RNA of U. maydis, haploid cell RNA of U. hordei, and haploid and dikaryon cell RNA of S. reilianum. The sequences were assembled into transfrags using Trinity, and updated gene models were created using PASA and categorized with Cufflinks Cuffcompare. Representative genes that were predicted for the first time with these RNA-seq analyses and genes with novel annotation features were independently assessed by reverse transcriptase PCR. The analyses indicate hundreds more predicted proteins, relative to the previous genome annotation, could be produced by U. maydis from altered transcript forms, and that the number of non-coding RNAs produced, including transcribed intergenic sequences and natural antisense transcripts, approximately equals the number of mRNAs. This high representation of non-coding RNAs appears to be a conserved feature of the smut fungi regardless of whether they have RNA interference machinery. Approximately 50% of the identified NATs were conserved among the smut fungi. Conclusions Overall, these analyses revealed: 1) smut genomes encode a number of transcriptional units that is twice the number of annotated protein-coding genes, 2) a small number of intergenic transcripts may encode proteins with characteristics of fungal effectors, 3) the vast majority of intergenic and antisense transcripts do not contain ORFs, 4) a large proportion of the identified antisense transcripts were detected at orthologous loci among the smut fungi, and 5) there is an enrichment of functional categories among orthologous loci that suggests antisense RNAs could have a genome-wide, non-RNAi-mediated, influence on gene expression in smut fungi. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3720-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael E Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, K9L 0G2, ON, Canada
| | - Lauren A Ostrowski
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, K9L 0G2, ON, Canada.,Present Address: Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Kristi M Goulet
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, K9L 0G2, ON, Canada
| | - Barry J Saville
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, K9L 0G2, ON, Canada. .,Forensic Science Program, Trent University, Peterborough, K9L 0G2, ON, Canada.
| |
Collapse
|
20
|
Li X, Brock GN, Rouchka EC, Cooper NGF, Wu D, O’Toole TE, Gill RS, Eteleeb AM, O’Brien L, Rai SN. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. PLoS One 2017; 12:e0176185. [PMID: 28459823 PMCID: PMC5411036 DOI: 10.1371/journal.pone.0176185] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/06/2017] [Indexed: 01/08/2023] Open
Abstract
Normalization is an essential step with considerable impact on high-throughput RNA sequencing (RNA-seq) data analysis. Although there are numerous methods for read count normalization, it remains a challenge to choose an optimal method due to multiple factors contributing to read count variability that affects the overall sensitivity and specificity. In order to properly determine the most appropriate normalization methods, it is critical to compare the performance and shortcomings of a representative set of normalization routines based on different dataset characteristics. Therefore, we set out to evaluate the performance of the commonly used methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med UQ and FQ) and two new methods we propose: Med-pgQ2 and UQ-pgQ2 (per-gene normalization after per-sample median or upper-quartile global scaling). Our per-gene normalization approach allows for comparisons between conditions based on similar count levels. Using the benchmark Microarray Quality Control Project (MAQC) and simulated datasets, we performed differential gene expression analysis to evaluate these methods. When evaluating MAQC2 with two replicates, we observed that Med-pgQ2 and UQ-pgQ2 achieved a slightly higher area under the Receiver Operating Characteristic Curve (AUC), a specificity rate > 85%, the detection power > 92% and an actual false discovery rate (FDR) under 0.06 given the nominal FDR (≤0.05). Although the top commonly used methods (DESeq and TMM-edgeR) yield a higher power (>93%) for MAQC2 data, they trade off with a reduced specificity (<70%) and a slightly higher actual FDR than our proposed methods. In addition, the results from an analysis based on the qualitative characteristics of sample distribution for MAQC2 and human breast cancer datasets show that only our gene-wise normalization methods corrected data skewed towards lower read counts. However, when we evaluated MAQC3 with less variation in five replicates, all methods performed similarly. Thus, our proposed Med-pgQ2 and UQ-pgQ2 methods perform slightly better for differential gene analysis of RNA-seq data skewed towards lowly expressed read counts with high variation by improving specificity while maintaining a good detection power with a control of the nominal FDR level.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States of America
| | - Guy N. Brock
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, United States of America
| | - Eric C. Rouchka
- Department of Computer Engineering Computer Science, University of Louisville, Louisville, KY, United States of America
| | - Nigel G. F. Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States of America
| | - Dongfeng Wu
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America
| | - Timothy E. O’Toole
- Department of Cardiology, University of Louisville, Louisville, KY, United States of America
| | - Ryan S. Gill
- Department of Mathematics, University of Louisville, Louisville, KY, United States of America
| | - Abdallah M. Eteleeb
- Department of Internal Medicine, Oncology Division, Washington University, St. Louis, MO, United States of America
| | - Liz O’Brien
- Department of Epidemiology, University of Louisville, Louisville, KY, United States of America
| | - Shesh N. Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Song J, Liu H, Zhuang H, Zhao C, Xu Y, Wu S, Qi J, Li J, Hettenhausen C, Wu J. Transcriptomics and Alternative Splicing Analyses Reveal Large Differences between Maize Lines B73 and Mo17 in Response to Aphid Rhopalosiphum padi Infestation. FRONTIERS IN PLANT SCIENCE 2017; 8:1738. [PMID: 29067035 PMCID: PMC5641392 DOI: 10.3389/fpls.2017.01738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
Maize (Zea mays L.) is a staple crop worldwide with extensive genetic variations. Various insects attack maize plants causing large yield loss. Here, we investigated the responses of maize B73, a susceptible line, and Mo17, a resistant line, to the aphid Rhopalosiphum padi on metabolite and transcriptome levels. R. padi feeding had no effect on the levels of the defensive metabolites benzoxazinoids (Bxs) in either line, and Mo17 contained substantially greater levels of Bxs than did B73. Profiling of the differentially expressed genes revealed that B73 and Mo17 responded to R. padi infestation specifically, and importantly, these two lines showed large gene expression differences even without R. padi herbivory. Correlation analysis identified four transcription factors (TFs) that might account for the high Bx levels in Mo17. Similarly, genome-wide alternative splicing (AS) analyses indicated that both B73 and Mo17 had temporally specific responses to R. padi infestation, and these two lines also exhibited large differences of AS regulation under normal condition, and 340 genes, including 10 TFs, were constantly differentially spliced. This study provides large-scale resource datasets for further studies on the mechanisms underlying maize-aphid interactions, and highlights the phenotypic divergence in defense against aphids among maize varieties.
