1
|
Ghanegolmohammadi F, Eslami M, Ohya Y. Systematic data analysis pipeline for quantitative morphological cell phenotyping. Comput Struct Biotechnol J 2024; 23:2949-2962. [PMID: 39104709 PMCID: PMC11298594 DOI: 10.1016/j.csbj.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Quantitative morphological phenotyping (QMP) is an image-based method used to capture morphological features at both the cellular and population level. Its interdisciplinary nature, spanning from data collection to result analysis and interpretation, can lead to uncertainties, particularly among those new to this actively growing field. High analytical specificity for a typical QMP is achieved through sophisticated approaches that can leverage subtle cellular morphological changes. Here, we outline a systematic workflow to refine the QMP methodology. For a practical review, we describe the main steps of a typical QMP; in each step, we discuss the available methods, their applications, advantages, and disadvantages, along with the R functions and packages for easy implementation. This review does not cover theoretical backgrounds, but provides several references for interested researchers. It aims to broaden the horizons for future phenome studies and demonstrate how to exploit years of endeavors to achieve more with less.
Collapse
Affiliation(s)
- Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Mohammad Eslami
- Harvard Ophthalmology AI Lab, Schepen’s Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
2
|
Yang H, Huang L, Zhao D, Zhao H, Chen Y, Li Y, Zeng Y. Protective effect of wheat gluten peptides against ethanol-stress damage in yeast cell and identification of anti-ethanol peptides. Lebensm Wiss Technol 2024; 192:115732. [DOI: 10.1016/j.lwt.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
3
|
Klinkaewboonwong N, Ohnuki S, Chadani T, Nishida I, Ushiyama Y, Tomiyama S, Isogai A, Goshima T, Ghanegolmohammadi F, Nishi T, Kitamoto K, Akao T, Hirata D, Ohya Y. Targeted Mutations Produce Divergent Characteristics in Pedigreed Sake Yeast Strains. Microorganisms 2023; 11:1274. [PMID: 37317248 DOI: 10.3390/microorganisms11051274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Modification of the genetic background and, in some cases, the introduction of targeted mutations can play a critical role in producing trait characteristics during the breeding of crops, livestock, and microorganisms. However, the question of how similar trait characteristics emerge when the same target mutation is introduced into different genetic backgrounds is unclear. In a previous study, we performed genome editing of AWA1, CAR1, MDE1, and FAS2 on the standard sake yeast strain Kyokai No. 7 to breed a sake yeast with multiple excellent brewing characteristics. By introducing the same targeted mutations into other pedigreed sake yeast strains, such as Kyokai strains No. 6, No. 9, and No. 10, we were able to create sake yeasts with the same excellent brewing characteristics. However, we found that other components of sake made by the genome-edited yeast strains did not change in the exact same way. For example, amino acid and isobutanol contents differed among the strain backgrounds. We also showed that changes in yeast cell morphology induced by the targeted mutations also differed depending on the strain backgrounds. The number of commonly changed morphological parameters was limited. Thus, divergent characteristics were produced by the targeted mutations in pedigreed sake yeast strains, suggesting a breeding strategy to generate a variety of sake yeasts with excellent brewing characteristics.
Collapse
Affiliation(s)
- Norapat Klinkaewboonwong
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Tomoya Chadani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Ikuhisa Nishida
- Sakeology Center, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Yuto Ushiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Saki Tomiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoyuki Nishi
- Sake Research Center, Asahi Sake Brewing Co., Ltd., Nagaoka, Niigata 949-5494, Japan
| | - Katsuhiko Kitamoto
- Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Dai Hirata
- Sakeology Center, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
- Sake Research Center, Asahi Sake Brewing Co., Ltd., Nagaoka, Niigata 949-5494, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds. NPJ Syst Biol Appl 2022; 8:3. [PMID: 35087094 PMCID: PMC8795194 DOI: 10.1038/s41540-022-00212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Morphological profiling is an omics-based approach for predicting intracellular targets of chemical compounds in which the dose-dependent morphological changes induced by the compound are systematically compared to the morphological changes in gene-deleted cells. In this study, we developed a reliable high-throughput (HT) platform for yeast morphological profiling using drug-hypersensitive strains to minimize compound use, HT microscopy to speed up data generation and analysis, and a generalized linear model to predict targets with high reliability. We first conducted a proof-of-concept study using six compounds with known targets: bortezomib, hydroxyurea, methyl methanesulfonate, benomyl, tunicamycin, and echinocandin B. Then we applied our platform to predict the mechanism of action of a novel diferulate-derived compound, poacidiene. Morphological profiling of poacidiene implied that it affects the DNA damage response, which genetic analysis confirmed. Furthermore, we found that poacidiene inhibits the growth of phytopathogenic fungi, implying applications as an effective antifungal agent. Thus, our platform is a new whole-cell target prediction tool for drug discovery.
