1
|
Nagelberg AL, Sihota TS, Chuang YC, Shi R, Chow JLM, English J, MacAulay C, Lam S, Lam WL, Lockwood WW. Integrative genomics identifies SHPRH as a tumor suppressor gene in lung adenocarcinoma that regulates DNA damage response. Br J Cancer 2024; 131:534-550. [PMID: 38890444 PMCID: PMC11300780 DOI: 10.1038/s41416-024-02755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Identification of driver mutations and development of targeted therapies has considerably improved outcomes for lung cancer patients. However, significant limitations remain with the lack of identified drivers in a large subset of patients. Here, we aimed to assess the genomic landscape of lung adenocarcinomas (LUADs) from individuals without a history of tobacco use to reveal new genetic drivers of lung cancer. METHODS Integrative genomic analyses combining whole-exome sequencing, copy number, and mutational information for 83 LUAD tumors was performed and validated using external datasets to identify genetic variants with a predicted functional consequence and assess association with clinical outcomes. LUAD cell lines with alteration of identified candidates were used to functionally characterize tumor suppressive potential using a conditional expression system both in vitro and in vivo. RESULTS We identified 21 genes with evidence of positive selection, including 12 novel candidates that have yet to be characterized in LUAD. In particular, SNF2 Histone Linker PHD RING Helicase (SHPRH) was identified due to its frequency of biallelic disruption and location within the familial susceptibility locus on chromosome arm 6q. We found that low SHPRH mRNA expression is associated with poor survival outcomes in LUAD patients. Furthermore, we showed that re-expression of SHPRH in LUAD cell lines with inactivating alterations for SHPRH reduces their in vitro colony formation and tumor burden in vivo. Finally, we explored the biological pathways associated SHPRH inactivation and found an association with the tolerance of LUAD cells to DNA damage. CONCLUSIONS These data suggest that SHPRH is a tumor suppressor gene in LUAD, whereby its expression is associated with more favorable patient outcomes, reduced tumor and mutational burden, and may serve as a predictor of response to DNA damage. Thus, further exploration into the role of SHPRH in LUAD development may make it a valuable biomarker for predicting LUAD risk and prognosis.
Collapse
Affiliation(s)
- Amy L Nagelberg
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tianna S Sihota
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu-Chi Chuang
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Justine L M Chow
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - John English
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Calum MacAulay
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Xu K, Shi X, Husted C, Hong R, Wang Y, Ning B, Sullivan TB, Rieger-Christ KM, Duan F, Marques H, Gower AC, Xiao X, Liu H, Liu G, Duclos G, Platt M, Spira AE, Mazzilli SA, Billatos E, Lenburg ME, Campbell JD, Beane JE. Smoking modulates different secretory subpopulations expressing SARS-CoV-2 entry genes in the nasal and bronchial airways. Sci Rep 2022; 12:18168. [PMID: 36307504 PMCID: PMC9615627 DOI: 10.1038/s41598-022-17832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/01/2022] [Indexed: 12/31/2022] Open
Abstract
SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in the airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments have not been fully characterized using matched samples from large cohorts. Gene expression data from 793 nasal and 1673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking status (current versus former) was the only clinical factor significantly and reproducibly associated with VE gene expression. The expression of ACE2 and TMPRSS2 was higher in smokers in the bronchus but not in the nose. scRNA-seq of nasal brushings indicated that ACE2 co-expressed genes were highly expressed in club and C15orf48+ secretory cells while TMPRSS2 co-expressed genes were highly expressed in keratinizing epithelial cells. In contrast, these ACE2 and TMPRSS2 modules were highly expressed in goblet cells in scRNA-seq from bronchial brushings. Cell-type deconvolution of the gene expression data confirmed that smoking increased the abundance of several secretory cell populations in the bronchus, but only goblet cells in the nose. The association of ACE2 and TMPRSS2 with smoking in the bronchus is due to their high expression in goblet cells which increase in abundance in current smoker airways. In contrast, in the nose, these genes are not predominantly expressed in cell populations modulated by smoking. In individuals with elevated lung cancer risk, smoking-induced VE gene expression changes in the nose likely have minimal impact on SARS-CoV-2 infection, but in the bronchus, smoking may lead to higher viral loads and more severe disease.
Collapse
Affiliation(s)
- Ke Xu
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Xingyi Shi
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Christopher Husted
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Rui Hong
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Yichen Wang
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Boting Ning
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Travis B Sullivan
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Kimberly M Rieger-Christ
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA, USA
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Fenghai Duan
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Helga Marques
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Adam C Gower
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Xiaohui Xiao
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Hanqiao Liu
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Grant Duclos
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Michael Platt
- Department of Otolaryngology-Head & Neck Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Avrum E Spira
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
- Lung Cancer Initiative at Johnson & Johnson, New Brunswick, NJ, USA
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Ehab Billatos
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Marc E Lenburg
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA
| | - Joshua D Campbell
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA.
| | - Jennifer E Beane
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA, USA.
| |
Collapse
|
3
|
Adam N, Vuong NQ, Adams H, Kuo B, Beheshti A, Yauk C, Wilkins R, Chauhan V. Evaluating the Influences of Confounding Variables on Benchmark Dose using a Case Study in the Field of Ionizing Radiation. Int J Radiat Biol 2022; 98:1845-1855. [PMID: 35939396 DOI: 10.1080/09553002.2022.2110303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose A vast amount of data regarding the effects of radiation stressors on transcriptional changes has been produced over the past few decades. These data have shown remarkable consistency across platforms and experimental design, enabling increased understanding of early molecular effects of radiation exposure. However, the value of transcriptomic data in the context of risk assessment is not clear and represents a gap that is worthy of further consideration. Recently, benchmark dose (BMD) modeling has shown promise in correlating a transcriptional point of departure (POD) to that derived using phenotypic outcomes relevant to human health risk assessment. Although frequently applied in chemical toxicity evaluation, our group has recently demonstrated application within the field of radiation research. This approach allows the possibility to quantitatively compare radiation-induced gene and pathway alterations across various datasets using BMD values and derive meaningful biological effects. However, before BMD modeling can confidently be used, an understanding of the impact of confounding variables on BMD outputs is needed. Methods: To this end, BMD modeling was applied to a publicly available microarray dataset (Gene Expression Omnibus #GSE23515) that used peripheral blood ex-vivo gamma-irradiated at 0.82 Gy/min, at doses of 0, 0.1, 0.5 or 2 Gy, and assessed 6 hours post-exposure. The dataset comprised six female smokers (F-S), six female non-smokers (F-NS), six male smokers (M-S), and six male non-smokers (M-NS). Results: A combined total of 412 genes were fit to models and the BMD distribution was noted to be bi-modal across the four groups. A total of 74, 41, 62 and 62 genes were unique to the F-NS, M-NS, F-S and M-S groups. Sixty-two BMD modeled genes and nine pathways were common across all four groups. There were no differential sensitivity of responses in the robust common genes and pathways. Conclusion: For radiation-responsive genes and pathways common across the study groups, the BMD distribution of transcriptional activity was unaltered by sex and smoking status. Although further validation of the data is needed, these initial findings suggest BMD values for radiation relevant genes and pathways are robust and could be explored further in future studies.
Collapse
Affiliation(s)
- Nadine Adam
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Ngoc Q Vuong
- Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Hailey Adams
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Lin BC, Li QY, Tian L, Liu HL, Liu XH, Shi Y, He C, Ding SS, Yan J, Li K, Bian LP, Lai WQ, Zhang W, Li X, Xi ZG. Identification of apoptosis-associated protein factors distinctly expressed in cigarette smoke condensate-exposed airway bronchial epithelial cells. J Biochem Mol Toxicol 2020; 34:e22444. [PMID: 31954379 DOI: 10.1002/jbt.22444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 11/07/2022]
Abstract
Smoking is associated with an increased risk of respiratory diseases, including lung cancer and asthma. However, the mechanisms or diagnostic markers for smoking-related diseases remain largely unknown. Here we investigated the role of cigarette smoke condensate (CSC) in the regulation of human bronchial epithelial cell (BEAS-2B) behavior. We found that exposure to CSC significantly inhibited BEAS-2B cell viability, impaired cell morphology, induced cell apoptosis, triggered oxidative damage, and promoted inflammatory response, which suggests a deleterious effect of CSC on bronchial epithelial cells. In addition, CSC markedly altered the expression of apoptosis-associated protein factors, including p21, soluble tumor necrosis factor receptor 1, and Fas ligand. In sum, our study identified a panel of novel protein factors that may mediate the actions of CSC on bronchial epithelial cells and have a predictive value for the development and progression of smoking-related diseases, thus providing insights into the development of potential diagnostic and therapeutic strategies against these diseases.
