1
|
Leung KT, Cai J, Liu Y, Chan KYY, Shao J, Yang H, Hu Q, Xue Y, Wu X, Guo X, Zhai X, Wang N, Li X, Tian X, Li Z, Xue N, Guo Y, Wang L, Zou Y, Xiao P, He Y, Jin R, Tang J, Yang JJ, Shen S, Pui CH, Li CK. Prognostic implications of CD9 in childhood acute lymphoblastic leukemia: insights from a nationwide multicenter study in China. Leukemia 2024; 38:250-257. [PMID: 38001171 PMCID: PMC10844073 DOI: 10.1038/s41375-023-02089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
The outcomes of children with acute lymphoblastic leukemia (ALL) have been incrementally improved with risk-directed chemotherapy but therapy responses remain heterogeneous. Parameters with added prognostic values are warranted to refine the current risk stratification system and inform appropriate therapies. CD9, implicated by our prior single-center study, holds promise as one such parameter. To determine its precise prognostic significance, we analyzed a nationwide, multicenter, uniformly treated cohort of childhood ALL cases, where CD9 status was defined by flow cytometry on diagnostic samples of 3781 subjects. CD9 was expressed in 88.5% of B-ALL and 27.9% of T-ALL cases. It conferred a lower 5-year EFS and a higher CIR in B-ALL but not in T-ALL patients. The prognostic impact of CD9 was most pronounced in the intermediate/high-risk arms and those with minimal residual diseases, particularly at day 19 of remission induction. The adverse impact of CD9 was confined to specific cytogenetics, notably BCR::ABL1+ rather than KMT2A-rearranged leukemia. Multivariate analyses confirmed CD9 as an independent predictor of both events and relapse. The measurement of CD9 offers insights into patients necessitating intervention, warranting its seamless integration into the diagnostic marker panel to inform risk level and timely introduction of therapeutic intervention for childhood ALL.
Collapse
Affiliation(s)
- Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jingbo Shao
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai, China
| | - Hui Yang
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Xue
- Department of Hematology/Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Chengdu, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Ningling Wang
- Department of Pediatrics, Anhui Medical University Second Affiliated Hospital, Anhui, China
| | - Xue Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Tian
- Department of Hematology/Oncology, KunMing Children's Hospital, Kunming, China
| | - Zheng Li
- Department of Hematology/Oncology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Ning Xue
- Department of Hematology/Oncology, Xi 'an Northwest Women's and Children's Hospital, Xi 'an, China
| | - Yuxia Guo
- Department of Hematology/Oncology, Chongqing Medical University Affiliated Children's Hospital, Chongqing, China
| | - Lingzhen Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yao Zou
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Peifang Xiao
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyan Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Jun J Yang
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China.
| | - Ching-Hon Pui
- Departments of Oncology, Pathology, and Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Chi Kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
2
|
Lu X, Zhang Q, Xie Y. TCFL5 knockdown sensitizes DLBCL to doxorubicin treatment via regulation of GPX4. Cell Signal 2023; 110:110831. [PMID: 37516394 DOI: 10.1016/j.cellsig.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Resistance to chemo-drug is a major cause of bad outcome in diffuse large B-cell lymphoma (DLBCL). It was reported that TCFL5 may be related to chemoresistance in childhood acute lymphoblastic leukemia. However, it is still unclear whether TCFL5 is involved in DLBCL drug-resistance. METHODS To explore the underlying mechanism of doxorubicin resistance, recombinant lentivirus was applied to control expression of TCFL5 in DLBCL cells. CCK-8 assay was perfomed to investigate the influence of doxorubicin on proliferation of TCFL5-overexpressed or sh-TCFL5 DLBCL cells. Correlation between TCFL5 and GPX4 was analyzed with bioinformatic methods, which was further confirmed by qPCR and western blot. TCFL5 overexpression conferred doxorubicin resistance via regulating GPX4 and was verified by TUNEL assay and western blot in vitro and mice model in vivo. RESULTS TCFL5 was enriched in DLBCL cells and conferred doxorubicin resistance through binding to GPX4. Inhibition of TCFL5 enhanced the sensitivity of DLBCL cells to doxorubicin. GPX4 knockdown reversed doxorubicin resistance in TCFL5-overexpressed DLBCL cells. CONCLUSION DLBCL cells overexpress TCFL5 that promotes chemoresistance by regulating GPX4. Targeting TCFL5 may provide a prospective therapeutic strategy for doxorubicin-resistant DLBCL.
Collapse
Affiliation(s)
- Xueying Lu
- Graduate School, Nanjing Medical University, Nanjing 210000, China
| | - Quan'e Zhang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Yandong Xie
- Graduate School, Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
3
|
Regulates CD9 Expression and Dissemination of B Lymphoblasts. Leuk Res 2022; 123:106964. [DOI: 10.1016/j.leukres.2022.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022]
|
4
|
RUNX1 and RUNX3 Genes Expression Level in Adult Acute Lymphoblastic Leukemia-A Case Control Study. Curr Issues Mol Biol 2022; 44:3455-3464. [PMID: 36005134 PMCID: PMC9406551 DOI: 10.3390/cimb44080238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The genetic factors of adult acute lymphoblastic leukemia (ALL) development are only partially understood. The Runt-Related Transcription Factor (RUNX) gene family play a crucial role in hematological malignancies, serving both a tumor suppressor and promoter function. The aim of this study was the assessment of relative RUNX1 and RUNX3 genes expression level among adult ALL cases and a geographically and ethnically matched control group. The relative RUNX1 and RUNX3 genes expression level was assessed by qPCR. The investigated group comprised 60 adult patients newly diagnosed with ALL. The obtained results were compared with a group of 40 healthy individuals, as well as clinical and hematological parameters of patients, and submitted for statistical analysis. ALL patients tend to have significantly higher RUNX1 gene expression level compared with controls. This observation is also true for risk group stratification where high-risk (HR) patients presented higher levels of RUNX1. A higher RUNX1 transcript level correlates with greater leukocytosis while RUNX3 expression is reduced in Philadelphia chromosome bearers. The conducted study sustains the hypothesis that both a reduction and increase in the transcript level of RUNX family genes may be involved in leukemia pathogenesis, although their interaction is complex. In this context, overexpression of the RUNX1 gene in adult ALL cases in particular seems interesting. Obtained results should be interpreted with caution. Further analysis in this research field is needed.
Collapse
|
5
|
Galán-Martínez J, Stamatakis K, Sánchez-Gómez I, Vázquez-Cuesta S, Gironés N, Fresno M. Isoform-specific effects of transcription factor TCFL5 on the pluripotency-related genes SOX2 and KLF4 in colorectal cancer development. Mol Oncol 2021; 16:1876-1890. [PMID: 34623757 PMCID: PMC9067154 DOI: 10.1002/1878-0261.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/21/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a very common life‐threatening malignancy. Transcription factor‐like 5 (TCFL5) has been suggested to be involved in CRC. Here, we describe the expression of four alternative transcripts of TCFL5 and their relevance in CRC. Complete deletion of all isoforms drastically decreased pro‐tumoural properties such as spheroids formation and in vivo tumour growth, although increased migration in CRC cell lines. Overexpression of the two main isoforms, TCFL5_E8 and CHA, had opposite effects: TCFL5_E8 reduced proliferation and spheroids formation, while CHA increased them. TCFL5_E8 reduced in vivo tumour formation, while CHA had no effect. In addition, TCFL5_E8 and CHA have different roles in the regulation of the pluripotency‐related genes SOX2 and KLF4. Both isoforms bind directly to their promoters; however, TCFL5_E8 induced SOX2 and reduced KLF4 mRNA levels, whereas CHA did the opposite. Together, our results show that TCFL5 plays an important role in the development of CRC, being however isoform‐specific. This work also points to the need to analyse separately TCFL5 isoforms in cancer, due to their different and opposite functions.
Collapse
Affiliation(s)
- Javier Galán-Martínez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | - Inés Sánchez-Gómez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | | | - Núria Gironés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
6
|
Kasprzyk ME, Sura W, Dzikiewicz-Krawczyk A. Enhancing B-Cell Malignancies-On Repurposing Enhancer Activity towards Cancer. Cancers (Basel) 2021; 13:3270. [PMID: 34210001 PMCID: PMC8269369 DOI: 10.3390/cancers13133270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.