Collapse
|
5
|
Nakagawa Y, Ohnuki S, Kondo N, Itto-Nakama K, Ghanegolmohammadi F, Isozaki A, Ohya Y, Goda K. Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. LAB ON A CHIP 2021; 21:3793-3803. [PMID: 34581379 DOI: 10.1039/d1lc00469g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-cell analysis has become one of the main cornerstones of biotechnology, inspiring the advent of various microfluidic compartments for cell cultivation such as microwells, microtrappers, microcapillaries, and droplets. A fundamental assumption for using such microfluidic compartments is that unintended stress or harm to cells derived from the microenvironments is insignificant, which is a crucial condition for carrying out unbiased single-cell studies. Despite the significance of this assumption, simple viability or growth tests have overwhelmingly been the assay of choice for evaluating culture conditions while empirical studies on the sub-lethal effect on cellular functions have been insufficient in many cases. In this work, we assessed the effect of culturing cells in droplets on the cellular function using yeast morphology as an indicator. Quantitative morphological analysis using CalMorph, an image-analysis program, demonstrated that cells cultured in flasks, large droplets, and small droplets significantly differed morphologically. From these differences, we identified that the cell cycle was delayed in droplets during the G1 phase and during the process of bud growth likely due to the checkpoint mechanism and impaired mitochondrial function, respectively. Furthermore, comparing small and large droplets, cells cultured in large droplets were morphologically more similar to those cultured in a flask, highlighting the advantage of increasing the droplet size. These results highlight a potential source of bias in cell analysis using droplets and reinforce the significance of assessing culture conditions of microfluidic cultivation methods for specific study cases.
Collapse
Affiliation(s)
- Yuta Nakagawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Naoko Kondo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Akihiro Isozaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, California 90095, USA
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
6
|
Kintaka R, Makanae K, Namba S, Kato H, Kito K, Ohnuki S, Ohya Y, Andrews BJ, Boone C, Moriya H. Genetic profiling of protein burden and nuclear export overload. eLife 2020; 9:54080. [PMID: 33146608 PMCID: PMC7673788 DOI: 10.7554/elife.54080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Overproduction (op) of proteins triggers cellular defects. One of the consequences of overproduction is the protein burden/cost, which is produced by an overloading of the protein synthesis process. However, the physiology of cells under a protein burden is not well characterized. We performed genetic profiling of protein burden by systematic analysis of genetic interactions between GFP-op, surveying both deletion and temperature-sensitive mutants in budding yeast. We also performed genetic profiling in cells with overproduction of triple-GFP (tGFP), and the nuclear export signal-containing tGFP (NES-tGFP). The mutants specifically interacted with GFP-op were suggestive of unexpected connections between actin-related processes like polarization and the protein burden, which was supported by morphological analysis. The tGFP-op interactions suggested that this protein probe overloads the proteasome, whereas those that interacted with NES-tGFP involved genes encoding components of the nuclear export process, providing a resource for further analysis of the protein burden and nuclear export overload.