Collapse
Affiliation(s)
- Ben-Cheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qiu-Yue Li
- Department of Occupation Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Huan-Liang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiao-Hua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chen He
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Su-Su Ding
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Li-Ping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wen-Qing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wei Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiang Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhu-Ge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
5
|
Sotty J, Garçon G, Denayer FO, Alleman LY, Saleh Y, Perdrix E, Riffault V, Dubot P, Lo-Guidice JM, Canivet L. Toxicological effects of ambient fine (PM 2.5-0.18) and ultrafine (PM 0.18) particles in healthy and diseased 3D organo-typic mucocilary-phenotype models. ENVIRONMENTAL RESEARCH 2019; 176:108538. [PMID: 31344532 DOI: 10.1016/j.envres.2019.108538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The knowledge of the underlying mechanisms by which particulate matter (PM) exerts its health effects is still incomplete since it may trigger various symptoms as some persons may be more susceptible than others. Detailed studies realized in more relevant in vitro models are highly needed. Healthy normal human bronchial epithelial (NHBE), asthma-diseased human bronchial epithelial (DHBE), and COPD-DHBE cells, differentiated at the air-liquid interface, were acutely or repeatedly exposed to fine (i.e., PM2.5-0.18, also called FP) and quasi-ultrafine (i.e., PM0.18, also called UFP) particles. Immunofluorescence labelling of pan-cytokeratin, MUC5AC, and ZO-1 confirmed their specific cell-types. Baselines of the inflammatory mediators secreted by all the cells were quite similar. Slight changes of TNFα, IL-1β, IL-6, IL-8, GM-CSF, MCP-1, and/or TGFα, and of H3K9 histone acetylation supported a higher inflammatory response of asthma- and especially COPD-DHBE cells, after exposure to FP and especially UFP. At baseline, 35 differentially expressed genes (DEG) in asthma-DHBE, and 23 DEG in COPD-DHBE, compared to NHBE cells, were reported. They were involved in biological processes implicated in the development of asthma and COPD diseases, such as cellular process (e.g., PLA2G4C, NLRP1, S100A5, MUC1), biological regulation (e.g., CCNE1), developmental process (e.g., WNT10B), and cell component organization and synthesis (e.g., KRT34, COL6A1, COL6A2). In all the FP or UFP-exposed cell models, DEG were also functionally annotated to the chemical metabolic process (e.g., CYP1A1, CYP1B1, CYP1A2) and inflammatory response (e.g., EREG). Another DEG, FGF-1, was only down-regulated in asthma and specially COPD-DHBE cells repeatedly exposed. While RAB37 could help to counteract the down-regulation of FGF-1 in asthma-DHBE cells, the deregulation of FGR, WNT7B, VIPR1, and PPARGC1A could dramatically contribute to make it worse in COPD-DHBE cells. Taken together, these data contributed to support the highest effects of UFP versus FP and highest sensitivity of asthma- and notably COPD-DHBE versus NHBE cells.
Collapse
Affiliation(s)
- J Sotty
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - G Garçon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - F-O Denayer
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - Y Saleh
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - V Riffault
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - P Dubot
- MCMC - ICMPE UMR 7182, Rue H. Dunant, 94320 Thiais, France
| | - J-M Lo-Guidice
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L Canivet
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| |
Collapse
|
6
|
Chang Y, Siddens LK, Heine LK, Sampson DA, Yu Z, Fischer KA, Löhr CV, Tilton SC. Comparative mechanisms of PAH toxicity by benzo[a]pyrene and dibenzo[def,p]chrysene in primary human bronchial epithelial cells cultured at air-liquid interface. Toxicol Appl Pharmacol 2019; 379:114644. [PMID: 31255691 DOI: 10.1016/j.taap.2019.114644] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023]
Abstract
Current assumption for assessing carcinogenic risk of polycyclic aromatic hydrocarbons (PAHs) is that they function through a common mechanism of action; however, recent studies demonstrate that PAHs can act through unique mechanisms potentially contributing to cancer outcomes in a non-additive manner. Using a primary human 3D bronchial epithelial culture (HBEC) model, we assessed potential differences in mechanism of toxicity for two PAHs, benzo[a]pyrene (BAP) and dibenzo[def,p]chrysene (DBC), compared to a complex PAH mixture based on short-term biosignatures identified from transcriptional profiling. Differentiated bronchial epithelial cells were treated with BAP (100-500 μg/ml), DBC (10 μg/ml), and coal tar extract (CTE 500-1500 μg/ml, SRM1597a) for 48 h and gene expression was measured by RNA sequencing or quantitative PCR. Comparison of BAP and DBC gene signatures showed that the majority of genes (~60%) were uniquely regulated by treatment, including signaling pathways for inflammation and DNA damage by DBC and processes for cell cycle, hypoxia and oxidative stress by BAP. Specifically, BAP upregulated targets of AhR, NRF2, and KLF4, while DBC downregulated these same targets, suggesting a chemical-specific pattern in transcriptional regulation involved in antioxidant response, potentially contributing to differences in PAH potency. Other processes were regulated in common by all PAH treatments, BAP, DBC and CTE, including downregulation of genes involved in cell adhesion and reduced functional measurements of barrier integrity. This work supports prior in vivo studies and demonstrates the utility of profiling short-term biosignatures in an organotypic 3D model to identify mechanisms linked to carcinogenic risk of PAHs in humans.
Collapse
Affiliation(s)
- Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Lauren K Heine
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - David A Sampson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Zhen Yu
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Kay A Fischer
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Susan C Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
7
|
Corbett SE, Nitzberg M, Moses E, Kleerup E, Wang T, Perdomo C, Perdomo C, Liu G, Xiao X, Liu H, Elashoff DA, Brooks DR, O'Connor GT, Dubinett SM, Spira A, Lenburg ME. Gene Expression Alterations in the Bronchial Epithelium of e-Cigarette Users. Chest 2019; 156:764-773. [PMID: 31233743 DOI: 10.1016/j.chest.2019.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Although e-cigarette (ECIG) use has increased in the United States, their potential health effects remain uncertain. Understanding the effects of tobacco cigarette (TCIG) smoke on bronchial airway epithelial gene expression have previously provided insights into tobacco-related disease pathogenesis. Identifying the impact of ECIGs on airway gene expression could provide insights into their potential long-term health effects. We sought to compare the bronchial airway gene-expression profiles of former TCIG smokers now using ECIGs with the profiles of former and current TCIG smokers. METHODS We performed gene-expression profiling of bronchial epithelial cells collected from current TCIG smokers (n = 9), current ECIG users who are former TCIG smokers (n = 15), and former TCIG smokers (n = 21). We then compared our findings with previous studies of the effects of TCIG use on bronchial epithelium, as well an in vitro model of ECIG exposure. RESULTS Among 3,165 genes whose expression varied between the three study groups (q < 0.05), we identified 468 genes altered in ECIG users relative to former smokers (P < .05). Seventy-nine of these genes were up- or down-regulated concordantly among ECIG and TCIG users. We did not detect ECIG-associated gene-expression changes in known pathways associated with TCIG usage. Genes downregulated in ECIG users are enriched among the genes most downregulated by exposure of airway epithelium to ECIG vapor in vitro. CONCLUSIONS ECIGs induce both distinct and shared patterns of gene expression relative to TCIGs in the bronchial airway epithelium. The concordance of the genes altered in ECIG users and in the in vitro study suggests that genes altered in ECIG users are likely to be changed as the direct effect of ECIG exposure.
Collapse
Affiliation(s)
- Sean E Corbett
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Matthew Nitzberg
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Elizabeth Moses
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Eric Kleerup
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Teresa Wang
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Catalina Perdomo
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Claudia Perdomo
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Xiaohui Xiao
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - David A Elashoff
- Department of Biostatistics, University of California, Los Angeles, CA
| | - Daniel R Brooks
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - George T O'Connor
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Avrum Spira
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA; Johnson & Johnson, Cambridge, MA.
| | - Marc E Lenburg
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
8
|
The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019. [DOI: 10.4155/fsoa-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Pezzuto A, Citarella F, Croghan I, Tonini G. The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019; 5:FSO394. [PMID: 31205749 PMCID: PMC6556819 DOI: 10.2144/fsoa-2019-0017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking is a major preventable risk factor for lung cancer, contributing to lung cancer progression and metastasis. Moreover, cigarette smoking correlates with increased metastasis frequency of pancreatic, breast and bladder cancer. The aim of this review was to examine the role of cigarette smoke extract in cell cycle and cancer progression. Clinical impact and the effects of cigarette smoke extract on carcinogenesis are discussed. 98 of the over 5000 chemicals in tobacco smoke are known carcinogens that can act on cancer genes such as K-RAS and p53. Through various mechanisms these compounds can activate molecules involved in the cell cycle, such as cyclins, and molecules involved in apoptosis and autophagy, such as Beclin-1 or LC3B. A search of the literature, including in vitro and in vivo studies, was carried out and the results summarized. There is evidence of cancerogenic effects of cigarette smoke compounds. Cigarette smoke extract is a tobacco condensate obtained by filtration processes. Studies have shown that it can modify the cell cycle, inducing uncontrolled cell proliferation. This effect occurs through activation of genetic and epigenetic pathways and increasing the expression of proteins involved in inflammation. The pathways activated by cigarette smoke extract open up opportunities for researchers to develop new targeted therapies toward the specific molecules involved. Furthermore, the effects exerted by cigarette smoke extract on normal epithelial cells hold potential for use in the development of prevention medicine and early cancer diagnosis.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular & Thoracic Department, AOU Sant'Andrea, Sapienza - Università di Roma, Roma, Italy
| | | | - Ivana Croghan
- Department of Medicine Clinical Research Office & Primary Care Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Giuseppe Tonini
- Oncology Department, Campus Bio-Medico Università di Roma, Roma, Italy
| |
Collapse
|
10
|
Zhang L, Wang H, Wang C. Persistence of smoking induced non-small cell lung carcinogenesis by decreasing ERBB pathway-related microRNA expression. Thorac Cancer 2019; 10:890-897. [PMID: 30868748 PMCID: PMC6449224 DOI: 10.1111/1759-7714.13020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background Tobacco use is responsible for approximately 80–90% of non‐small cell lung cancer cases. A large evidence base has shown that the ERBB pathway is associated with the occurrence of lung cancer. However, the mechanisms of how smoking activates the ERBB pathway have yet to be explained. We hypothesized that microRNAs may induce ERBB pathway activity during the process of lung cancer carcinogenesis. Methods We analyzed microRNA array data from the Gene Expression Omnibus and the Kyoto Encyclopedia of Genes and Genomes to determine any associations between genes and smoking in three groups of patients with NSCLC: smokers, former smokers, and non‐smokers. Results The interaction network among miRNAs, including hsa‐mir‐185‐3p, hsa‐mir‐4295, hsa‐mir‐4288, and hsa‐mir‐613, promotes lung cancer development by affecting the ERBB pathway. Conclusion Our findings provide evidence to explain the mechanism of lung cancer development in smokers.