Collapse
|
7
|
Jakobczyk H, Debaize L, Soubise B, Avner S, Rouger-Gaudichon J, Commet S, Jiang Y, Sérandour AA, Rio AG, Carroll JS, Wichmann C, Lie-A-Ling M, Lacaud G, Corcos L, Salbert G, Galibert MD, Gandemer V, Troadec MB. Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia. J Hematol Oncol 2021; 14:47. [PMID: 33743795 PMCID: PMC7981807 DOI: 10.1186/s13045-021-01051-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia. Methods We worked with BCP-ALL mononuclear bone marrow patients’ cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models. Results We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients’ cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located − 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation. Conclusions Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01051-z.
Collapse
Affiliation(s)
- Hélène Jakobczyk
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Lydie Debaize
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Benoit Soubise
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Stéphane Avner
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jérémie Rouger-Gaudichon
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Département d'onco-hematologie pediatrique, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Séverine Commet
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Yan Jiang
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | | | - Anne-Gaëlle Rio
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Haemostasis, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Lie-A-Ling
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Laurent Corcos
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Gilles Salbert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Service de Génétique et Génomique Moléculaire, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35033, Rennes, France
| | - Virginie Gandemer
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Department of Pediatric Hemato-Oncology, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35203, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France. .,Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France. .,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France.
| |
Collapse
|
8
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
9
|
Parikh HM, Elgzyri T, Alibegovic A, Hiscock N, Ekström O, Eriksson KF, Vaag A, Groop LC, Ström K, Hansson O. Relationship between insulin sensitivity and gene expression in human skeletal muscle. BMC Endocr Disord 2021; 21:32. [PMID: 33639916 PMCID: PMC7912896 DOI: 10.1186/s12902-021-00687-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) in skeletal muscle is a key feature of the pre-diabetic state, hypertension, dyslipidemia, cardiovascular diseases and also predicts type 2 diabetes. However, the underlying molecular mechanisms are still poorly understood. METHODS To explore these mechanisms, we related global skeletal muscle gene expression profiling of 38 non-diabetic men to a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS We identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity in human skeletal muscle, identifying autophagy-related genes as positively correlated with insulin sensitivity. Replication in an independent study of 9 non-diabetic men resulted in 10 overlapping genes that strongly correlated with insulin sensitivity, including SIRT2, involved in lipid metabolism, and FBXW5 that regulates mammalian target-of-rapamycin (mTOR) and autophagy. The expressions of SIRT2 and FBXW5 were also positively correlated with the expression of key genes promoting the phenotype of an insulin sensitive myocyte e.g. PPARGC1A. CONCLUSIONS The muscle expression of 180 genes were correlated with insulin sensitivity. These data suggest that activation of genes involved in lipid metabolism, e.g. SIRT2, and genes regulating autophagy and mTOR signaling, e.g. FBXW5, are associated with increased insulin sensitivity in human skeletal muscle, reflecting a highly flexible nutrient sensing.
Collapse
Affiliation(s)
- Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd, Tampa, FL, 33612, USA.
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University, University Hospital Malmö, SE-20502, Malmö, Sweden.
| | - Targ Elgzyri
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University, University Hospital Malmö, SE-20502, Malmö, Sweden
| | | | - Natalie Hiscock
- Unilever Discover R & D, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Ola Ekström
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University, University Hospital Malmö, SE-20502, Malmö, Sweden
| | - Karl-Fredrik Eriksson
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University, University Hospital Malmö, SE-20502, Malmö, Sweden
| | - Allan Vaag
- Steno Diabetes Center, DK-2820, Gentofte, Denmark
| | - Leif C Groop
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University, University Hospital Malmö, SE-20502, Malmö, Sweden
- Finnish Institute of Molecular Medicine, FI-00014, University of Helsinki, Helsinki, Finland
| | - Kristoffer Ström
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University, University Hospital Malmö, SE-20502, Malmö, Sweden
- Swedish Winter Sports Research Centre, Mid Sweden University, SE-83125, Östersund, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, Diabetes & Endocrinology, Lund University, University Hospital Malmö, SE-20502, Malmö, Sweden
- Finnish Institute of Molecular Medicine, FI-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Sharma G, Boby E, Nidhi T, Jain A, Singh J, Singh A, Chattopadhyay P, Bakhshi S, Chopra A, Palanichamy JK. Diagnostic Utility of IGF2BP1 and Its Targets as Potential Biomarkers in ETV6-RUNX1 Positive B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:588101. [PMID: 33708624 PMCID: PMC7940665 DOI: 10.3389/fonc.2021.588101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
Around 85% of childhood Acute Lymphoblastic Leukemia (ALL) are of B-cell origin and characterized by the presence of different translocations including BCR-ABL1, ETV6-RUNX1, E2A-PBX1, and MLL fusion proteins. The current clinical investigations used to identify ETV6-RUNX1 translocation include FISH and fusion transcript specific PCR. In the current study we assessed the utility of IGF2BP1, an oncofetal RNA binding protein, that is over expressed specifically in ETV6-RUNX1 translocation positive B-ALL to be used as a diagnostic marker in the clinic. Further, public transcriptomic and Crosslinked Immunoprecipitation (CLIP) datasets were analyzed to identify the putative targets of IGF2BP1. We also studied the utility of using the mRNA expression of two such targets, MYC and EGFL7 as potential diagnostic markers separately or in conjunction with IGF2BP1. We observed that the expression of IGF2BP1 alone measured by RT-qPCR is highly sensitive and specific to be used as a potential biomarker for the presence of ETV6-RUNX1 translocation in future.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Elza Boby
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Thakur Nidhi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Department of Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Department of Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
11
|
Mehtonen J, Teppo S, Lahnalampi M, Kokko A, Kaukonen R, Oksa L, Bouvy-Liivrand M, Malyukova A, Mäkinen A, Laukkanen S, Mäkinen PI, Rounioja S, Ruusuvuori P, Sangfelt O, Lund R, Lönnberg T, Lohi O, Heinäniemi M. Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities. Genome Med 2020; 12:99. [PMID: 33218352 PMCID: PMC7679990 DOI: 10.1186/s13073-020-00799-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention. METHODS We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion. RESULTS We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq. CONCLUSIONS Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.
Collapse
Affiliation(s)
- Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Susanna Teppo
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Aleksi Kokko
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Laura Oksa
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Artturi Mäkinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Saara Laukkanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | | | - Pekka Ruusuvuori
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olli Lohi
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland.
| |
Collapse
|
12
|
Lie-a-ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. RUNX1 Dosage in Development and Cancer. Mol Cells 2020; 43:126-138. [PMID: 31991535 PMCID: PMC7057845 DOI: 10.14348/molcells.2019.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Collapse
Affiliation(s)
- Michael Lie-a-ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Esther Baena
- Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| |
Collapse
|
13
|
Gyurina K, Kárai B, Ujfalusi A, Hevessy Z, Barna G, Jáksó P, Pálfi-Mészáros G, Póliska S, Scholtz B, Kappelmayer J, Zahuczky G, Kiss C. Coagulation FXIII-A Protein Expression Defines Three Novel Sub-populations in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia Characterized by Distinct Gene Expression Signatures. Front Oncol 2019; 9:1063. [PMID: 31709175 PMCID: PMC6823876 DOI: 10.3389/fonc.2019.01063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Leukemic B-cell precursor (BCP) lymphoblasts were identified as a novel expression site for coagulation factor XIII subunit A (FXIII-A). Flow cytometry (FC) revealed three distinct expression patterns, i.e., FXIII-A negative, FXIII-A dim, and FXIII-A bright subgroups. The FXIII-A negative subgroup was significantly associated with the “B-other” genetic category and had an unfavorable disease outcome. Methods: RNA was extracted from bone marrow lymphoblasts of 42 pediatric patients with BCP-acute lymphoblastic leukemia (ALL). FXIII-A expression was determined by multiparameter FC. Genetic diagnosis was based on conventional cytogenetic method and fluorescence in situ hybridization. Affymetrix GeneChip Human Primeview array was used to analyze global expression pattern of 28,869 well-annotated genes. Microarray data were analyzed by Genespring GX14.9.1 software. Gene Ontology analysis was performed using Cytoscape 3.4.0 software with ClueGO application. Selected differentially expressed genes were validated by RT-Q-PCR. Results: We demonstrated, for the first time, the general expression of F13A1 gene in pediatric BCP-ALL samples. The intensity of F13A1 expression corresponded to the FXIII-A protein expression subgroups which defined three characteristic and distinct gene expression signatures detected by Affymetrix oligonucleotide microarrays. Relative gene expression intensity of ANGPTL2, EHMT1 FOXO1, HAP1, NUCKS1, NUP43, PIK3CG, RAPGEF5, SEMA6A, SPIN1, TRH, and WASF2 followed the pattern of change in the intensity of the expression of the F13A1 gene. Common enhancer elements of these genes revealed by in silico analysis suggest that common transcription factors may regulate the expression of these genes in a similar fashion. PLAC8 was downregulated in the FXIII-A bright subgroup. Gene expression signature of the FXIII-A negative subgroup showed an overlap with the signature of “B-other” samples. DFFA, GIGYF1, GIGYF2, and INTS3 were upregulated and CD3G was downregulated in the “B-other” subgroup. Validated genes proved biologically and clinically relevant. We described differential expression of genes not shown previously to be associated with pediatric BCP-ALL. Conclusions: Gene expression signature according to FXIII-A protein expression status defined three novel subgroups of pediatric BCP-ALL. Multiparameter FC appears to be an easy-to-use and affordable method to help in selecting FXIII-A negative patients who require a more elaborate and expensive molecular genetic investigation to design precision treatment.