Collapse
Affiliation(s)
- Reiko Kintaka
- Donnelly Center for Cellular and Biomolecular Research, Department of Medical Genetics, University of Toronto, Toronto, Canada
| | - Koji Makanae
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
| | - Shotaro Namba
- Matching Program Course, Okayama University, Okayama, Japan
| | - Hisaaki Kato
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, Tokyo, Japan
| | - Shinsuke Ohnuki
- Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ohya
- Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Brenda J Andrews
- Donnelly Center for Cellular and Biomolecular Research, Department of Medical Genetics, University of Toronto, Toronto, Canada
| | - Charles Boone
- Donnelly Center for Cellular and Biomolecular Research, Department of Medical Genetics, University of Toronto, Toronto, Canada.,RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Hisao Moriya
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan.,Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
7
|
Geiler-Samerotte KA, Li S, Lazaris C, Taylor A, Ziv N, Ramjeawan C, Paaby AB, Siegal ML. Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping. PLoS Biol 2020; 18:e3000836. [PMID: 32804946 PMCID: PMC7451985 DOI: 10.1371/journal.pbio.3000836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023] Open
Abstract
Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.
Collapse
Affiliation(s)
- Kerry A. Geiler-Samerotte
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Center for Mechanisms of Evolution, Biodesign Institutes, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Shuang Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charalampos Lazaris
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Austin Taylor
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Naomi Ziv
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Chelsea Ramjeawan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
8
|
Cucurbitacin B Exerts Antiaging Effects in Yeast by Regulating Autophagy and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4517091. [PMID: 31281576 PMCID: PMC6589324 DOI: 10.1155/2019/4517091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has been used as a model organism for the basic mechanism of aging, which provides useful assay systems for measuring both replicative and chronological lifespans. In the course of our screening program for substances that extend replicative lifespan, cucurbitacin B (CuB) was found as a hit compound from a compound library, which contains cerebrosides, phenols, sesquiterpenoid, triterpenoids, and sterols isolated from natural products by our research group. Importantly, it prolonged not only the replicative lifespan but also the chronological lifespan in yeast. CuB increased ATG32 gene expression, suggesting that CuB induces autophagy. Indeed, the GFP signal generated from the cleavage of GFP-Atg8, which is a signature of autophagy, was increased upon CuB treatment. On the other hand, CuB failed to increase the chronological lifespans when either ATG2 or ATG32, essential autophagy genes, was deleted, indicating that the lifespan extension by CuB depends on autophagy induction. Furthermore, CuB significantly increased superoxide dismutase (Sod) activity and the survival rate of yeast under oxidative stress, while it decreased the amount of reactive oxygen species (ROS) and malondialdehyde (MDA) production, indicating that CuB has activity to antagonize oxidative stress. Additionally, CuB did not affect replicative lifespans of sod1, sod2, uth1, and skn7 mutants with the K6001 background, indicating that aging-related genes including SOD1, SOD2, UTH1, and SKN7 participate in the antiaging effect of CuB. These results suggest that CuB exerts antiaging activity by regulating autophagy, ROS, antioxidative ability, and aging-related genes. Finally, we discuss the possible intracellular targets of CuB based on the phenotypic comparison between the CuB and global gene deletion databases.
Collapse
|
9
|
Kubo K, Okada H, Shimamoto T, Kimori Y, Mizunuma M, Bi E, Ohnuki S, Ohya Y. Implications of maintenance of mother-bud neck size in diverse vital processes of Saccharomyces cerevisiae. Curr Genet 2019; 65:253-267. [PMID: 30066140 DOI: 10.1007/s00294-018-0872-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022]
Abstract
The mother-bud neck is defined as the boundary between the mother cell and bud in budding microorganisms, wherein sequential morphological events occur throughout the cell cycle. This study was designed to quantitatively investigate the morphology of the mother-bud neck in budding yeast Saccharomyces cerevisiae. Observation of yeast cells with time-lapse microscopy revealed an increase of mother-bud neck size through the cell cycle. After screening of yeast non-essential gene-deletion mutants with the image processing software CalMorph, we comprehensively identified 274 mutants with broader necks during S/G2 phase. Among these yeasts, we extensively analyzed 19 representative deletion mutants with defects in genes annotated to six gene ontology terms (polarisome, actin reorganization, endosomal tethering complex, carboxy-terminal domain protein kinase complex, DNA replication, and maintenance of DNA trinucleotide repeats). The representative broad-necked mutants exhibited calcofluor white sensitivity, suggesting defects in their cell walls. Correlation analysis indicated that maintenance of mother-bud neck size is important for cellular processes such as cell growth, system robustness, and replicative lifespan. We conclude that neck-size maintenance in budding yeast is regulated by numerous genes and has several aspects that are physiologically significant.