Collapse
Affiliation(s)
- Juan Song
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huifu Zhuang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunxia Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Yuxing Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shibo Wu
- Yunnan Academy of Science and Technology Development, Kunming, China
| | - Jinfeng Qi
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jing Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Christian Hettenhausen
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Christian Hettenhausen
| | - Jianqiang Wu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Jianqiang Wu
| |
Collapse
|
22
|
Xiao RY, Hao J, Ding YH, Che YY, Zou XJ, Liang B. Transcriptome Profile Reveals that Pu-Erh Tea Represses the Expression of Vitellogenin Family to Reduce Fat Accumulation in Caenorhabditis elegans. Molecules 2016; 21:E1379. [PMID: 27763516 PMCID: PMC6274137 DOI: 10.3390/molecules21101379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
Due to misbalanced energy surplus and expenditure, obesity has become a common chronic disorder that is highly associated with many metabolic diseases. Pu-erh tea, a traditional Chinese beverage, has been believed to have numerous health benefits, such as anti-obesity. However, the underlying mechanisms of its anti-obesity effect are yet to be understood. Here, we take the advantages of transcriptional profile by RNA sequencing (RNA-Seq) to view the global gene expression of Pu-erh tea. The model organism Caenorhabditis elegans was treated with different concentrations of Pu-erh tea water extract (PTE, 0 g/mL, 0.025 g/mL, and 0.05 g/mL). Compared with the control, PTE indeed decreases lipid droplets size and fat accumulation. The high-throughput RNA-Sequence technique detected 18073 and 18105 genes expressed in 0.025 g/mL and 0.05 g/mL PTE treated groups, respectively. Interestingly, the expression of the vitellogenin family (vit-1, vit-2, vit-3, vit-4 and vit-5) was significantly decreased by PTE, which was validated by qPCR analysis. Furthermore, vit-1(ok2616), vit-3(ok2348) and vit-5(ok3239) mutants are insensitive to PTE triggered fat reduction. In conclusion, our transcriptional profile by RNA-Sequence suggests that Pu-erh tea lowers the fat accumulation primarily through repression of the expression of vit(vitellogenin) family, in addition to our previously reported (sterol regulatory element binding protein) SREBP-SCD (stearoyl-CoA desaturase) axis.
Collapse
Affiliation(s)
- Ru-Yue Xiao
- Pharmaceutical College, Heilongjiang University of Chinese Medicine, #24Heping Road, Harbin 150040, China.
| | - Junjun Hao
- State Key Laboratory of Genetic Resources and Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yi-Hong Ding
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yan-Yun Che
- Pharmaceutical College, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Xiao-Ju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
23
|
Lange M, Weihmann F, Schliebner I, Horbach R, Deising HB, Wirsel SGR, Peiter E. The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis. PLoS One 2016; 11:e0158561. [PMID: 27359114 PMCID: PMC4928787 DOI: 10.1371/journal.pone.0158561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/19/2016] [Indexed: 12/02/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae) contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt) elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM) domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by influx of Ca2+ from the extracellular space. Cgtrpf mutants did not show pathogenicity defects in leaf infection assays. In summary, our study reveals major differences between different fungi in the contribution of TRP channels to Ca2+-mediated signal transduction.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fabian Weihmann
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivo Schliebner
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Horbach
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B. Deising
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan G. R. Wirsel
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
24
|
Yin DT, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin JG, Henrissat B, Walton PH, Davies GJ, Brumer H. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun 2015; 6:10197. [PMID: 26680532 PMCID: PMC4703870 DOI: 10.1038/ncomms10197] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/16/2015] [Indexed: 11/09/2022] Open
Abstract
Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure-function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications.
Collapse
Affiliation(s)
- DeLu Tyler Yin
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Saioa Urresti
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Mickael Lafond
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4.,Institut des Sciences Moléculaires de Marseille-Team BiosCiences UMR 7313-CNRS, Aix-Marseille University, Avenue Escadrille Normandie Niemen, Marseille 13397, France
| | - Esther M Johnston
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Fatemeh Derikvand
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Luisa Ciano
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Jean-Guy Berrin
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques Marseille F-13288, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS-Aix-Marseille University, 163 Avenue de Luminy, Marseille 13288, France.,INRA, USC 1408 AFMB, Marseille 13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Paul H Walton
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Gideon J Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|