Collapse
Affiliation(s)
- Katalin Gyurina
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Bettina Kárai
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Pál Jáksó
- Department of Pathology, University of Pécs, Pécs, Hungary
| | | | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Zahuczky
- UD GenoMed Medical Genomic Technologies Ltd., Debrecen, Hungary
| | - Csongor Kiss
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Leung KT, Zhang C, Chan KYY, Li K, Cheung JTK, Ng MHL, Zhang XB, Sit T, Lee WYW, Kang W, To KF, Yu JWS, Man TKF, Wang H, Tsang KS, Cheng FWT, Lam GKS, Chow TW, Leung AWK, Leung TF, Yuen PMP, Ng PC, Li CK. CD9 blockade suppresses disease progression of high-risk pediatric B-cell precursor acute lymphoblastic leukemia and enhances chemosensitivity. Leukemia 2019; 34:709-720. [DOI: 10.1038/s41375-019-0593-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
|
15
|
Blunck CB, Terra-Granado E, Noronha EP, Wajnberg G, Passetti F, Pombo-de-Oliveira MS, Emerenciano M. CD9 predicts ETV6-RUNX1 in childhood B-cell precursor acute lymphoblastic leukemia. Hematol Transfus Cell Ther 2019; 41:205-211. [PMID: 31085145 PMCID: PMC6732401 DOI: 10.1016/j.htct.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/07/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The ETV6-RUNX1 is a fusion gene associated with a good outcome in B-cell precursor lymphoblastic leukemia. OBJECTIVE This study aimed to re-evaluate the CD9 cellular expression by flow cytometry (FC) as a possible tool to predict the presence of ETV6-RUNX1. METHOD Childhood B-cell precursor lymphoblastic leukemia cases were included (n=186). The percentage of CD9-labeled cells and the median fluorescence intensity ratio were used for correlation with the molecular tests. Receiver Operating Characteristic curves were performed to determine the likelihood of the CD9 expression predicting ETV6-RUNX1. RESULTS The ETV6-RUNX1 was found in 44/186 (23.6%) cases. Data analysis revealed that the best cutoff for CD9 percentage was 64%, with an accuracy of 0.84, whereas the best cutoff for CD9 median fluorescence intensity ratio was 12.52, with an accuracy of 0.80. A strong association was observed between the level of CD9 expression and the presence of ETV6-RUNX1. CONCLUSION These data confirm that the CD9 expression could be used for risk stratification in clinical practice.
Collapse
Affiliation(s)
| | | | - Elda P Noronha
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Gabriel Wajnberg
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Atlantic Cancer Research Institute, Moncton, Canada
| | - Fábio Passetti
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
16
|
Gaudichon J, Jakobczyk H, Debaize L, Cousin E, Galibert MD, Troadec MB, Gandemer V. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. Blood Rev 2019; 36:40-56. [PMID: 31010660 DOI: 10.1016/j.blre.2019.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are currently above 85% due to huge improvements in treatment. However, 15-20% of children still experience relapses. Relapses can either occur in the bone marrow or at extramedullary sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this review, we have attempted to assemble the evidence concerning the microenvironmental factors that could explain why ALL cells reside in such sites. We present criteria that make extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, considering extramedullary leukemias as metastases could be a useful approach for proposing more effective treatments. In this context, we conclude with several examples of potential niche-based therapies which could be successfully added to current treatments of ALL.
Collapse
Affiliation(s)
- Jérémie Gaudichon
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology and Oncology Department, University Hospital, Caen, France.
| | - Hélène Jakobczyk
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Lydie Debaize
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Elie Cousin
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France.
| | - Marie-Bérengère Troadec
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Virginie Gandemer
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France.
| |
Collapse
|
17
|
Debaize L, Jakobczyk H, Avner S, Gaudichon J, Rio AG, Sérandour AA, Dorsheimer L, Chalmel F, Carroll JS, Zörnig M, Rieger MA, Delalande O, Salbert G, Galibert MD, Gandemer V, Troadec MB. Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation. Nucleic Acids Res 2018; 46:11214-11228. [PMID: 30500954 PMCID: PMC6265458 DOI: 10.1093/nar/gky756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Hélène Jakobczyk
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Stéphane Avner
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Jérémie Gaudichon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Anne-Gaëlle Rio
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aurélien A Sérandour
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, 44035 Nantes, France
- Ecole Centrale de Nantes, Nantes, France
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60528 Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Olivier Delalande
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Gilles Salbert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Génétique Somatique des Cancers, Centre Hospitalier Universitaire, 35033 Rennes, France
| | - Virginie Gandemer
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Department of pediatric oncohematology, Centre Hospitalier Universitaire, 35203 Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
18
|
Polak R, Bierings MB, van der Leije CS, Sanders MA, Roovers O, Marchante JRM, Boer JM, Cornelissen JJ, Pieters R, den Boer ML, Buitenhuis M. Autophagy inhibition as a potential future targeted therapy for ETV6-RUNX1-driven B-cell precursor acute lymphoblastic leukemia. Haematologica 2018; 104:738-748. [PMID: 30381299 PMCID: PMC6442983 DOI: 10.3324/haematol.2018.193631] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Translocation t(12;21), resulting in the ETV6-RUNX1 (or TEL-AML1) fusion protein, is present in 25% of pediatric patients with B-cell precursor acute lymphoblastic leukemia and is considered a first hit in leukemogenesis. A targeted therapy approach is not available for children with this subtype of leukemia. To identify the molecular mechanisms underlying ETV6-RUNX1-driven leukemia, we performed gene expression profiling of healthy hematopoietic progenitors in which we ectopically expressed ETV6-RUNX1. We reveal an ETV6-RUNX1-driven transcriptional network that induces proliferation, survival and cellular homeostasis. In addition, Vps34, an important regulator of autophagy, was found to be induced by ETV6-RUNX1 and up-regulated in ETV6-RUNX1-positive leukemic patient cells. We show that induction of Vps34 was transcriptionally regulated by ETV6-RUNX1 and correlated with high levels of autophagy. Knockdown of Vps34 in ETV6-RUNX1-positive cell lines severely reduced proliferation and survival. Inhibition of autophagy by hydroxychloroquine, a well-tolerated autophagy inhibitor, reduced cell viability in both ETV6-RUNX1-positive cell lines and primary acute lymphoblastic leukemia samples, and selectively sensitized primary ETV6-RUNX1-positive leukemia samples to L asparaginase. These findings reveal a causal relationship between ETV6-RUNX1 and autophagy, and provide pre-clinical evidence for the efficacy of autophagy inhibitors in ETV6-RUNX1-driven leukemia.