Collapse
Affiliation(s)
- Karen Kubo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Takuya Shimamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Department of Management and Information Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, Gakuen, Fukui City, Fukui, 910-8505, Japan
| | - Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-8565, Japan.
| |
Collapse
|
10
|
Nemoto S, Ohnuki S, Abe F, Ohya Y. Simulated microgravity triggers characteristic morphology and stress response in Saccharomyces cerevisiae. Yeast 2018; 36:85-97. [PMID: 30350382 DOI: 10.1002/yea.3361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/20/2023] Open
Abstract
Reduction of gravity results in changes in gene expression and morphology in the budding yeast Saccharomyces cerevisiae. We studied the genes responsible for the morphological changes induced by simulated microgravity (SMG) using the yeast morphology data. We comprehensively captured the features of the morphological changes in yeast cells cultured in SMG with CalMorph, a high-throughput image-processing system. Statistical analysis revealed that 95 of 501 morphological traits were significantly affected, which included changes in bud direction, the ratio of daughter to mother cell size, the random daughter cell shape, the large mother cell size, bright nuclei in the M phase, and the decrease in angle between two nuclei. We identified downregulated genes that impacted the morphological changes in conditions of SMG by focusing on each of the morphological features individually. Gene Ontology (GO)-enrichment analysis indicated that morphological changes under conditions of SMG were caused by cooperative downregulation of 103 genes annotated to six GO terms, which included cytoplasmic ribonucleoprotein granule, RNA elongation, mitotic cell cycle phase transition, nucleocytoplasmic transport, protein-DNA complex subunit organization, and RNA localization. P-body formation was also promoted under conditions of SMG. These results suggest that cooperative downregulation of multiple genes occurs in conditions of SMG.
Collapse
Affiliation(s)
- Shota Nemoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Japan
| |
Collapse
|
11
|
Ohnuki S, Ohya Y. High-dimensional single-cell phenotyping reveals extensive haploinsufficiency. PLoS Biol 2018; 16:e2005130. [PMID: 29768403 PMCID: PMC5955526 DOI: 10.1371/journal.pbio.2005130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
Haploinsufficiency, a dominant phenotype caused by a heterozygous loss-of-function mutation, has been rarely observed. However, high-dimensional single-cell phenotyping of yeast morphological characteristics revealed haploinsufficiency phenotypes for more than half of 1,112 essential genes under optimal growth conditions. Additionally, 40% of the essential genes with no obvious phenotype under optimal growth conditions displayed haploinsufficiency under severe growth conditions. Haploinsufficiency was detected more frequently in essential genes than in nonessential genes. Similar haploinsufficiency phenotypes were observed mostly in mutants with heterozygous deletion of functionally related genes, suggesting that haploinsufficiency phenotypes were caused by functional defects of the genes. A global view of the gene network was presented based on the similarities of the haploinsufficiency phenotypes. Our dataset contains rich information regarding essential gene functions, providing evidence that single-cell phenotyping is a powerful approach, even in the heterozygous condition, for analyzing complex biological systems. Diploid organisms harboring a wild-type gene and a loss-of-function mutation are called heterozygotes. They are expected to have weak or no individual phenotypes because the mutation is compensated for by the intact allele. The dominant inheritance of phenotypes in heterozygotes is an exceptional phenomenon called haploinsufficiency. Haploinsufficiency was thought to be a rare occurrence; however, a sensitive technique called high-dimensional single-cell phenotyping challenges this perspective. Investigations of single-cell phenotypes revealed that a large extent of the essential genes in yeast exhibit haploinsufficiency. Our analyses also provided crucial information on gene functional networks based on haploinsufficiency phenotypes. This work shows that high-dimensional single-cell phenotyping is a useful tool that can be used to better understand complex biological systems.