Collapse
Affiliation(s)
- Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hailong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
11
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Huang X, Zhu Z, Guo X, Kong X. The roles of microRNAs in the pathogenesis of chronic obstructive pulmonary disease. Int Immunopharmacol 2018; 67:335-347. [PMID: 30578969 DOI: 10.1016/j.intimp.2018.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive and irreversible airflow obstruction, with an abnormal lung function. The etiology of COPD correlates with complex interactions between environmental and genetic determinants. However, the exact pathogenesis of COPD is obscure although it involves multiple aspects including oxidative stress, imbalance between proteolytic and anti-proteolytic activity, immunity and inflammation, apoptosis, and repair and destruction in both airways and lungs. Many genes have been demonstrated to be involved in those pathogenic processes of this disease in patients exposed to harmful environmental factors. Previous reports have investigated promising microRNAs (miRNAs) to disclose the molecular mechanisms for COPD development induced by different environmental exposure and genetic predisposition encounter, and find some potential miRNA biomarkers for early diagnosis and treatment targets of COPD. In this review, we summarized the expression profiles of the reported miRNAs from studies of COPD associated with environmental risk factors including cigarette smoking and air pollution exposures, and provided an overview of roles of those miRNAs in the pathogenesis of the disease. We also highlighted the potential utility and limitations of miRNAs serving as diagnostic biomarkers and therapeutic targets for COPD.
Collapse
Affiliation(s)
- Xinwei Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Zongxin Zhu
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiaoran Guo
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
13
|
Billatos E, Vick JL, Lenburg ME, Spira AE. The Airway Transcriptome as a Biomarker for Early Lung Cancer Detection. Clin Cancer Res 2018; 24:2984-2992. [PMID: 29463557 PMCID: PMC7397497 DOI: 10.1158/1078-0432.ccr-16-3187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Lung cancer remains the leading cause of cancer-related death due to its advanced stage at diagnosis. Early detection of lung cancer can be improved by better defining who should be screened radiographically and determining which imaging-detected pulmonary nodules are malignant. Gene expression biomarkers measured in normal-appearing airway epithelium provide an opportunity to use lung cancer-associated molecular changes in this tissue for early detection of lung cancer. Molecular changes in the airway may result from an etiologic field of injury and/or field cancerization. The etiologic field of injury reflects the aberrant physiologic response to carcinogen exposure that creates a susceptible microenvironment for cancer initiation. In contrast, field cancerization reflects effects of "first-hit" mutations in a clone of cells from which the tumor ultimately arises or the effects of the tumor on the surrounding tissue. These fields might have value both for assessing lung cancer risk and diagnosis. Cancer-associated gene expression changes in the bronchial airway have recently been used to develop and validate a 23-gene classifier that improves the diagnostic yield of bronchoscopy for lung cancer among intermediate-risk patients. Recent studies have demonstrated that these lung cancer-related gene expression changes extend to nasal epithelial cells that can be sampled noninvasively. While the bronchial gene expression biomarker is being adopted clinically, further work is necessary to explore the potential clinical utility of gene expression profiling in the nasal epithelium for lung cancer diagnosis, lung cancer risk assessment, and precision medicine for lung cancer treatment and chemoprevention. Clin Cancer Res; 24(13); 2984-92. ©2018 AACR.
Collapse
Affiliation(s)
- Ehab Billatos
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Jessica L Vick
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Marc E Lenburg
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Avrum E Spira
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts.
| |
Collapse
|
14
|
Kopa PN, Pawliczak R. Effect of smoking on gene expression profile – overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol Mech Methods 2018; 28:397-409. [DOI: 10.1080/15376516.2018.1461289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulina Natalia Kopa
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S, Rebuli ME, Haridass P, Alexis NE, Jaspers I, Kesimer M. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med 2018; 197:492-501. [PMID: 29053025 PMCID: PMC5821909 DOI: 10.1164/rccm.201708-1590oc] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022] Open
Abstract
RATIONALE E-cigarettes have become increasingly popular and little is known about their potential adverse health effects. OBJECTIVES To determine the effects of e-cigarette use on the airways. METHODS Induced sputum samples from cigarette smokers, e-cigarette users, and nonsmokers were analyzed by quantitative proteomics, and the total and individual concentrations of mucins MUC5AC and MUC5B were determined by light scattering/refractometry and labeled mass spectrometry, respectively. Neutrophil extracellular trap (NET) formation rates were also determined for the same groups. MEASUREMENTS AND MAIN RESULTS E-cigarette users exhibited significant increases in aldehyde-detoxification and oxidative stress-related proteins associated with cigarette smoke compared with nonsmokers. The levels of innate defense proteins associated with chronic obstructive pulmonary disease, such as elastase and matrix metalloproteinase-9, were significantly elevated in e-cigarette users as well. E-cigarette users' sputum also uniquely exhibited significant increases in neutrophil granulocyte-related and NET-related proteins, such as myeloperoxidase, azurocidin, and protein-arginine deiminase 4, despite no significant elevation in neutrophil cell counts. Peripheral neutrophils from e-cigarette users showed increased susceptibility to phorbol 12-myristate 13-acetate-induced NETosis. Finally, a compositional change in the gel-forming building blocks of airway mucus (i.e., an elevated concentration of mucin MUC5AC) was observed in both cigarette smokers and e-cigarette users. CONCLUSIONS Together, our results indicate that e-cigarette use alters the profile of innate defense proteins in airway secretions, inducing similar and unique changes relative to cigarette smoking. These data challenge the concept that e-cigarettes are a healthier alternative to cigarettes.
Collapse
Affiliation(s)
- Boris Reidel
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Giorgia Radicioni
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Phillip W. Clapp
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amina A. Ford
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Sabri Abdelwahab
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Meghan E. Rebuli
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Neil E. Alexis
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
16
|
Siber-Hoogeboom R, Schicht M, Hoogeboom S, Paulsen F, Traxdorf M. Obstructive sleep apnea and rhonchopathy are associated with downregulation of trefoil factor family peptide 3 (TFF3)-Implications of changes in oral mucus composition. PLoS One 2017; 12:e0185200. [PMID: 29028798 PMCID: PMC5640215 DOI: 10.1371/journal.pone.0185200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022] Open
Abstract
Study objectives Trefoil factor family (TFF) peptides belong to the family of mucin-associated peptides and are expressed in most mucosal surfaces. TFF peptides carry out functions such as proliferation and migration enhancement, anti-apoptosis, and wound healing. Moreover, TFFs are associated with mucins and interact with them as “linker peptides”, thereby influencing mucus viscosity. To test the hypothesis that in rhonchopathy and obstructive sleep apnea (OSA) changes occur in the expression of TFF3 and -2 that could contribute to changes in mucus viscosity, leading to an increase in upper airway resistance during breathing. Methods RT-PCR, Western-blot, immunohistochemistry and ELISA were performed to detect and quantify TFF3 and -2 in uvula samples. In addition, 99 saliva samples from patients with mild, moderate or severe OSA, as well as samples from rhonchopathy patients and from healthy volunteers, were analyzed by ELISA. Results TFF3 was detected in all uvula samples. Immunohistochemistry revealed a subjectively decreasing antibody reactivity of the uvula epithelia with increasing disease severity. ELISA demonstrated significantly higher TFF3 saliva protein concentrations in the healthy control group compared to cases with rhonchopathy and OSA. Predisposing factors of OSA such as BMI or age showed no correlation with TFF3. No significant changes were observed with regard to TFF2. Conclusions The results suggest the involvement of TFF3 in the pathogenesis of rhonchopathy and OSA and lead to the hypothesis that reduction of TFF3 production by the epithelium and subepithelial mucous glands of the uvula contribute to an increase in breathing resistance due to a change in mucus organization.