Collapse
Affiliation(s)
- Roel Polak
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam
| | - Marc B Bierings
- Department of Pediatric Oncology, University Medical Center Utrecht.,Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | - Mathijs A Sanders
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Onno Roovers
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - João R M Marchante
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam
| | - Judith M Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam
| | - Jan J Cornelissen
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht
| | - Monique L den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam .,Princess Máxima Center for Pediatric Oncology, Utrecht
| | - Miranda Buitenhuis
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Liang P, Miao M, Liu Z, Wang H, Jiang W, Ma S, Li C, Hu R. CD9 expression indicates a poor outcome in acute lymphoblastic leukemia. Cancer Biomark 2018; 21:781-786. [PMID: 29286918 DOI: 10.3233/cbm-170422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We undertook a single-center retrospective study to determine the relationship between CD9 and acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS In total, 112 newly diagnosed patients in our center were enrolled in the study. Their clinical information was collected and the patients werefollowed over the course of the study. Flow cytometry was used to detect the expression of CD9. RESULTS CD9 expression was more common in B cell acute lymphoblastic leukemia (B-ALL) and patients > 40 years old. CD9-positive patients exhibited a higher BCR-ABL fusion gene positive rate and higher neutrophil counts than CD9 negative patients (P= 0.004 and P= 0.004, respectively). Response to induction chemotherapy was not dependent on CD9 expression. CD9-positive patients had a lower 2-year overall survival rate than CD9-negative patients. CONCLUSION CD9 expression predicts some clinical characteristics and indicates an unfavorable prognosis in ALL patients.
Collapse
|
20
|
Cheng CK, Wong THY, Wan TSK, Wang AZ, Chan NPH, Chan NCN, Li CK, Ng MHL. RUNX1 upregulation via disruption of long-range transcriptional control by a novel t(5;21)(q13;q22) translocation in acute myeloid leukemia. Mol Cancer 2018; 17:133. [PMID: 30157851 PMCID: PMC6116564 DOI: 10.1186/s12943-018-0881-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
RUNX1 encodes a Runt-related transcription factor that is critical for hematopoiesis. In this study, through a combinatorial molecular approach, we characterized a novel t(5;21)(q13;q22) translocation involving RUNX1 that was acquired during the progression of myelodysplastic syndrome to acute myeloid leukemia (AML) in a pediatric patient. We found that this translocation did not generate RUNX1 fusion but aberrantly upregulated RUNX1. This upregulation was attributed to the disruption of long-range chromatin interactions between the RUNX1 P2 promoter and a silencer in the first intron of the gene. Characterization of the silencer revealed a role of SNAG repressors and their corepressor LSD1/KDM1A in mediating the effect. Our findings suggest that chromosomal rearrangements may activate RUNX1 by perturbing its transcriptional control to contribute to AML pathogenesis, in keeping with an emerging oncogenic role of RUNX1 in leukemia.
Collapse
Affiliation(s)
- Chi-Keung Cheng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Terry H Y Wong
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas S K Wan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Angela Z Wang
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Natalie P H Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nelson C N Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi-Kong Li
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret H L Ng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong. .,State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
21
|
Fry EA, Mallakin A, Inoue K. Translocations involving ETS family proteins in human cancer. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2018; 5:10.15761/ICST.1000281. [PMID: 30542624 PMCID: PMC6287620 DOI: 10.15761/icst.1000281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating certain gene transcriptions. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. Three chimeric genes involving ETS genes have been identified in human cancers, which are EWS-FLI1 in Ewing's sarcoma, TMPRSS2-ERG in prostate cancer, and ETV6-RUNX1 in acute lymphocytic leukemia. Although these fusion transcripts definitely contribute to the pathogenesis of the disease, the impact of these fusion transcripts on patients' prognosis is highly controversial. In the present review, the roles of ETS protein translocations in human carcinogenesis are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | | | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
22
|
Khalkar P, Ali HA, Codó P, Argelich ND, Martikainen A, Arzenani MK, Lehmann S, Walfridsson J, Ungerstedt J, Fernandes AP. Selenite and methylseleninic acid epigenetically affects distinct gene sets in myeloid leukemia: A genome wide epigenetic analysis. Free Radic Biol Med 2018; 117:247-257. [PMID: 29438720 DOI: 10.1016/j.freeradbiomed.2018.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/19/2023]
Abstract
Selenium compounds have emerged as promising chemotherapeutic agents with proposed epigenetic effects, however the mechanisms and downstream effects are yet to be studied. Here we assessed the effects of the inorganic selenium compound selenite and the organic form methylseleninic acid (MSA) in a leukemic cell line K562, on active (histone H3 lysine 9 acetylation, H3K9ac and histone H3 lysine 4 tri-methylation, H3K4me3) and repressive (histone H3 lysine 9 tri-methylation, H3K9me3) histone marks by Chromatin immunoprecipitation followed by DNA sequencing (ChIP-Seq). Both selenite and MSA had major effects on histone marks but the effects of MSA were more pronounced. Gene ontology analysis revealed that selenite affected genes involved in response to oxygen and hypoxia, whereas MSA affected distinct gene sets associated with cell adhesion and glucocorticoid receptors, also apparent by global gene expression analysis using RNA sequencing. The correlation to adhesion was functionally confirmed by a significantly weakened ability of MSA treated cells to attach to fibronectin and linked to decreased expression of integrin beta 1. A striking loss of cellular adhesion was also confirmed in primary patient AML cells. Recent strategies to enhance the cytotoxicity of chemotherapeutic drugs by disrupting the interaction between leukemic and stromal cells in the bone marrow are of increasing interest; and organic selenium compounds like MSA might be promising candidates. In conclusion, these results provide new insight on the mechanism of action of selenium compounds, and will be of value for the understanding, usage, and development of new selenium compounds as anticancer agents.
Collapse
Affiliation(s)
- Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Hani Abdulkadir Ali
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Paula Codó
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Nuria Díaz Argelich
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Anni Martikainen
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Mohsen Karimi Arzenani
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Julian Walfridsson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Ungerstedt
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
23
|
Anderson G, Mackay N, Gilroy K, Hay J, Borland G, McDonald A, Bell M, Hassanudin SA, Cameron E, Neil JC, Kilbey A. RUNX-mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins. J Cell Biochem 2017; 119:2750-2762. [PMID: 29052866 PMCID: PMC5813226 DOI: 10.1002/jcb.26443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/27/2023]
Abstract
RUNX gene over‐expression inhibits growth of primary cells but transforms cells with tumor suppressor defects, consistent with reported associations with tumor progression. In contrast, chromosomal translocations involving RUNX1 are detectable in utero, suggesting an initiating role in leukemias. How do cells expressing RUNX1 fusion oncoproteins evade RUNX‐mediated growth suppression? Previous studies showed that the TEL‐RUNX1 fusion from t(12;21) B‐ALLs is unable to induce senescence‐like growth arrest (SLGA) in primary fibroblasts while potent activity is displayed by the RUNX1‐ETO fusion found in t(8;21) AMLs. We now show that SLGA potential is suppressed in TEL‐RUNX1 but reactivated by deletion of the TEL HLH domain or mutation of a key residue (K99R). Attenuation of SLGA activity is also a feature of RUNX1‐ETO9a, a minor product of t(8;21) translocations with increased leukemogenicity. Finally, while RUNX1‐ETO induces SLGA it also drives a potent senescence‐associated secretory phenotype (SASP), and promotes the immortalization of rare cells that escape SLGA. Moreover, the RUNX1‐ETO SASP is not strictly linked to growth arrest as it is largely suppressed by RUNX1 and partially activated by RUNX1‐ETO9a. These findings underline the heterogeneous nature of premature senescence and the multiple mechanisms by which this failsafe process is subverted in cells expressing RUNX1 oncoproteins.