Collapse
Affiliation(s)
- Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|
12
|
Suzuki G, Wang Y, Kubo K, Hirata E, Ohnuki S, Ohya Y. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae. BMC Genomics 2018; 19:149. [PMID: 29458326 PMCID: PMC5819264 DOI: 10.1186/s12864-018-4526-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/05/2018] [Indexed: 11/16/2022] Open
Abstract
Background The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. Results We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Conclusion Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications. Electronic supplementary material The online version of this article (10.1186/s12864-018-4526-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Godai Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan
| | - Yang Wang
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan
| | - Karen Kubo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan
| | - Eri Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan. .,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Bldg. Kashiwa Research Complex 2, 5-1-5 Kahiwanoha, Kashiwa, Chiba Prefecture, 277-8565, Japan.
| |
Collapse
|
13
|
Ghanegolmohammadi F, Yoshida M, Ohnuki S, Sukegawa Y, Okada H, Obara K, Kihara A, Suzuki K, Kojima T, Yachie N, Hirata D, Ohya Y. Systematic analysis of Ca 2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles. Mol Biol Cell 2017; 28:3415-3427. [PMID: 28566553 PMCID: PMC5687040 DOI: 10.1091/mbc.e17-04-0216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+ After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+-cls interactions. We found that high-dimensional, morphological Ca2+-cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+-cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+-cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis.
Collapse
Affiliation(s)
| | - Mitsunori Yoshida
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Yuko Sukegawa
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- AIST-UTokyo Advanced Operand-Measurement Technology Open Innovation Laboratory, Kashiwa 277-0882, Japan
| | - Hiroki Okada
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058
| | - Keisuke Obara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kuninori Suzuki
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Dai Hirata
- Research and Development Department, Asahi Sake Brewing Co., Nagaoka 949-5494, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
14
|
Abstract
Although evolution by natural selection is widely regarded as the most important principle of biology, it is unknown whether phenotypic variations within and between species are mostly adaptive or neutral due to the lack of relevant studies of large, unbiased samples of phenotypic traits. Here, we examine 210 yeast morphological traits chosen because of experimental feasibility irrespective of their potential adaptive values. Our analysis is based on the premise that, under neutrality, the rate of phenotypic evolution measured in the unit of mutational size declines as the trait becomes more important to fitness, analogous to the neutral paradigm that functional genes evolve more slowly than functionless pseudogenes. However, we find faster evolution of more important morphological traits within and between species, rejecting the neutral hypothesis. By contrast, an analysis of 3,466 gene expression traits fails to refute neutrality. Thus, at least in yeast, morphological evolution appears largely adaptive, but the same may not apply to other classes of phenotypes. Our neutrality test is applicable to other species, especially genetic model organisms, for which estimations of mutational size and trait importance are relatively straightforward.
Collapse
|
15
|
Abstract
Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomycescerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies.
Collapse
|
16
|
Geiler-Samerotte KA, Zhu YO, Goulet BE, Hall DW, Siegal ML. Selection Transforms the Landscape of Genetic Variation Interacting with Hsp90. PLoS Biol 2016; 14:e2000465. [PMID: 27768682 PMCID: PMC5074785 DOI: 10.1371/journal.pbio.2000465] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
The protein-folding chaperone Hsp90 has been proposed to buffer the phenotypic effects of mutations. The potential for Hsp90 and other putative buffers to increase robustness to mutation has had major impact on disease models, quantitative genetics, and evolutionary theory. But Hsp90 sometimes contradicts expectations for a buffer by potentiating rapid phenotypic changes that would otherwise not occur. Here, we quantify Hsp90’s ability to buffer or potentiate (i.e., diminish or enhance) the effects of genetic variation on single-cell morphological features in budding yeast. We corroborate reports that Hsp90 tends to buffer the effects of standing genetic variation in natural populations. However, we demonstrate that Hsp90 tends to have the opposite effect on genetic variation that has experienced reduced selection pressure. Specifically, Hsp90 tends to enhance, rather than diminish, the effects of spontaneous mutations and recombinations. This result implies that Hsp90 does not make phenotypes more robust to the effects of genetic perturbation. Instead, natural selection preferentially allows buffered alleles to persist and thereby creates the false impression that Hsp90 confers greater robustness. Most biologists appreciate that natural selection filters new mutations (e.g., by eliminating deleterious ones), such that genetic variation in nature is biased. The idea that selection also skews the types of genetic interactions that exist in nature is less appreciated. For example, studies spanning diverse species have shown that the protein Hsp90, which helps other proteins to fold properly, tends to diminish the observable effects of genetic variation. This observation has led to the assumption that Hsp90 also buffers the effects of new mutations. This untested assumption has served as a rationale for cancer-treatment strategies and shaped our understanding of variation in complex traits. We measured the effects of new mutations on the shapes and sizes of individual yeast cells and found that Hsp90 does not tend to buffer these effects. Instead, Hsp90 interacts with new mutations in diverse ways, sometimes buffering, but more often enhancing mutational effects on cell shape and size. We conclude that selection preferentially allows buffered mutations to persist in natural populations. This result alters common perceptions about why cryptic (i.e., buffered) genetic variation exists and casts doubt on cancer-treatment strategies aiming to target presumed buffers of mutational effects.