Collapse
Affiliation(s)
- Regina Siber-Hoogeboom
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Schicht
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Hoogeboom
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friedrich Paulsen
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- * E-mail:
| | - Maximilian Traxdorf
- Department of Otorhinolaryngology, Head & Neck Surgery, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
17
|
Ponomaryova AA, Cherdyntseva NV, Bondar AA, Dobrodeev AY, Zavyalov AA, Tuzikov SA, Vlassov VV, Choinzonov EL, Laktionov PP, Rykova EY. Dynamics of LINE-1 retrotransposon methylation levels in circulating DNA from lung cancer patients undergoing antitumor therapy. Mol Biol 2017. [DOI: 10.1134/s0026893317040148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Mertens TCJ, van der Does AM, Kistemaker LE, Ninaber DK, Taube C, Hiemstra PS. Cigarette smoke differentially affects IL-13-induced gene expression in human airway epithelial cells. Physiol Rep 2017; 5:5/13/e13347. [PMID: 28701525 PMCID: PMC5506530 DOI: 10.14814/phy2.13347] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 11/24/2022] Open
Abstract
Allergic airways inflammation in asthma is characterized by an airway epithelial gene signature composed of POSTN, CLCA1, and SERPINB2 This Th2 gene signature is proposed as a tool to classify patients with asthma into Th2-high and Th2-low phenotypes. However, many asthmatics smoke and the effects of cigarette smoke exposure on the epithelial Th2 gene signature are largely unknown. Therefore, we investigated the combined effect of IL-13 and whole cigarette smoke (CS) on the Th2 gene signature and the mucin-related genes MUC5AC and SPDEF in air-liquid interface differentiated human bronchial (ALI-PBEC) and tracheal epithelial cells (ALI-PTEC). Cultures were exposed to IL-13 for 14 days followed by 5 days of IL-13 with CS exposure. Alternatively, cultures were exposed once daily to CS for 14 days, followed by 5 days CS with IL-13. POSTN, SERPINB2, and CLCA1 expression were measured 24 h after the last exposure to CS and IL-13. In both models POSTN, SERPINB2, and CLCA1 expression were increased by IL-13. CS markedly affected the IL-13-induced Th2 gene signature as indicated by a reduced POSTN, CLCA1, and MUC5AC expression in both models. In contrast, IL-13-induced SERPINB2 expression remained unaffected by CS, whereas SPDEF expression was additively increased. Importantly, cessation of CS exposure failed to restore IL-13-induced POSTN and CLCA1 expression. We show for the first time that CS differentially affects the IL-13-induced gene signature for Th2-high asthma. These findings provide novel insights into the interaction between Th2 inflammation and cigarette smoke that is important for asthma pathogenesis and biomarker-guided therapy in asthma.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Loes E Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Perez-Rogers JF, Gerrein J, Anderlind C, Liu G, Zhang S, Alekseyev Y, Smith KP, Whitney D, Evan Johnson W, Elashoff DA, Dubinett SM, Brody J, Spira A, Lenburg ME. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection. J Natl Cancer Inst 2017; 109:3053477. [PMID: 28376173 PMCID: PMC6059169 DOI: 10.1093/jnci/djw327] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/30/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022] Open
Abstract
Background We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Methods Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. Results We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P < .001). Using bronchial gene expression data from the AEGIS-1 patients, we found statistically significant concordant cancer-associated gene expression alterations between the two airway sites ( P < .001). Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling. A nasal lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. Conclusions These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection.
Collapse
Affiliation(s)
- Joseph F. Perez-Rogers
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Joseph Gerrein
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Christina Anderlind
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Gang Liu
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Sherry Zhang
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Yuriy Alekseyev
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Kate Porta Smith
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Duncan Whitney
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - W. Evan Johnson
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - David A. Elashoff
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Steven M. Dubinett
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Jerome Brody
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Avrum Spira
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | - Marc E. Lenburg
- Affiliations of authors: Bioinformatics Graduate Program, Boston University, Boston, MA (JFPR, JG); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA (JFPR, JG, CA, GL, SZ, WEJ, JB, AS, MEL); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA (YA); Veracyte, Inc., San Francisco, CA (KP, DW); Department of Biostatistics, University of California, Los Angeles, CA (DAE); Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA (SMD)
| | | |
Collapse
|
20
|
Beane J, Mazzilli SA, Tassinari AM, Liu G, Zhang X, Liu H, Buncio AD, Dhillon SS, Platero SJ, Lenburg ME, Reid ME, Lam S, Spira AE. Detecting the Presence and Progression of Premalignant Lung Lesions via Airway Gene Expression. Clin Cancer Res 2017; 23:5091-5100. [PMID: 28533227 DOI: 10.1158/1078-0432.ccr-16-2540] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/23/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Lung cancer is the leading cause of cancer-related death in the United States. The molecular events preceding the onset of disease are poorly understood, and no effective tools exist to identify smokers with premalignant lesions (PMLs) that will progress to invasive cancer. Prior work identified molecular alterations in the smoke-exposed airway field of injury associated with lung cancer. Here, we focus on an earlier stage in the disease process leveraging the airway field of injury to study PMLs and its utility in lung cancer chemoprevention.Experimental Design: Bronchial epithelial cells from normal appearing bronchial mucosa were profiled by mRNA-Seq from subjects with (n = 50) and without (n = 25) PMLs. Using surrogate variable and gene set enrichment analysis, we identified genes, pathways, and lung cancer-related gene sets differentially expressed between subjects with and without PMLs. A computational pipeline was developed to build and test a chemoprevention-relevant biomarker.Results: We identified 280 genes in the airway field associated with the presence of PMLs. Among the upregulated genes, oxidative phosphorylation was strongly enriched, and IHC and bioenergetics studies confirmed pathway findings in PMLs. The relationship between PMLs and squamous cell carcinomas (SCC) was also confirmed using published lung cancer datasets. The biomarker performed well predicting the presence of PMLs (AUC = 0.92, n = 17), and changes in the biomarker score associated with progression/stability versus regression of PMLs (AUC = 0.75, n = 51).Conclusions: Transcriptomic alterations in the airway field of smokers with PMLs reflect metabolic and early lung SCC alterations and may be leveraged to stratify smokers at high risk for PML progression and monitor outcome in chemoprevention trials. Clin Cancer Res; 23(17); 5091-100. ©2017 AACR.
Collapse
Affiliation(s)
- Jennifer Beane
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Anna M Tassinari
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Xiaohui Zhang
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Hanqiao Liu
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Anne Dy Buncio
- Department of Medicine, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Samjot S Dhillon
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Suso J Platero
- Janssen Research and Development, Spring House, Pennsylvania
| | - Marc E Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mary E Reid
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Stephen Lam
- Department of Medicine, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Avrum E Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
21
|
Haswell LE, Baxter A, Banerjee A, Verrastro I, Mushonganono J, Adamson J, Thorne D, Gaça M, Minet E. Reduced biological effect of e-cigarette aerosol compared to cigarette smoke evaluated in vitro using normalized nicotine dose and RNA-seq-based toxicogenomics. Sci Rep 2017; 7:888. [PMID: 28420881 PMCID: PMC5429854 DOI: 10.1038/s41598-017-00852-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/23/2017] [Indexed: 01/10/2023] Open
Abstract
Electronic cigarettes (e-cigarettes) use has increased globally and could potentially offer a lower risk alternative to cigarette smoking. Here, we assessed the transcriptional response of a primary 3D airway model acutely exposed to e-cigarette aerosol and cigarette (3R4F) smoke. Aerosols were generated with standard intense smoking regimens with careful consideration for dose by normalizing the exposures to nicotine. Two e-cigarette aerosol dilutions were tested for equivalent and higher nicotine delivery compared to 3R4F. RNA was extracted at 24 hrs and 48 hrs post exposure for RNA-seq. 873 and 205 RNAs were differentially expressed for 3R4F smoke at 24 hrs and 48 hrs using a pFDR < 0.01 and a [fold change] > 2 threshold. 113 RNAs were differentially expressed at the highest dose of e-cigarette aerosol using a looser threshold of pFDR < 0.05, 3 RNAs exceeded a fold change of 2. Geneset enrichment analysis revealed a clear response from lung cancer, inflammation, and fibrosis associated genes after 3R4F smoke exposure. Metabolic/biosynthetic processes, extracellular membrane, apoptosis, and hypoxia were identified for e-cigarette exposures, albeit with a lower confidence score. Based on equivalent or higher nicotine delivery, an acute exposure to e-cigarette aerosol had a reduced impact on gene expression compared to 3R4F smoke exposure in vitro.
Collapse
Affiliation(s)
- Linsey E Haswell
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Andrew Baxter
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Anisha Banerjee
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Ivan Verrastro
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Jessica Mushonganono
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Jason Adamson
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - David Thorne
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Marianna Gaça
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Emmanuel Minet
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK.
| |
Collapse
|
22
|
Komiyama T, Ogura A, Hirokawa T, Zhijing M, Kamiguchi H, Asai S, Miyachi H, Kobayashi H. Analysis to Estimate Genetic Variations in the Idarubicin-Resistant Derivative MOLT-3. Int J Mol Sci 2016; 18:E12. [PMID: 28025493 PMCID: PMC5297647 DOI: 10.3390/ijms18010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023] Open
Abstract
Gene alterations are a well-established mechanism leading to drug resistance in acute leukemia cells. A full understanding of the mechanisms of drug resistance in these cells will facilitate more effective chemotherapy. In this study, we investigated the mechanism(s) of drug resistance in the human acute leukemia cell line MOLT-3 and its idarubicin-resistant derivative MOLT-3/IDR through complete mitochondrial and nuclear DNA analyses. We identified genetic differences between these two cell lines. The ND3 mutation site (p.Thr61Ile) in the mitochondrial DNA sequence was unique to MOLT-3/IDR cells. Moreover, we identified five candidate genes harboring genetic alterations, including GALNT2, via CGH array analysis. Sequencing of the GALNT2 exon revealed a G1716K mutation present within the stop codon in MOLT-3/IDR cells but absent from MOLT-3 cells. This mutation led to an additional 18 amino acids in the protein encoded by GALNT2. Using real-time PCR, we determined an expression value for this gene of 0.35. Protein structure predictions confirmed a structural change in GALNT2 in MOLT-3/IDR cells that corresponded to the site of the mutation. We speculate that this mutation may be related to idarubicin resistance.
Collapse
Affiliation(s)
- Tomoyoshi Komiyama
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Atsushi Ogura
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| | - Takatsugu Hirokawa
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Waterfront Bio-IT Research Building 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | - Miao Zhijing
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiroshi Kamiguchi
- Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Satomi Asai
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hayato Miyachi
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
23
|
Shen Y, Wolkowicz MJ, Kotova T, Fan L, Timko MP. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells. Sci Rep 2016; 6:23984. [PMID: 27041137 PMCID: PMC4819171 DOI: 10.1038/srep23984] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/17/2016] [Indexed: 12/04/2022] Open
Abstract
Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products.