Collapse
Affiliation(s)
- Gail Anderson
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nancy Mackay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Alma McDonald
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Margaret Bell
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Siti Ayuni Hassanudin
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Teppo S, Laukkanen S, Liuksiala T, Nordlund J, Oittinen M, Teittinen K, Grönroos T, St-Onge P, Sinnett D, Syvänen AC, Nykter M, Viiri K, Heinäniemi M, Lohi O. Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia. Genome Res 2016; 26:1468-1477. [PMID: 27620872 PMCID: PMC5088590 DOI: 10.1101/gr.193649.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/12/2016] [Indexed: 01/04/2023]
Abstract
Approximately 20%–25% of childhood acute lymphoblastic leukemias carry the ETV6-RUNX1 (E/R) fusion gene, a fusion of two central hematopoietic transcription factors, ETV6 (TEL) and RUNX1 (AML1). Despite its prevalence, the exact genomic targets of E/R have remained elusive. We evaluated gene loci and enhancers targeted by E/R genome-wide in precursor B acute leukemia cells using global run-on sequencing (GRO-seq). We show that expression of the E/R fusion leads to widespread repression of RUNX1 motif–containing enhancers at its target gene loci. Moreover, multiple super-enhancers from the CD19+/CD20+-lineage were repressed, implicating a role in impediment of lineage commitment. In effect, the expression of several genes involved in B cell signaling and adhesion was down-regulated, and the repression depended on the wild-type DNA-binding Runt domain of RUNX1. We also identified a number of E/R-regulated annotated and de novo noncoding genes. The results provide a comprehensive genome-wide mapping between E/R-regulated key regulatory elements and genes in precursor B cell leukemia that disrupt normal B lymphopoiesis.
Collapse
Affiliation(s)
- Susanna Teppo
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | - Saara Laukkanen
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | - Thomas Liuksiala
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland.,Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 75105, Uppsala, Sweden
| | - Mikko Oittinen
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | - Kaisa Teittinen
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | - Toni Grönroos
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | - Pascal St-Onge
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, Quebec, H3T 1J4, Canada
| | - Daniel Sinnett
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, Quebec, H3T 1J4, Canada.,Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Quebec, H3T 1J4, Canada
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 75105, Uppsala, Sweden
| | - Matti Nykter
- Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland.,Department of Signal Processing, Tampere University of Technology, 33720 Tampere, Finland
| | - Keijo Viiri
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
25
|
Arnason T, Harkness T. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1. Cancers (Basel) 2015; 7:2063-82. [PMID: 26501324 PMCID: PMC4695877 DOI: 10.3390/cancers7040877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer.
Collapse
Affiliation(s)
- Terra Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.:+1-306-844-1119; Fax: +1-306-844-1512
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
26
|
Hsu WH, DiRienzo AG. Parsimonious covariate selection for a multicategory ordered response. Stat Methods Med Res 2015; 26:2743-2757. [PMID: 26429878 DOI: 10.1177/0962280215608120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We propose a flexible continuation ratio (CR) model for an ordinal categorical response with potentially ultrahigh dimensional data that characterizes the unique covariate effects at each response level. The CR model is the logit of the conditional discrete hazard function for each response level given covariates. We propose two modeling strategies, one that keeps the same covariate set for each hazard function but allows regression coefficients to arbitrarily change with response level, and one that allows both the set of covariates and their regression coefficients to arbitrarily change with response. Evaluating a covariate set is accomplished by using the nonparametric bootstrap to estimate prediction error and their robust standard errors that do not rely on proper model specification. To help with interpretation of the selected covariate set, we flexibly estimate the conditional cumulative distribution function given the covariates using the separate hazard function models. The goodness-of-fit of our flexible CR model is assessed with graphical and numerical methods based on the cumulative sum of residuals. Simulation results indicate the methods perform well in finite samples. An application to B-cell acute lymphocytic leukemia data is provided.
Collapse
Affiliation(s)
- Wan-Hsiang Hsu
- 1 Bureau of Environmental & Occupational Epidemiology, New York State Department of Health, Albany, NY, USA.,2 Department of Epidemiology & Biostatistics, University at Albany, SUNY, Rensselaer, NY, USA
| | - A Gregory DiRienzo
- 2 Department of Epidemiology & Biostatistics, University at Albany, SUNY, Rensselaer, NY, USA
| |
Collapse
|
27
|
Wolter M, Werner T, Malzkorn B, Reifenberger G. Role of microRNAs Located on Chromosome Arm 10q in Malignant Gliomas. Brain Pathol 2015. [PMID: 26223576 DOI: 10.1111/bpa.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Deletions of chromosome arm 10q are found in most glioblastomas and subsets of lower grade gliomas. Mutations in the PTEN gene at 10q23.3 are restricted to less than half of the 10q-deleted gliomas, suggesting additional glioma-associated tumor suppressors on 10q. We investigated 64 astrocytic gliomas of different malignancy grades for aberrant expression of 16 microRNAs (miRNAs) on 10q. Thereby, we identified four miRNAs (miR-107, miR-146b-5p, miR-346, miR-1287-5p) whose expression was frequently down-regulated in anaplastic astrocytomas and/or glioblastomas. DNA methylation analyses revealed 5'-CpG site hypermethylation of miR-346 in more than two-thirds of primary glioblastomas, while aberrant 5'-CpG site methylation of miR-146b-5p was frequent in IDH1-mutant astrocytomas and secondary glioblastomas. Overexpression of either of the four miRNAs in glioma cell lines reduced cell proliferation and/or increased caspase-3/7 activity. Expression analyses of miRNA overexpressing glioma cells and 3'-untranslated region luciferase reporter gene assays revealed evidence that these miRNAs post-transcriptionally regulate expression of glioma-relevant genes, including CDK6 (miR-107), EGFR (miR-146b-5p, miR-1287-5p), TERT and SEMA6A (miR-346), all of which are overexpressed in malignant gliomas in situ. In summary, we show that the 10q-located miRNAs miR-107, miR-146b-5p, miR-346 and miR-1287-5p are frequently down-regulated in malignant gliomas and thereby may support overexpression of important glioma growth-promoting genes.
Collapse
Affiliation(s)
- Marietta Wolter
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Werner
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Bastian Malzkorn
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
CD9, a key actor in the dissemination of lymphoblastic leukemia, modulating CXCR4-mediated migration via RAC1 signaling. Blood 2015; 126:1802-12. [PMID: 26320102 DOI: 10.1182/blood-2015-02-628560] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022] Open
Abstract
CD9, a member of the tetraspanin family, has been implicated in hematopoietic and leukemic stem cell homing. We investigated the role of CD9 in the dissemination of B acute lymphoblastic leukemia (B-ALL) cells, by stably downregulating CD9 in REH and NALM6 cells. CD9 expression was associated with higher levels of REH cell adhesion to fibronectin and C-X-C motif chemokine receptor 4 (CXCR4)-mediated migration. Death occurred later in NOD/SCID mice receiving REH cells depleted of CD9 for transplantation than in mice receiving control cells. After C-X-C motif chemokine ligand 12 (CXCL12) stimulation, CD9 promoted the formation of long cytoplasmic actin-rich protrusions. We demonstrated that CD9 enhanced RAC1 activation, in both REH cells and blasts from patients. Conversely, the overexpression of a competing CD9 C-terminal tail peptide in REH cytoplasm decreased RAC1 activation and cytoplasmic extension formation in response to CXCL12. Finally, the inhibition of RAC1 activation decreased migration in vitro, and the depletion of RAC1 protein from transplanted REH cells increased mouse survival. Furthermore, a testis-conditioned medium induced the migration of REH and NALM6 cells, and this migration was impeded by an anti-CD9 antibody. The level of CD9 expression also influenced the homing of these cells in mouse testes. These findings demonstrate, for the first time, that CD9 plays a key role in the CXCR4-mediated migration and engraftment of B-ALL cells in the bone marrow or testis, through RAC1 activation.
Collapse
|
29
|
Wells JE, Howlett M, Cheung LC, Kees UR. The role of CCN family genes in haematological malignancies. J Cell Commun Signal 2015; 9:267-78. [PMID: 26026820 DOI: 10.1007/s12079-015-0296-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022] Open
Abstract
Haematological malignancies, although a broad range of specific disease types, continue to show considerable overlap in classification, and patients are treated using similar chemotherapy regimes. In this review we look at the role of the CCN family of matricellular proteins and indicate their role in nine haematological malignancies including both myeloid and lymphoid neoplasms. The potential for further haematological neoplasms with CCN family associations is argued by summarising the demonstrated role of CCN family genes in the differentiation of haematopoietic stem cells (HSC) and mesenchymal stem cells. The expanding field of knowledge encompassing CCN family genes and cancers of the HSC-lineage highlights the importance of extracellular matrix-interactions in both normal physiology and tumorigenesis of the blood, bone marrow and lymph nodes.