Collapse
Affiliation(s)
- Kerry A Geiler-Samerotte
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America.,Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yuan O Zhu
- Department of Biology, Stanford University, Stanford, California, United States of America.,Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Benjamin E Goulet
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - David W Hall
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
17
|
Abstract
The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast.
Collapse
Affiliation(s)
- Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
18
|
Large-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species. G3-GENES GENOMES GENETICS 2016; 6:1063-71. [PMID: 26888866 PMCID: PMC4825641 DOI: 10.1534/g3.115.026682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is now clear that the exploration of the genetic and phenotypic diversity of nonmodel species greatly improves our knowledge in biology. In this context, we recently launched a population genomic analysis of the protoploid yeast Lachancea kluyveri (formerly Saccharomyces kluyveri), highlighting a broad genetic diversity (π = 17 × 10−3) compared to the yeast model organism, S. cerevisiae (π = 4 × 10−3). Here, we sought to generate a comprehensive view of the phenotypic diversity in this species. In total, 27 natural L. kluyveri isolates were subjected to trait profiling using the following independent approaches: (i) analyzing growth in 55 growth conditions and (ii) investigating 501 morphological changes at the cellular level. Despite higher genetic diversity, the fitness variance observed in L. kluyveri is lower than that in S. cerevisiae. However, morphological features show an opposite trend. In addition, there is no correlation between the origins (ecological or geographical) of the isolate and the phenotypic patterns, demonstrating that trait variation follows neither population history nor source environment in L. kluyveri. Finally, pairwise comparisons between growth rate correlation and genetic diversity show a clear decrease in phenotypic variability linked to genome variation increase, whereas no such a trend was identified for morphological changes. Overall, this study reveals for the first time the phenotypic diversity of a distantly related species to S. cerevisiae. Given its genetic properties, L. kluyveri might be useful in further linkage mapping analyses of complex traits, and could ultimately provide a better insight into the evolution of the genotype–phenotype relationship across yeast species.
Collapse
|
19
|
Styles EB, Friesen H, Boone C, Andrews BJ. High-Throughput Microscopy-Based Screening in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2016; 2016:pdb.top087593. [PMID: 27037080 DOI: 10.1101/pdb.top087593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The budding yeastSaccharomyces cerevisiaehas served as the pioneer model organism for virtually all genome-scale methods, including genome sequencing, DNA microarrays, gene deletion collections, and a variety of proteomic platforms. Yeast has also provided a test-bed for the development of systematic fluorescence-based imaging screens to enable the analysis of protein localization and abundance in vivo. Especially important has been the integration of high-throughput microscopy with automated image-processing methods, which has allowed researchers to overcome issues associated with manual image analysis and acquire unbiased, quantitative data. Here we provide an introduction to automated imaging in budding yeast.
Collapse
Affiliation(s)
- Erin B Styles
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Helena Friesen
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Brenda J Andrews
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|