Collapse
Affiliation(s)
- Yifei Shen
- Research Center for Air Pollution and Health and Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | | | - Tatyana Kotova
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lonjiang Fan
- Research Center for Air Pollution and Health and Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
24
|
Perez PS, Nozawa SR, Macedo AA, Baranauskas JA. Windowing improvements towards more comprehensible models. Knowl Based Syst 2016. [DOI: 10.1016/j.knosys.2015.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Persistence of smoking-induced dysregulation of miRNA expression in the small airway epithelium despite smoking cessation. PLoS One 2015; 10:e0120824. [PMID: 25886353 PMCID: PMC4401720 DOI: 10.1371/journal.pone.0120824] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/05/2015] [Indexed: 11/30/2022] Open
Abstract
Even after quitting smoking, the risk of the development of chronic obstructive pulmonary disease (COPD) and lung cancer remains significantly higher compared to healthy nonsmokers. Based on the knowledge that COPD and most lung cancers start in the small airway epithelium (SAE), we hypothesized that smoking modulates miRNA expression in the SAE linked to the pathogenesis of smoking-induced airway disease, and that some of these changes persist after smoking cessation. SAE was collected from 10th to 12th order bronchi using fiberoptic bronchoscopy. Affymetrix miRNA 2.0 arrays were used to assess miRNA expression in the SAE from 9 healthy nonsmokers and 10 healthy smokers, before and after they quit smoking for 3 months. Smoking status was determined by urine nicotine and cotinine measurement. There were significant differences in the expression of 34 miRNAs between healthy smokers and healthy nonsmokers (p<0.01, fold-change >1.5), with functions associated with lung development, airway epithelium differentiation, inflammation and cancer. After quitting smoking for 3 months, 12 out of the 34 miRNAs did not return to normal levels, with Wnt/β-catenin signaling pathway being the top identified enriched pathway of the target genes of the persistent dysregulated miRNAs. In the context that many of these persistent smoking-dependent miRNAs are associated with differentiation, inflammatory diseases or lung cancer, it is likely that persistent smoking-related changes in SAE miRNAs play a role in the subsequent development of these disorders.
Collapse
|
26
|
Wang H, Word B, Lyn-Cook L, Yang M, Hammons G, Lyn-Cook B. Cytotoxicity of chronic exposure to 4 cigarette smoke condensates in 2 cell lines. Int J Toxicol 2015; 34:182-94. [PMID: 25800266 DOI: 10.1177/1091581815574349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tobacco use is the leading preventable cause of death. The cytotoxicity of cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke without the vapor phase, has mostly been tested in short-term in vitro studies lasting from a few hours to a few days. Here, we assessed the toxicity of CSCs from 2 reference cigarettes, 3R4F and CM6, using a primary human small airway epithelial (PSAE) cell line by quantifying adenosine 5'-triphosphate (ATP), 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), total glutathione (reduced glutathione [GSH] + oxidized glutathione [GSSG]), and lactate dehydrogenase (LDH) release over the course of 28 days. The CSCs, 0.3 to 10 μg/mL, promoted cell proliferation at 120 hours of exposure, but demonstrated cytotoxicity at days 14 and 28. Interestingly, CSCs, 0.3 to 3 μg/mL, showed a cell death effect at day 14 but induced cell proliferation at day 28. Consistently, transformation associated with morphological changes began by day 14 and the transformed cells grew dramatically at day 28. The LDH assay appeared to be sensitive for assessing early cell damage, whereas the ATP, MTS, and GSH assays were more suitable for determining later stage CSCs-induced cytotoxicity. The ATP assay showed greater sensitivity than the MTS and GSH assays. We also assessed the toxicity of CSCs in an human Telomerase Reverse Transcriptase (hTERT)-immortalized Barrett esophagus cell line (CP-C). The CP-C cells demonstrated dose- and time-dependent cytotoxicity over the course of 28 days but displayed higher resistance to CSCs than PSAE cells. This study demonstrates that CSCs cause cytotoxicity and induce transformation related to cell resistance and cell invasion properties.
Collapse
Affiliation(s)
- Honggang Wang
- Division of Biochemical Toxicology, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicology, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Lascelles Lyn-Cook
- Division of Biochemical Toxicology, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Maocheng Yang
- Office of Science, FDA/Center for Tobacco Products, Rockville, MD, USA
| | - George Hammons
- Division of Biochemical Toxicology, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
27
|
McWilliams A, Beigi P, Srinidhi A, Lam S, MacAulay CE. Sex and Smoking Status Effects on the Early Detection of Early Lung Cancer in High-Risk Smokers Using an Electronic Nose. IEEE Trans Biomed Eng 2015; 62:2044-54. [PMID: 25775482 DOI: 10.1109/tbme.2015.2409092] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Volatile organic compounds (VOCs) in exhaled breath as measured by electronic nose (e-nose) have utility as biomarkers to detect subjects at risk of having lung cancer in a screening setting. We hypothesize that breath analysis using an e-nose chemo-resistive sensor array could be used as a screening tool to discriminate patients diagnosed with lung cancer from high-risk smokers. METHODS Breath samples from 191 subjects-25 lung cancer patients and 166 high-risk smoker control subjects without cancer-were analyzed. For clinical relevancy, subjects in both groups were matched for age, sex, and smoking histories. Classification and regression trees and discriminant functions classifiers were used to recognize VOC patterns in e-nose data. Cross-validated results were used to assess classification accuracy. Repeatability and reproducibility of e-nose data were assessed by measuring subject-exhaled breath in parallel across two e-nose devices. RESULTS e-Nose measurements could distinguish lung cancer patients from high-risk control subjects, with a better than 80% classification accuracy. Subject sex and smoking status impacted classification as area under the curve results (ex-smoker males 0.846, ex-smoker female 0.816, current smoker male 0.745, and current smoker female 0.725) demonstrated. Two e-nose systems could be calibrated to give equivalent readings across subject-exhaled breath measured in parallel. CONCLUSIONS e-Nose technology may have significant utility as a noninvasive screening tool for detecting individuals at increased risk for lung cancer. SIGNIFICANCE The results presented further the case that VOC patterns could have real clinical utility to screen for lung cancer in the important growing ex-smoker population.
Collapse
|
28
|
Abstract
Diseases and death caused by exposure to tobacco smoke have become the single most serious preventable public health concern. Thus, biomarkers that can monitor tobacco exposure and health effects can play a critical role in tobacco product regulation and public health policy. Biomarkers of exposure to tobacco toxicants are well established and have been used in population studies to establish public policy regarding exposure to second-hand smoke, an example being the nicotine metabolite cotinine, which can be measured in urine. Biomarkers of biological response to tobacco smoking range from those indicative of inflammation to mRNA and microRNA patterns related to tobacco use and/or disease state. Biomarkers identifying individuals with an increased risk for a pathological response to tobacco have also been described. The challenge for any novel technology or biomarker is its translation to clinical and/or regulatory application, a process that requires first technical validation of the assay and then careful consideration of the context the biomarker assay may be used in the regulatory setting. Nonetheless, the current efforts to investigate new biomarker of tobacco smoke exposure promise to offer powerful new tools in addressing the health hazards of tobacco product use. This review will examine such biomarkers, albeit with a focus on those related to cigarette smoking.
Collapse
Affiliation(s)
- William Mattes
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA.
| | - Xi Yang
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Michael S Orr
- Office of Science, Food & Drug Administration, Center for Tobacco Products, Rockville, Maryland, USA
| | - Patricia Richter
- Office of Science, Food & Drug Administration, Center for Tobacco Products, Rockville, Maryland, USA
| | - Donna L Mendrick
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
29
|
Vucic EA, Thu KL, Pikor LA, Enfield KSS, Yee J, English JC, MacAulay CE, Lam S, Jurisica I, Lam WL. Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology. BMC Cancer 2014; 14:778. [PMID: 25342220 PMCID: PMC4216369 DOI: 10.1186/1471-2407-14-778] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023] Open
Abstract
Background Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status. Methods We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers. Results We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner. Conclusions We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-778) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Buccal spectral markers for lung cancer risk stratification. PLoS One 2014; 9:e110157. [PMID: 25299667 PMCID: PMC4192585 DOI: 10.1371/journal.pone.0110157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Lung cancer remains the leading cause of cancer deaths in the US with >150,000 deaths per year. In order to more effectively reduce lung cancer mortality, more sophisticated screening paradigms are needed. Previously, our group demonstrated the use of low-coherence enhanced backscattering (LEBS) spectroscopy to detect and quantify the micro/nano-architectural correlates of colorectal and pancreatic field carcinogenesis. In the lung, the buccal (cheek) mucosa has been suggested as an excellent surrogate site in the “field of injury”. We, therefore, wanted to assess whether LEBS could similarly sense the presence of lung. To this end, we applied a fiber-optic LEBS probe to a dataset of 27 smokers without diagnosed lung cancer (controls) and 46 with lung cancer (cases), which was divided into a training and a blinded validation set (32 and 41 subjects, respectively). LEBS readings of the buccal mucosa were taken from the oral cavity applying gentle contact. The diagnostic LEBS marker was notably altered in patients harboring lung cancer compared to smoking controls. The prediction rule developed on training set data provided excellent diagnostics with 94% sensitivity, 80% specificity, and 95% accuracy. Applying the same threshold to the blinded validation set yielded 79% sensitivity and 83% specificity. These results were not confounded by patient demographics or impacted by cancer type or location. Moreover, the prediction rule was robust across all stages of cancer including stage I. We envision the use of LEBS as the first part of a two-step paradigm shift in lung cancer screening in which patients with high LEBS risk markers are funnelled into more invasive screening for confirmation.