Collapse
Affiliation(s)
- J E Wells
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - M Howlett
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - L C Cheung
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - Ursula R Kees
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia.
| |
Collapse
|
30
|
de Laurentiis A, Hiscott J, Alcalay M. The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation. Oncogene 2015; 34:6018-28. [DOI: 10.1038/onc.2015.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/25/2022]
|
31
|
Nordlund J, Bäcklin CL, Zachariadis V, Cavelier L, Dahlberg J, Öfverholm I, Barbany G, Nordgren A, Övernäs E, Abrahamsson J, Flaegstad T, Heyman MM, Jónsson ÓG, Kanerva J, Larsson R, Palle J, Schmiegelow K, Gustafsson MG, Lönnerholm G, Forestier E, Syvänen AC. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics 2015; 7:11. [PMID: 25729447 PMCID: PMC4343276 DOI: 10.1186/s13148-014-0039-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL. RESULTS We used the methylation status of ~450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations ('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5. CONCLUSIONS Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Christofer L Bäcklin
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden
| | - Johan Dahlberg
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Ingegerd Öfverholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Elin Övernäs
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children's Hospital, Rondvägen 10, SE-416 85 Gothenburg, Sweden
| | - Trond Flaegstad
- Department of Pediatrics, Tromsø University and University Hospital, Sykehusveien 38, N-9038 Tromsø, Norway
| | - Mats M Heyman
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Q6:05, SE-171 76, Stockholm, Sweden
| | - Ólafur G Jónsson
- Pediatric Hematology-Oncology, Children's Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Norðurmýri, 101, Reykjavik, Iceland
| | - Jukka Kanerva
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Box 281, FIN-00029 Helsinki, Finland
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Josefine Palle
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden.,Department of Women's and Children's Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Entrance 95, SE-751 85 Uppsala, Sweden
| | - Kjeld Schmiegelow
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Mats G Gustafsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Entrance 95, SE-751 85 Uppsala, Sweden
| | - Erik Forestier
- Department of Medical Biosciences, University of Umeå, SE-901 85 Umeå, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| |
Collapse
|
32
|
Hajingabo LJ, Daakour S, Martin M, Grausenburger R, Panzer-Grümayer R, Dequiedt F, Simonis N, Twizere JC. Predicting interactome network perturbations in human cancer: application to gene fusions in acute lymphoblastic leukemia. Mol Biol Cell 2014; 25:3973-85. [PMID: 25273558 PMCID: PMC4244205 DOI: 10.1091/mbc.e14-06-1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic variations such as gene fusions are directly or indirectly associated with human diseases. A method is presented combining gene expression and interactome data analyses to identify specific targets in leukemia. The Myc network and the mRNA export machinery are perturbed in ETV6-RUNX1 and TCF3-PBX1 subtypes of leukemia. Genomic variations such as point mutations and gene fusions are directly or indirectly associated with human diseases. They are recognized as diagnostic, prognostic markers and therapeutic targets. However, predicting the functional effect of these genetic alterations beyond affected genes and their products is challenging because diseased phenotypes are likely dependent of complex molecular interaction networks. Using as models three different chromosomal translocations—ETV6-RUNX1 (TEL-AML1), BCR-ABL1, and TCF3-PBX1 (E2A-PBX1)—frequently found in precursor-B-cell acute lymphoblastic leukemia (preB-ALL), we develop an approach to extract perturbed molecular interactions from gene expression changes. We show that the MYC and JunD transcriptional circuits are specifically deregulated after ETV6-RUNX1 and TCF3-PBX1 gene fusions, respectively. We also identified the bulk mRNA NXF1-dependent machinery as a direct target for the TCF3-PBX1 fusion protein. Through a novel approach combining gene expression and interactome data analysis, we provide new insight into TCF3-PBX1 and ETV6-RUNX1 acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Leon Juvenal Hajingabo
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Sarah Daakour
- Laboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, Belgium
| | - Maud Martin
- Laboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, Belgium
| | - Reinhard Grausenburger
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria
| | - Renate Panzer-Grümayer
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, Belgium
| | - Nicolas Simonis
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Jean-Claude Twizere
- Laboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
33
|
TFPI1 mediates resistance to doxorubicin in breast cancer cells by inducing a hypoxic-like response. PLoS One 2014; 9:e84611. [PMID: 24489651 PMCID: PMC3904823 DOI: 10.1371/journal.pone.0084611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
Thrombin and hypoxia are important players in breast cancer progression. Breast cancers often develop drug resistance, but mechanisms linking thrombin and hypoxia to drug resistance remain unresolved. Our studies using Doxorubicin (DOX) resistant MCF7 breast cancer cells reveals a mechanism linking DOX exposure with hypoxic induction of DOX resistance. Global expression changes between parental and DOX resistant MCF7 cells were examined. Westerns, Northerns and immunocytochemistry were used to validate drug resistance and differentially expressed genes. A cluster of genes involved in the anticoagulation pathway, with Tissue Factor Pathway Inhibitor 1 (TFPI1) the top hit, was identified. Plasmids overexpressing TFPI1 were utilized, and 1% O2 was used to test the effects of hypoxia on drug resistance. Lastly, microarray datasets from patients with drug resistant breast tumors were interrogated for TFPI1 expression levels. TFPI1 protein levels were found elevated in 3 additional DOX resistant cells lines, from humans and rats, indicating evolutionarily conservation of the effect. Elevated TFPI1 in DOX resistant cells was active, as thrombin protein levels were coincidentally low. We observed elevated HIF1α protein in DOX resistant cells, and in cells with forced expression of TFPI1, suggesting TFPI1 induces HIF1α. TFPI1 also induced c-MYC, c-SRC, and HDAC2 protein, as well as DOX resistance in parental cells. Growth of cells in 1% O2 induced elevated HIF1α, BCRP and MDR-1 protein, and these cells were resistant to DOX. Our in vitro results were consistent with in vivo patient datasets, as tumors harboring increased BCRP and MDR-1 expression also had increased TFPI1 expression. Our observations are clinically relevant indicating that DOX treatment induces an anticoagulation cascade, leading to inhibition of thrombin and the expression of HIF1α. This in turn activates a pathway leading to drug resistance.
Collapse
|
34
|
Linka Y, Ginzel S, Krüger M, Novosel A, Gombert M, Kremmer E, Harbott J, Thiele R, Borkhardt A, Landgraf P. The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods. Blood Cancer J 2013; 3:e151. [PMID: 24121163 PMCID: PMC3816209 DOI: 10.1038/bcj.2013.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/18/2013] [Accepted: 09/04/2013] [Indexed: 02/03/2023] Open
Abstract
The reciprocal translocation t(12;21)(p13;q22), the most common structural genomic alteration in B-cell precursor acute lymphoblastic leukaemia in children, results in a chimeric transcription factor TEL-AML1 (ETV6-RUNX1). We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with chromatin immunoprecipitation (ChIP)-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture, we identified 217 directly and 118 indirectly regulated targets of the TEL-AML1 fusion protein. Directly, but not indirectly, regulated promoters were enriched in AML1-binding sites. The majority of promoter regions were specific for the fusion protein and not bound by native AML1 or TEL. Comparison with gene expression profiles from TEL-AML1-positive patients identified 56 concordantly misregulated genes with negative effects on proliferation and cellular transport mechanisms and positive effects on cellular migration, and stress responses including immunological responses. In summary, this work for the first time gives a comprehensive insight into how TEL-AML1 expression may directly and indirectly contribute to alter cells to become prone for leukemic transformation.
Collapse
Affiliation(s)
- Y Linka
- Heinrich-Heine University of Dusseldorf, Medical Faculty, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Montero-Ruíz O, Alcántara-Ortigoza MA, Betancourt M, Juárez-Velázquez R, González-Márquez H, Pérez-Vera P. Expression of RUNX1 isoforms and its target gene BLK in childhood acute lymphoblastic leukemia. Leuk Res 2012; 36:1105-11. [PMID: 22748822 DOI: 10.1016/j.leukres.2012.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/11/2022]
Abstract
Bone marrow samples from children with acute lymphoblastic leukemia were analyzed for the expression of RUNX1a/b/c isoforms. Obtained patterns were associated with genetic abnormalities and the expression of the RUNX1 regulated gene BLK. RUNX1c was present in all patients, but the expected over-expression of RUNX1a was not observed. Over-expression of total RUNT domain isoforms was detected in patients with extra RUNX1 copies, and unexpectedly, in those with t(4;11). Only expression of the total RUNT domain-containing isoforms and BLK presented positive correlation. Results suggest a more complex role of RUNX1 in leukemogenesis than the proposed antagonism between the isoforms.
Collapse
Affiliation(s)
- Oreth Montero-Ruíz
- Laboratorio de Cultivo de Tejidos, Instituto Nacional de Pediatría, México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
36
|
Fuka G, Kantner HP, Grausenburger R, Inthal A, Bauer E, Krapf G, Kaindl U, Kauer M, Dworzak MN, Stoiber D, Haas OA, Panzer-Grümayer R. Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leukemia 2012; 26:927-33. [PMID: 22094587 DOI: 10.1038/leu.2011.322] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/01/2011] [Accepted: 10/07/2011] [Indexed: 12/21/2022]
Abstract
The ETV6/RUNX1 (E/R) gene fusion is generated by the t(12;21) and found in approximately 25% of childhood B-cell precursor acute lymphoblastic leukemia. In contrast to the overwhelming evidence that E/R is critical for the initiation of leukemia, its relevance for the maintenance of overt disease is less clear. To investigate this issue, we suppressed the endogenous E/R fusion protein with lentivirally transduced short hairpin RNA in the leukemia cell lines REH and AT-2, and found a distinct reduction of proliferation and cell survival. In line with the observed concurrent inactivation of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, pharmacological inhibition diminished the phosphorylation of AKT and ribosomal protein S6, and significantly increased the apoptosis rate in E/R-positive leukemias. Moreover, PI3K/mTOR inhibitors sensitized glucocorticoid-resistant REH cells to prednisolone, an observation of potential relevance for improving treatment of drug-resistant relapses. Of note, knockdown of the E/R fusion gene also severely impaired the repopulation capacity of REH cells in non-obese deficient/severe combined immunodeficient mice. Collectively, these data demonstrate that the E/R fusion protein activates the PI3K/AKT/mTOR pathway and is indispensible for disease maintenance. Importantly, these results provide a first rationale and justification for targeting the fusion gene and the PI3K/AKT/mTOR pathway therapeutically.
Collapse
Affiliation(s)
- G Fuka
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fuka G, Kauer M, Kofler R, Haas OA, Panzer-Grümayer R. The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression. PLoS One 2011; 6:e26348. [PMID: 22028862 PMCID: PMC3197637 DOI: 10.1371/journal.pone.0026348] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/25/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND ETV6/RUNX1 (E/R) (also known as TEL/AML1) is the most frequent gene fusion in childhood acute lymphoblastic leukemia (ALL) and also most likely the crucial factor for disease initiation; its role in leukemia propagation and maintenance, however, remains largely elusive. To address this issue we performed a shRNA-mediated knock-down (KD) of the E/R fusion gene and investigated the ensuing consequences on genome-wide gene expression patterns and deducible regulatory functions in two E/R-positive leukemic cell lines. FINDINGS Microarray analyses identified 777 genes whose expression was substantially altered. Although approximately equal proportions were either up- (KD-UP) or down-regulated (KD-DOWN), the effects on biological processes and pathways differed considerably. The E/R KD-UP set was significantly enriched for genes included in the "cell activation", "immune response", "apoptosis", "signal transduction" and "development and differentiation" categories, whereas in the E/R KD-DOWN set only the "PI3K/AKT/mTOR signaling" and "hematopoietic stem cells" categories became evident. Comparable expression signatures obtained from primary E/R-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories "stem cell properties", "B-cell differentiation", "immune response", "cell adhesion" and "DNA damage" with RT-qPCR. CONCLUSION Our analyses provide the first preliminary evidence that the continuous expression of the E/R fusion gene interferes with key regulatory functions that shape the biology of this leukemia subtype. E/R may thus indeed constitute the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets.
Collapse
Affiliation(s)
- Gerhard Fuka
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Maximilian Kauer
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Reinhard Kofler
- Division of Molecular Pathophysiology, Tyrolean Cancer Research Institute and Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Renate Panzer-Grümayer
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- St. Anna Kinderspital, Vienna, Austria
| |
Collapse
|
38
|
Sethi P, Alagiriswamy S. Association rule based similarity measures for the clustering of gene expression data. Open Med Inform J 2010; 4:63-73. [PMID: 21603179 PMCID: PMC3096052 DOI: 10.2174/1874431101004010063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 12/15/2022] Open
Abstract
In life threatening diseases, such as cancer, where the effective diagnosis includes annotation, early detection, distinction, and prediction, data mining and statistical approaches offer the promise for precise, accurate, and functionally robust analysis of gene expression data. The computational extraction of derived patterns from microarray gene expression is a non-trivial task that involves sophisticated algorithm design and analysis for specific domain discovery. In this paper, we have proposed a formal approach for feature extraction by first applying feature selection heuristics based on the statistical impurity measures, the Gini Index, Max Minority, and the Twoing Rule and obtaining the top 100-400 genes. We then analyze the associative dependencies between the genes and assign weights to the genes based on their degree of participation in the rules. Consequently, we present a weighted Jaccard and vector cosine similarity measure to compute the similarity between the discovered rules. Finally, we group the rules by applying hierarchical clustering. To demonstrate the usability and efficiency of the concept of our technique, we applied it to three publicly available, multiclass cancer gene expression datasets and performed a biomedical literature search to support the effectiveness of our results.
Collapse
Affiliation(s)
- Prerna Sethi
- Department of Health Informatics and Information Management and Biological Sciences, Ruston, USA.
| | | |
Collapse
|
39
|
Gandemer V, Aubry M, Roussel M, Rio AG, de Tayrac M, Vallee A, Mosser J, Ly-Sunnaram B, Galibert MD. CD9 expression can be used to predict childhood TEL/AML1-positive acute lymphoblastic leukemia: Proposal for an accelerated diagnostic flowchart. Leuk Res 2010; 34:430-7. [DOI: 10.1016/j.leukres.2009.09.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 11/24/2022]
|
40
|
Le Tonquèze O, Gschloessl B, Namanda-Vanderbeken A, Legagneux V, Paillard L, Audic Y. Chromosome wide analysis of CUGBP1 binding sites identifies the tetraspanin CD9 mRNA as a target for CUGBP1-mediated down-regulation. Biochem Biophys Res Commun 2010; 394:884-9. [PMID: 20227387 DOI: 10.1016/j.bbrc.2010.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
CUGBP1 is an RNA-binding protein controlling alternative splicing, mRNA translation and stability. In this work we used a motif scoring approach to identify putative CUGBP1 binding sites for genes located on the human chromosome 12. This allowed us to identify the gene CD9 as a presumptive target for CUGBP1-mediated regulation. In a number of cancers, the tetraspanin CD9 is down-regulated, an event correlated with a bad prognostic. Using a combination of biochemical approaches and CUGBP1 knockdown, we showed that CUGBP1 directly controls CD9 expression.
Collapse
Affiliation(s)
- Olivier Le Tonquèze
- CNRS, UMR 6061 Institut de Génétique et Développement de Rennes, Expression Génétique et Développement, Université de Rennes I, IFR 140 GFAS, 2 avenue du Professeur Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Wu F, Yang LY, Li YF, Ou DP, Chen DP, Fan C. Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma. Hepatology 2009; 50:1839-50. [PMID: 19824075 DOI: 10.1002/hep.23197] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Epidermal growth factor-like domain 7 (Egfl7) is a recently identified secreted protein that is believed to be primarily expressed in endothelial cells (ECs). Although its expression was reported elevated during tumorigenesis, whether and how Egfl7 contributes to human malignancies remains unknown. In the present study overexpression of Egfl7 was found predominantly in hepatocellular carcinoma (HCC) cells in HCC tissues and closely correlated with poor prognosis of HCC. The expression of Egfl7 in cancer cells was further verified with HCC cell lines including HepG2, MHCC97-L, and HCCLM3, and the Egfl7 expression levels positively correlated with metastatic potential of HCC cell lines was tested. To functionally characterize Egfl7 in HCC, we depleted its expression in HCCLM3 cells by using small interfering RNA. Interestingly, reduction of Egfl7 expression resulted in significant inhibition of migration but not growth of HCCLM3 cells. Biochemical analysis indicated that Egfl7 could facilitate the phosphorylation of focal adhesion kinase (FAK) and therefore promote the migration of HCCLM3 cells. In addition, this effect was almost completely blocked by inhibition of epidermal growth factor receptor (EGFR), indicating that the activation of FAK by Egfl7 is mediated through EGFR. Finally, we used a mouse model to demonstrate that down-regulation of Egfl7 was associated with suppression of intrahepatic and pulmonary metastases of HCC. Collectively, our study shows for the first time that overexpression of Egfl7 in HCC and Egfl7 promotes metastasis of HCC by enhancing cell motility through EGFR-dependent FAK phosphorylation. CONCLUSION Our study suggests Egfl7 as a novel prognostic marker for metastasis of HCC and a potential therapeutic target.