Collapse
|
31
|
Meng X, Meng C, Yang B, Zhao L, Sun X, Su Y, Liu H, Fan F, Liu X, Jia L. AP-2α downregulation by cigarette smoke condensate is counteracted by p53 in human lung cancer cells. Int J Mol Med 2014; 34:1094-100. [PMID: 25050743 DOI: 10.3892/ijmm.2014.1857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/10/2014] [Indexed: 11/06/2022] Open
Abstract
Cumulative findings have demonstrated that the dysregulation of tumor suppressor genes may be implicated in cigarette smoke-induced carcinogenesis. Activating enhancer-binding protein 2 (AP-2) is a eukaryotic transcriptional factor that plays a significant role in embryonic development and tumorigenesis. The vertebrate AP-2 family consists of AP-2α, AP-2β, AP-2γ, AP-2δ and AP-2ε. Previous studies have suggested that cigarette smoking disrupts AP-2 regulation. In the present study, we investigated the effects of cigarette smoke condensate (CSC) on AP-2α expression in human lung cancer cell lines (NCI-H1299, NCI-H446 and A549), as well as the potential mechanisms involved. Using RT-qPCR, we found that CSC decreased AP-2α expression by suppressing its transcription in human lung cancer cell lines, particularly in p53-deficient NCI-H1299 cells. Western blotting and luciferase assays were implemented and we found that the restoration of p53 expression rescued the NCI-H1299 cells from CSC-induced AP-2α loss, while the silencing of p53 resulted in increased AP-2α loss induced by CSC, suggesting an antagonizing role of p53 in the regulation of AP-2α by CSC. Our results indicate that AP-2α downregulation may be involved in smoke-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Xiangjun Meng
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bing Yang
- Department of Cell Biology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Li Zhao
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuefei Sun
- Department of Emergency, China-Japan Union Hospital, Changchun, Jilin 130021, P.R. China
| | - Yun Su
- Department of Orthopedics, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hongyang Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Feiyue Fan
- Department of Radiation Hazard Evaluation, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xiaodong Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lili Jia
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
32
|
Martin F, Sewer A, Talikka M, Xiang Y, Hoeng J, Peitsch MC. Quantification of biological network perturbations for mechanistic insight and diagnostics using two-layer causal models. BMC Bioinformatics 2014; 15:238. [PMID: 25015298 PMCID: PMC4227138 DOI: 10.1186/1471-2105-15-238] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/26/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High-throughput measurement technologies such as microarrays provide complex datasets reflecting mechanisms perturbed in an experiment, typically a treatment vs. control design. Analysis of these information rich data can be guided based on a priori knowledge, such as networks or set of related proteins or genes. Among those, cause-and-effect network models are becoming increasingly popular and more than eighty such models, describing processes involved in cell proliferation, cell fate, cell stress, and inflammation have already been published. A meaningful systems toxicology approach to study the response of a cell system, or organism, exposed to bio-active substances requires a quantitative measure of dose-response at network level, to go beyond the differential expression of single genes. RESULTS We developed a method that quantifies network response in an interpretable manner. It fully exploits the (signed graph) structure of cause-and-effect networks models to integrate and mine transcriptomics measurements. The presented approach also enables the extraction of network-based signatures for predicting a phenotype of interest. The obtained signatures are coherent with the underlying network perturbation and can lead to more robust predictions across independent studies. The value of the various components of our mathematically coherent approach is substantiated using several in vivo and in vitro transcriptomics datasets. As a proof-of-principle, our methodology was applied to unravel mechanisms related to the efficacy of a specific anti-inflammatory drug in patients suffering from ulcerative colitis. A plausible mechanistic explanation of the unequal efficacy of the drug is provided. Moreover, by utilizing the underlying mechanisms, an accurate and robust network-based diagnosis was built to predict the response to the treatment. CONCLUSION The presented framework efficiently integrates transcriptomics data and "cause and effect" network models to enable a mathematically coherent framework from quantitative impact assessment and data interpretation to patient stratification for diagnosis purposes.
Collapse
Affiliation(s)
- Florian Martin
- Philip Morris International, R&D, Biological Systems Research, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland.
| | | | | | | | | | | |
Collapse
|
33
|
Dubinett SM, Spira A. Challenge and Opportunity of Targeted Lung Cancer Chemoprevention. J Clin Oncol 2013; 31:4169-71. [DOI: 10.1200/jco.2013.51.2400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Steven M. Dubinett
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Avrum Spira
- Boston University School of Medicine, Boston, MA
| |
Collapse
|
34
|
MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis. Proc Natl Acad Sci U S A 2013; 110:18946-51. [PMID: 24158479 DOI: 10.1073/pnas.1220319110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis.
Collapse
|
35
|
Hoeng J, Talikka M, Martin F, Sewer A, Yang X, Iskandar A, Schlage WK, Peitsch MC. Case study: the role of mechanistic network models in systems toxicology. Drug Discov Today 2013; 19:183-92. [PMID: 23933191 DOI: 10.1016/j.drudis.2013.07.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/14/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Twenty first century systems toxicology approaches enable the discovery of biological pathways affected in response to active substances. Here, we briefly summarize current network approaches that facilitate the detailed mechanistic understanding of the impact of a given stimulus on a biological system. We also introduce our network-based method with two use cases and show how causal biological network models combined with computational methods provide quantitative mechanistic insights. Our approach provides a robust comparison of the transcriptional responses in different experimental systems and enables the identification of network-based biomarkers modulated in response to exposure. These advances can also be applied to pharmacology, where the understanding of disease mechanisms and adverse drug effects is imperative for the development of efficient and safe treatment options.
Collapse
Affiliation(s)
- Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Xiang Yang
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita Iskandar
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
36
|
Rab A, Rowe SM, Raju SV, Bebok Z, Matalon S, Collawn JF. Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol 2013; 305:L530-41. [PMID: 23934925 DOI: 10.1152/ajplung.00039.2013] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder consisting of chronic bronchitis and/or emphysema. COPD patients suffer from chronic infections and display exaggerated inflammatory responses and a progressive decline in respiratory function. The respiratory symptoms of COPD are similar to those seen in cystic fibrosis (CF), although the molecular basis of the two disorders differs. CF is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a chloride and bicarbonate channel (CFTR), leading to CFTR dysfunction. The majority of COPD cases result from chronic oxidative insults such as cigarette smoke. Interestingly, environmental stresses including cigarette smoke, hypoxia, and chronic inflammation have also been implicated in reduced CFTR function, and this suggests a common mechanism that may contribute to both the CF and COPD. Therefore, improving CFTR function may offer an excellent opportunity for the development of a common treatment for CF and COPD. In this article, we review what is known about the CF respiratory phenotype and discuss how diminished CFTR expression-associated ion transport defects may contribute to some of the pathological changes seen in COPD.
Collapse
Affiliation(s)
- Andras Rab
- Dept. of Cell, Developmental and Integrative Biology, Univ. of Alabama at Birmingham, 1918 Univ. Blvd., MCLM 395, Birmingham, AL 35294.
| | | | | | | | | | | |
Collapse
|
37
|
Chiriva-Internati M, Pandey A, Saba R, Kim M, Saadeh C, Lukman T, Chiaramonte R, Jenkins M, Cobos E, Jumper C, Alalawi R. Cancer testis antigens: a novel target in lung cancer. Int Rev Immunol 2013; 31:321-43. [PMID: 23083344 DOI: 10.3109/08830185.2012.723512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the main cause of cancer mortality worldwide. This is mainly due to the fact that it is diagnosed in advanced stage patients, which are no more surgically curable. Consequently, searching for novel treatments and new modalities for early diagnosis offers great promise to improve the clinical outcome. Recently, a new group of antigens, the cancer testis antigens, have been described as possible early diagnostic tools and therapeutic targets in cancer therapy.This review will report emerging evidences of cancer testis antigens deregulation in lung cancer and explore the state of the art of their currently known role and potential as markers for early diagnosis and disease progression and targets of an immunotherapeutic approach aiming to improve the cure rate of this tumor.
Collapse
Affiliation(s)
- Maurizio Chiriva-Internati
- Department of Internal Medicine, Division of Hematology & Oncology and Pulmonary and Critical Care Medicine, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang Q, Wang H, Zhang Y, Zhang Y, Xiao W. Activation of uPAR is required for cigarette smoke extract-induced epithelial-mesenchymal transition in lung epithelial cells. Oncol Res 2013; 21:295-305. [PMID: 25198659 DOI: 10.3727/096504014x13946388749036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke is a major risk factor for lung cancer, which may contribute to lung cancer invasion and metastasis. However, the mechanism remains unclear. Epithelial-mesenchymal transition (EMT) is a critical phenotypic alteration of cells that triggers invasion and metastasis. The urokinase-type plasminogen activator receptor (uPAR) is originally thought to assist the directional invasion of migrating cells, and increasing evidences show that overexpression of uPAR in cancer cells promotes EMT. Therefore, we intend to study the role of uPAR in cigarette smoke extract (CSE)-induced EMT in lung epithelial cells. In this study, we showed that lung epithelial cells cultured after CSE treatment demonstrated changes consistent with EMT. E-cadherin was decreased, while vimentin, N-cadherin, and α-SMA expression was increased in both A549 and BEAS-2B cells. Cells acquired a mesenchymal-like morphology and increased cell motility and invasion. In addition, CSE-induced EMT was accompanied by increased expression of uPAR and activation of AKT downstream of uPAR. CSE-induced EMT and activation of AKT were blocked by uPAR gene silencing. Antagonizing PI3K also inhibits development of CSE-induced EMT. We conclude that CSE can induce EMT, and the activity of uPAR-dependent signal pathway in EMT is recapitulated in lung epithelial cells in vitro.