Collapse
Affiliation(s)
- Fan Wu
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
42
|
The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data. Blood 2009; 114:3292-8. [PMID: 19654405 DOI: 10.1182/blood-2009-03-212969] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Currently, limited molecular markers exist that can determine where in the spectrum of chronic myeloid leukemia (CML) progression an individual patient falls at diagnosis. Gene expression profiles can predict disease and prognosis, but most widely used microarray analytical methods yield lengthy gene candidate lists that are difficult to apply clinically. Consequently, we applied a probabilistic method called Bayesian model averaging (BMA) to a large CML microarray dataset. BMA, a supervised method, considers multiple genes simultaneously and identifies small gene sets. BMA identified 6 genes (NOB1, DDX47, IGSF2, LTB4R, SCARB1, and SLC25A3) that discriminated chronic phase (CP) from blast crisis (BC) CML. In CML, phase labels divide disease progression into discrete states. BMA, however, produces posterior probabilities between 0 and 1 and predicts patients in "intermediate" stages. In validation studies of 88 patients, the 6-gene signature discriminated early CP from late CP, accelerated phase, and BC. This distinction between early and late CP is not possible with current classifications, which are based on known duration of disease. BMA is a powerful tool for developing diagnostic tests from microarray data. Because therapeutic outcomes are so closely tied to disease phase, these probabilities can be used to determine a risk-based treatment strategy at diagnosis.
Collapse
|
43
|
Norén-Nyström U, Heyman M, Frisk P, Golovleva I, Sundström C, Porwit A, Roos G, Bergh A, Forestier E. Vascular density in childhood acute lymphoblastic leukaemia correlates to biological factors and outcome. Br J Haematol 2009; 146:521-30. [PMID: 19594745 DOI: 10.1111/j.1365-2141.2009.07796.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The issue of angiogenesis and its clinical relevance in childhood acute lymphoblastic leukaemia (ALL) is controversial. In the present study, microvessel density (MVD), analysed in 185 diagnostic bone marrow biopsies, was higher in T-cell ALL compared to B-cell precursor (BCP)-ALL (P = 0.013). In the BCP group, cases with t(12;21) were characterized by a low MVD while patients with high-hyperdiploid leukaemia (HeH, 51-61 chromosomes) showed a high MVD compared to other BCP patients (P = 0.001 and 0.002 respectively). There was a correlation between MVD and white blood cell (WBC) count in high-risk BCP patients (P = 0.021). In addition, BCP patients with a high marrow reticulin fibre density and high MVD had an unfavourable outcome compared to the other BCP patients (P = 0.002). The fraction of vessels in which lumina were filled with blasts (blast congested vessel fraction) correlated strongly with WBC count (P < 0.001). These findings indicate that the angiogenic process interacts with other stroma-factors, such as reticulin fibre density, in its effect on outcome, and is coupled to both the ALL genotype and phenotype. One possible implication is that different subtypes of childhood ALL may respond differently to anti-angiogenic drugs as a supplement in first-line treatment.
Collapse
|
44
|
Blyth K, Slater N, Hanlon L, Bell M, Mackay N, Stewart M, Neil JC, Cameron ER. Runx1 promotes B-cell survival and lymphoma development. Blood Cells Mol Dis 2009; 43:12-9. [PMID: 19269865 DOI: 10.1016/j.bcmd.2009.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
Runx1 is essential for the homeostatic control of normal hematopoiesis and is required for lymphoid development. Translocations or point mutations that result in RUNX1 loss or disrupted function predispose to leukemia but data derived from model systems suggests that Runx genes can also be pro-oncogenic. Here we investigate the effects of enforced Runx1 expression in lymphoid lineages both in vivo and in vitro and show that transgene expression enhanced cell survival in the thymus and bone marrow but strongly inhibited the expansion of hematopoietic and B cell progenitors in vitro. Despite this, modestly enhanced levels of Runx1 accelerated Myc-induced lymphomagenesis in both the B cell and T cell lineages. Together these data provide formal proof that wild type Runx1 can promote oncogenesis in lymphoid tissues and that, in addition to loss of function, gain of function may have an aetiological role in leukemia.
Collapse
Affiliation(s)
- Karen Blyth
- Faculty of Veterinary Medicine, Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
A key goal in cancer research is to identify the total complement of genetic and epigenetic alterations that contribute to tumorigenesis. We are currently witnessing the rapid evolution and convergence of multiple genome-wide platforms that are making this goal a reality. Leading this effort are studies of the molecular lesions that underlie pediatric acute lymphoblastic leukemia (ALL). The recent application of microarray-based analyses of DNA copy number abnormalities (CNAs) in pediatric ALL, complemented by transcriptional profiling, resequencing and epigenetic approaches, has identified a high frequency of common genetic alterations in both B-progenitor and T-lineage ALL. These approaches have identified abnormalities in key pathways, including lymphoid differentiation, cell cycle regulation, tumor suppression, and drug responsiveness. Moreover, the nature and frequency of CNAs differ markedly among ALL genetic subtypes. In this article, we review the key findings from the published data on genome-wide analyses of ALL and highlight some of the technical aspects of data generation and analysis that must be carefully controlled to obtain optimal results.
Collapse
|
46
|
Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol 2009; 46:649-56. [DOI: 10.1016/j.molimm.2008.08.268] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/30/2008] [Accepted: 08/12/2008] [Indexed: 11/19/2022]
|
47
|
Sikic BI, Tibshirani R, Lacayo NJ. Genomics of Childhood Leukemias: The Virtue of Complexity. J Clin Oncol 2008; 26:4367-8. [DOI: 10.1200/jco.2008.16.4285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Branimir I. Sikic
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA
| | - Robert Tibshirani
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA
| | - Norman J. Lacayo
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
48
|
Ng D, Hu N, Hu Y, Wang C, Giffen C, Tang ZZ, Han XY, Yang HH, Lee MP, Goldstein AM, Taylor PR. Replication of a genome-wide case-control study of esophageal squamous cell carcinoma. Int J Cancer 2008; 123:1610-5. [PMID: 18649358 DOI: 10.1002/ijc.23682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In a previous pilot case-control study of individuals diagnosed with esophageal squamous cell carcinoma (ESCC) and matched controls from a high-risk area in China, we identified 38 single nucleotide polymorphisms (SNPs) associated with ESCC located in or near one of 33 genes. In our study, we attempted to replicate the results of these 38 gene-related SNPs in a new sample of 300 ESCC cases and 300 matched controls from the same study conducted in Shanxi Province, China. Among 36 evaluable SNPs, 4 were significant in one or more analyses, including SNPs located in EPHB1, PGLYRP2, PIK3C3 and SLC9A9, although the odds ratios (ORs) for these genotypes were modest. Associations were found with EPHB1/rs1515366 (OR 0.92, 95% CI 0.86-0.99; p = 0.019), PIK3C3/rs52911 (OR 0.93, 95% CI 0.88-0.99; p = 0.02) and PGLYRP2/rs959117 (OR 0.93, 95% CI, 0.86-1.01; p = 0.061) in general linear models (additive mode); and the genotype distribution differed between cases and controls for SLC9A9/rs956062 (p = 0.024). To examine these 4 genes in more detail, 40 HapMap-based tag SNPs from these 4 genes were evaluated in the same subjects and 7 additional SNPs associated with ESCC were identified. Further confirmation of these findings in other populations and other studies are needed to determine if the signals from these SNPs are indirectly associated due to linkage disequilibrium, or are directly related to biologic function and the development of ESCC.
Collapse
Affiliation(s)
- David Ng
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Boulevard, Rm 7112, Bethesda, MD 20892-7236, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|