Collapse
Affiliation(s)
- Qin Wang
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, P.R. China
| | | | | | | | | |
Collapse
|
39
|
Martinez VD, Becker-Santos DD, Lam S, Lam WL. Emerging challenges for the management of arsenic-induced lung cancer. Lung Cancer Manag 2012. [DOI: 10.2217/lmt.12.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Stephen Lam
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
40
|
Beane J, Cheng L, Soldi R, Zhang X, Liu G, Anderlind C, Lenburg ME, Spira A, Bild AH. SIRT1 pathway dysregulation in the smoke-exposed airway epithelium and lung tumor tissue. Cancer Res 2012; 72:5702-11. [PMID: 22986747 DOI: 10.1158/0008-5472.can-12-1043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cigarette smoke produces a molecular field of injury in epithelial cells lining the respiratory tract. However, the specific signaling pathways that are altered in the airway of smokers and the signaling processes responsible for the transition from smoking-induced airway damage to lung cancer remain unknown. In this study, we use a genomic approach to study the signaling processes associated with tobacco smoke exposure and lung cancer. First, we developed and validated pathway-specific gene expression signatures in bronchial airway epithelium that reflect activation of signaling pathways relevant to tobacco exposure, including ATM, BCL2, GPX1, NOS2, IKBKB, and SIRT1. Using these profiles and four independent gene expression datasets, we found that SIRT1 activity is significantly upregulated in cytologically normal bronchial airway epithelial cells from active smokers compared with nonsmokers. In contrast, this activity is strikingly downregulated in non-small cell lung cancer. This pattern of signaling modulation was unique to SIRT1, and downregulation of SIRT1 activity is confined to tumors from smokers. Decreased activity of SIRT1 was validated using genomic analyses of mouse models of lung cancer and biochemical testing of SIRT1 activity in patient lung tumors. Together, our findings indicate a role of SIRT1 in response to smoke and a potential role in repressing lung cancer. Furthermore, our findings suggest that the airway gene expression signatures derived in this study can provide novel insights into signaling pathways altered in the "field of injury" induced by tobacco smoke and thus may impact strategies for prevention of tobacco-related lung cancer.
Collapse
Affiliation(s)
- Jennifer Beane
- Section of Computational Biomedicine, Department of Medicine, Boston University Medical Center; Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang G, Xu Z, Wang R, Al-Hijji M, Salit J, Strulovici-Barel Y, Tilley AE, Mezey JG, Crystal RG. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers. BMC Med Genomics 2012; 5:21. [PMID: 22676183 PMCID: PMC3443416 DOI: 10.1186/1755-8794-5-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/01/2012] [Indexed: 12/15/2022] Open
Abstract
Background Mucus hypersecretion contributes to the morbidity and mortality of smoking-related lung diseases, especially chronic obstructive pulmonary disease (COPD), which starts in the small airways. Despite progress in animal studies, the genes and their expression pattern involved in mucus production and secretion in human airway epithelium are not well understood. We hypothesized that comparison of the transcriptomes of the small airway epithelium of individuals that express high vs low levels of MUC5AC, the major macromolecular component of airway mucus, could be used as a probe to identify the genes related to human small airway mucus production/secretion. Methods Flexible bronchoscopy and brushing were used to obtain small airway epithelium (10th to 12th order bronchi) from healthy nonsmokers (n=60) and healthy smokers (n=72). Affymetrix HG-U133 plus 2.0 microarrays were used to assess gene expression. Massive parallel sequencing (RNA-Seq) was used to verify gene expression of small airway epithelium from 5 nonsmokers and 6 smokers. Results MUC5AC expression varied 31-fold among the healthy nonsmokers. Genome-wide comparison between healthy nonsmokers (n = 60) grouped as “high MUC5AC expressors” vs “low MUC5AC expressors” identified 528 genes significantly up-regulated and 15 genes significantly down-regulated in the high vs low expressors. This strategy identified both mucus production and secretion related genes under control of a network composed of multiple transcription factors. Based on the literature, genes in the up-regulated list were used to identify a 73 “MUC5AC-associated core gene” list with 9 categories: mucus component; mucus-producing cell differentiation-related transcription factor; mucus-producing cell differentiation-related pathway or mediator; post-translational modification of mucin; vesicle transport; endoplasmic reticulum stress-related; secretory granule-associated; mucus secretion-related regulator and mucus hypersecretory-related ion channel. As a validation cohort, we assessed the MUC5AC-associated core gene list in the small airway epithelium of an independent set of healthy smokers (n = 72). There was up-regulation of MUC5AC in the small airway epithelium of smokers (2.3-fold, p < 10-8) associated with a coordinated up-regulation of MUC5AC-associated core gene expression pattern in the small airway epithelium of smokers (p < 0.01). Deep sequencing confirmed these observations. Conclusion The identification of the genes associated with increased airway mucin production in humans should be useful in understanding the pathogenesis of airway mucus hypersecretion and identifying therapeutic targets. Author summary Mucus hypersecretion contributes to the morbidity and mortality of smoking-related lung diseases, especially chronic obstructive pulmonary disease (COPD), which starts in the small airways. Little is known about the gene networks associated with the synthesis and secretion of mucins in the human small airway epithelium. Taking advantage of the knowledge that MUC5AC is a major mucin secreted by the small airway epithelium, the expression of MUC5AC in small airway epithelium is highly regulated at the transcriptional level and our observation that healthy nonsmokers have variable numbers of MUC5AC+ secretory cells in the human small airway epithelium, we compared genome-wide gene expression of the small airway epithelium of high vs low MUC5AC expressors from 60 nonsmokers to identify the genes associated with MUC5AC expression. This novel strategy enabled identification of a 73 “MUC5AC-associated core gene” list with 9 categories, which control a series of processes from mucin biosynthesis to mucus secretion. The coordinated gene expression pattern of MUC5AC-associated core genes were corroborated in an independent cohort of 72 healthy smokers. Deep sequencing of small airway epithelium RNA confirmed these observations. This finding will be useful in identifying therapeutic targets to treat small airway mucus hypersecretion.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Staaf J, Jönsson G, Jönsson M, Karlsson A, Isaksson S, Salomonsson A, Pettersson HM, Soller M, Ewers SB, Johansson L, Jönsson P, Planck M. Relation between smoking history and gene expression profiles in lung adenocarcinomas. BMC Med Genomics 2012; 5:22. [PMID: 22676229 PMCID: PMC3447685 DOI: 10.1186/1755-8794-5-22] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/07/2012] [Indexed: 11/13/2022] Open
Abstract
Background Lung cancer is the worldwide leading cause of death from cancer. Tobacco usage is the major pathogenic factor, but all lung cancers are not attributable to smoking. Specifically, lung cancer in never-smokers has been suggested to represent a distinct disease entity compared to lung cancer arising in smokers due to differences in etiology, natural history and response to specific treatment regimes. However, the genetic aberrations that differ between smokers and never-smokers’ lung carcinomas remain to a large extent unclear. Methods Unsupervised gene expression analysis of 39 primary lung adenocarcinomas was performed using Illumina HT-12 microarrays. Results from unsupervised analysis were validated in six external adenocarcinoma data sets (n=687), and six data sets comprising normal airway epithelial or normal lung tissue specimens (n=467). Supervised gene expression analysis between smokers and never-smokers were performed in seven adenocarcinoma data sets, and results validated in the six normal data sets. Results Initial unsupervised analysis of 39 adenocarcinomas identified two subgroups of which one harbored all never-smokers. A generated gene expression signature could subsequently identify never-smokers with 79-100% sensitivity in external adenocarcinoma data sets and with 76-88% sensitivity in the normal materials. A notable fraction of current/former smokers were grouped with never-smokers. Intriguingly, supervised analysis of never-smokers versus smokers in seven adenocarcinoma data sets generated similar results. Overlap in classification between the two approaches was high, indicating that both approaches identify a common set of samples from current/former smokers as potential never-smokers. The gene signature from unsupervised analysis included several genes implicated in lung tumorigenesis, immune-response associated pathways, genes previously associated with smoking, as well as marker genes for alveolar type II pneumocytes, while the best classifier from supervised analysis comprised genes strongly associated with proliferation, but also genes previously associated with smoking. Conclusions Based on gene expression profiling, we demonstrate that never-smokers can be identified with high sensitivity in both tumor material and normal airway epithelial specimens. Our results indicate that tumors arising in never-smokers, together with a subset of tumors from smokers, represent a distinct entity of lung adenocarcinomas. Taken together, these analyses provide further insight into the transcriptional patterns occurring in lung adenocarcinoma stratified by smoking history.
Collapse
Affiliation(s)
- Johan Staaf
- Department of Oncology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bossé Y, Postma DS, Sin DD, Lamontagne M, Couture C, Gaudreault N, Joubert P, Wong V, Elliott M, van den Berge M, Brandsma CA, Tribouley C, Malkov V, Tsou JA, Opiteck GJ, Hogg JC, Sandford AJ, Timens W, Paré PD, Laviolette M. Molecular signature of smoking in human lung tissues. Cancer Res 2012; 72:3753-63. [PMID: 22659451 DOI: 10.1158/0008-5472.can-12-1160] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cigarette smoking is the leading risk factor for lung cancer. To identify genes deregulated by smoking and to distinguish gene expression changes that are reversible and persistent following smoking cessation, we carried out genome-wide gene expression profiling on nontumor lung tissue from 853 patients with lung cancer. Gene expression levels were compared between never and current smokers, and time-dependent changes in gene expression were studied in former smokers. A total of 3,223 transcripts were differentially expressed between smoking groups in the discovery set (n = 344, P < 1.29 × 10(-6)). A substantial number of smoking-induced genes also were validated in two replication sets (n = 285 and 224), and a gene expression signature of 599 transcripts consistently segregated never from current smokers across all three sets. The expression of the majority of these genes reverted to never-smoker levels following smoking cessation, although the time course of normalization differed widely among transcripts. Moreover, some genes showed very slow or no reversibility in expression, including SERPIND1, which was found to be the most consistent gene permanently altered by smoking in the three sets. Our findings therefore indicate that smoking deregulates many genes, many of which reverse to normal following smoking cessation. However, a subset of genes remains altered even decades following smoking cessation and may account, at least in part, for the residual risk of lung cancer among former smokers. Cancer Res; 72(15); 3753-63. ©2012 AACR.
Collapse
Affiliation(s)
- Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, QC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lockwood WW, Wilson IM, Coe BP, Chari R, Pikor LA, Thu KL, Solis LM, Nunez MI, Behrens C, Yee J, English J, Murray N, Tsao MS, Minna JD, Gazdar AF, Wistuba II, MacAulay CE, Lam S, Lam WL. Divergent genomic and epigenomic landscapes of lung cancer subtypes underscore the selection of different oncogenic pathways during tumor development. PLoS One 2012; 7:e37775. [PMID: 22629454 PMCID: PMC3357406 DOI: 10.1371/journal.pone.0037775] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/27/2012] [Indexed: 01/12/2023] Open
Abstract
For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC.
Collapse
Affiliation(s)
- William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hackett NR, Butler MW, Shaykhiev R, Salit J, Omberg L, Rodriguez-Flores JL, Mezey JG, Strulovici-Barel Y, Wang G, Didon L, Crystal RG. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 2012; 13:82. [PMID: 22375630 PMCID: PMC3337229 DOI: 10.1186/1471-2164-13-82] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/29/2012] [Indexed: 01/04/2023] Open
Abstract
Background The small airway epithelium (SAE), the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq). Results The data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype. Conclusions These observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking.
Collapse
Affiliation(s)
- Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Paul S, Amundson SA. Gene expression signatures of radiation exposure in peripheral white blood cells of smokers and non-smokers. Int J Radiat Biol 2012; 87:791-801. [PMID: 21801107 DOI: 10.3109/09553002.2011.568574] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The issue of potential confounding factors is critical to the development of any approach to radiation biodosimetry, and has not been fully addressed for gene expression-based approaches. MATERIALS AND METHODS As a step in this direction, we have investigated the effect of smoking on the global radiation gene expression response in ex vivo-irradiated peripheral blood cells using microarray analysis. We also evaluated the ability of gene expression signatures to predict the radiation exposure level of ex vivo-exposed samples from smokers and non-smokers of both genders. RESULTS We identified eight genes with a radiation response that was significantly affected by smoking status, and confirmed an effect of smoking on the radiation response of the four and a half LIM domains 2 (FHL2) gene using quantitative real-time polymerase chain reaction. The performance of our previously defined 74-gene signature in predicting the radiation dose to samples in this study was unaffected by differences in gender or smoking status, however, giving 98% correct prediction of dose category. This is the same accuracy as that found in the original study from which the signature was derived, using different donors. CONCLUSION The results support the development of peripheral blood gene expression as a viable strategy for radiation biodosimetry.
Collapse
Affiliation(s)
- Sunirmal Paul
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
47
|
Guo NL, Wan YW, Denvir J, Porter DW, Pacurari M, Wolfarth MG, Castranova V, Qian Y. Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1129-53. [PMID: 22891886 PMCID: PMC3422779 DOI: 10.1080/15287394.2012.699852] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Concerns over the potential for multiwalled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n = 160) exposed to 0, 10, 20, 40, or 80 μg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 d postexposure. By using pairwise statistical analysis of microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5-fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at d 56 postexposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at d 56 postexposure to 10 μg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n = 256) and test set (n = 186). Furthermore, both gene signatures were associated with human lung cancer risk (n = 164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace.
Collapse
Affiliation(s)
- Nancy L Guo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
- Department of Community Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Ying-Wooi Wan
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - James Denvir
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Dale W Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Maricica Pacurari
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Michael G Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Vincent Castranova
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| |
Collapse
|
48
|
Beane J, Vick J, Schembri F, Anderlind C, Gower A, Campbell J, Luo L, Zhang XH, Xiao J, Alekseyev YO, Wang S, Levy S, Massion PP, Lenburg M, Spira A. Characterizing the impact of smoking and lung cancer on the airway transcriptome using RNA-Seq. Cancer Prev Res (Phila) 2011; 4:803-17. [PMID: 21636547 DOI: 10.1158/1940-6207.capr-11-0212] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cigarette smoke creates a molecular field of injury in epithelial cells that line the respiratory tract. We hypothesized that transcriptome sequencing (RNA-Seq) will enhance our understanding of the field of molecular injury in response to tobacco smoke exposure and lung cancer pathogenesis by identifying gene expression differences not interrogated or accurately measured by microarrays. We sequenced the high-molecular-weight fraction of total RNA (>200 nt) from pooled bronchial airway epithelial cell brushings (n = 3 patients per pool) obtained during bronchoscopy from healthy never smoker (NS) and current smoker (S) volunteers and smokers with (C) and without (NC) lung cancer undergoing lung nodule resection surgery. RNA-Seq libraries were prepared using 2 distinct approaches, one capable of capturing non-polyadenylated RNA (the prototype NuGEN Ovation RNA-Seq protocol) and the other designed to measure only polyadenylated RNA (the standard Illumina mRNA-Seq protocol) followed by sequencing generating approximately 29 million 36 nt reads per pool and approximately 22 million 75 nt paired-end reads per pool, respectively. The NuGEN protocol captured additional transcripts not detected by the Illumina protocol at the expense of reduced coverage of polyadenylated transcripts, while longer read lengths and a paired-end sequencing strategy significantly improved the number of reads that could be aligned to the genome. The aligned reads derived from the two complementary protocols were used to define the compendium of genes expressed in the airway epithelium (n = 20,573 genes). Pathways related to the metabolism of xenobiotics by cytochrome P450, retinol metabolism, and oxidoreductase activity were enriched among genes differentially expressed in smokers, whereas chemokine signaling pathways, cytokine-cytokine receptor interactions, and cell adhesion molecules were enriched among genes differentially expressed in smokers with lung cancer. There was a significant correlation between the RNA-Seq gene expression data and Affymetrix microarray data generated from the same samples (P < 0.001); however, the RNA-Seq data detected additional smoking- and cancer-related transcripts whose expression was were either not interrogated by or was not found to be significantly altered when using microarrays, including smoking-related changes in the inflammatory genes S100A8 and S100A9 and cancer-related changes in MUC5AC and secretoglobin (SCGB3A1). Quantitative real-time PCR confirmed differential expression of select genes and non-coding RNAs within individual samples. These results demonstrate that transcriptome sequencing has the potential to provide new insights into the biology of the airway field of injury associated with smoking and lung cancer. The measurement of both coding and non-coding transcripts by RNA-Seq has the potential to help elucidate mechanisms of response to tobacco smoke and to identify additional biomarkers of lung cancer risk and novel targets for chemoprevention.
Collapse
Affiliation(s)
- Jennifer Beane
- The Pulmonary Center, Department of Medicine, Boston University Medical Center, Boston University, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bolouri H. Computational challenges of personal genomics. Curr Genomics 2011; 9:80-7. [PMID: 19440448 PMCID: PMC2674807 DOI: 10.2174/138920208784139564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/13/2008] [Accepted: 03/15/2008] [Indexed: 01/05/2023] Open
Abstract
It is widely predicted that cost and efficiency gains in sequencing will usher in an era of personal genomics and personalized, predictive, preventive, and participatory medicine within a decade. I review the computational challenges ahead and propose general and specific directions for research and development. There is an urgent need to develop semantic ontologies that span genomics, molecular systems biology, and medical data. Although the development of such ontologies would be costly and difficult, the benefits will far outweigh the costs. I argue that availability of such ontologies would allow a revolution in web-services for personal genomics and medicine.
Collapse
Affiliation(s)
- Hamid Bolouri
- Division of Biology, California Institute of Technology, CA 91125, USA
| |
Collapse
|
50
|
Rowley AH, Baker SC, Shulman ST, Rand KH, Tretiakova MS, Perlman EJ, Garcia FL, Tajuddin NF, Fox LM, Huang JH, Ralphe JC, Takahashi K, Flatow J, Lin S, Kalelkar MB, Soriano B, Orenstein JM. Ultrastructural, immunofluorescence, and RNA evidence support the hypothesis of a "new" virus associated with Kawasaki disease. J Infect Dis 2011; 203:1021-30. [PMID: 21402552 DOI: 10.1093/infdis/jiq136] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intracytoplasmic inclusion bodies (ICI) have been identified in ciliated bronchial epithelium of Kawasaki disease (KD) patients using a synthetic antibody derived from acute KD arterial IgA plasma cells; ICI may derive from the KD etiologic agent. METHODS Acute KD bronchial epithelium was subjected to immunofluorescence for ICI and cytokeratin, high-throughput sequencing, and transmission electron microscopy (TEM). Interferon pathway gene expression profiling was performed on KD lung. RESULTS An intermediate filament cytokeratin "cage" was not observed around KD ICI, making it unlikely that ICI are overproduced or misfolded human protein aggregates. Many interferon-stimulated genes were detected in the bronchial epithelium, and significant modulation of the interferon response pathway was observed in the lung tissue of KD patients. No known virus was identified by sequencing. Aggregates of virus-like particles (VLP) were detected by TEM in all 3 acute KD patients from whom nonembedded formalin-fixed lung tissue was available. CONCLUSIONS KD ICI are most likely virus induced; bronchial cells with ICI contain VLP that share morphologic features among several different RNA viral families. Expedited autopsies and tissue fixation from acute KD fatalities are urgently needed to more clearly ascertain the VLP. These findings are compatible with the hypothesis that the infectious etiologic agent of KD may be a "new" RNA virus.
Collapse
Affiliation(s)
- Anne H Rowley
- Department of Pediatrics, Feinberg School of Medicine, Children's Memorial Hospital, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|