1
|
Drożdżyński P, Rutkowska N, Rodziewicz M, Marchut-Mikołajczyk O. Bioactive Compounds Produced by Endophytic Bacteria and Their Plant Hosts-An Insight into the World of Chosen Herbaceous Ruderal Plants in Central Europe. Molecules 2024; 29:4456. [PMID: 39339451 PMCID: PMC11433698 DOI: 10.3390/molecules29184456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The natural environment has been significantly impacted by human activity, urbanization, and industrialization, leading to changes in living organisms and their adaptation to harsh conditions. Species, including plants, adapt to these changes by creating mechanisms and modifications that allow them to survive in harsh environments. Also, endophytes, microorganisms that live inside plants, can support plant growth and defense mechanisms in these conditions by synthesizing antimicrobial secondary metabolites. What is more, endophytes produce bioactive metabolites, including alkaloids, amines, and peptides, which play a crucial role in the relationship between endophytes and their host organisms. Endophytes themselves benefit from this by creating a stable environment for their survival and development. The aim of this review is to gain insight into endophytic bioactive metabolites from chosen synanthropic ruderal plants. Industrial activities release pollutants like heavy metals, by-products, and waste, which challenge living organisms and require adaptation. Synanthropic plants, where endophytes are abundant, are particularly valuable for their bioactive compounds, which are used in agriculture and medicine. This review presents, among others, endophytes of herbaceous ruderal plants from central Europe-Chelidonium majus L., Urtica dioica L., Plantago lanceolata L., Matricaria chamomilla L., Equisetum arvense L., Oenothera biennis L., Silybum marianum L., and Mentha piperita L.
Collapse
Affiliation(s)
- Piotr Drożdżyński
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (N.R.); (M.R.); (O.M.-M.)
| | | | | | | |
Collapse
|
2
|
Sunithakumari VS, Menon RR, Suresh GG, Krishnan R, Rameshkumar N. Characterization of a novel root-associated diazotrophic rare PGPR taxa, Aquabacter pokkalii sp. nov., isolated from pokkali rice: new insights into the plant-associated lifestyle and brackish adaptation. BMC Genomics 2024; 25:424. [PMID: 38684959 PMCID: PMC11059613 DOI: 10.1186/s12864-024-10332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Salinity impacts crop growth and productivity and lowers the activities of rhizosphere microbiota. The identification and utilization of habitat-specific salinity-adapted plant growth-promoting rhizobacteria (PGPR) are considered alternative strategies to improve the growth and yields of crops in salinity-affected coastal agricultural fields. In this study, we characterize strain L1I39T, the first Aquabacter species with PGPR traits isolated from a salt-tolerant pokkali rice cultivated in brackish environments. L1I39T is positive for 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation and can promote pokkali rice growth by supplying fixed nitrogen under a nitrogen-deficient seawater condition. Importantly, enhanced plant growth and efficient root colonization were evident in L1I39T-inoculated plants grown under 20% seawater but not in zero-seawater conditions, identifying brackish conditions as a key local environmental factor critical for L1I39T-pokkali rice symbiosis. Detailed physiological studies revealed that L1I39T is well-adapted to brackish environments. In-depth genome analysis of L1I39T identified multiple gene systems contributing to its plant-associated lifestyle and brackish adaptations. The 16S rRNA-based metagenomic study identified L1I39T as an important rare PGPR taxon. Based on the polyphasic taxonomy analysis, we established strain L1I39T as a novel Aquabacter species and proposed Aquabacter pokkalii sp nov. Overall, this study provides a better understanding of a marine-adapted PGPR strain L1I39T that may perform a substantial role in host growth and health in nitrogen-poor brackish environments.
Collapse
Affiliation(s)
- V S Sunithakumari
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul R Menon
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gayathri G Suresh
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramya Krishnan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Athmic Biotech Solutions Pvt. Ltd. R&D Lab, Thiruvananthapuram, Kerala, India
| | - N Rameshkumar
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Kulakowski S, Rivier A, Kuo R, Mengel S, Eng T. Development of modular expression across phylogenetically distinct diazotrophs. J Ind Microbiol Biotechnol 2024; 51:kuae033. [PMID: 39257030 PMCID: PMC11537724 DOI: 10.1093/jimb/kuae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Diazotrophic bacteria can reduce atmospheric nitrogen into ammonia enabling bioavailability of the essential element. Many diazotrophs closely associate with plant roots increasing nitrogen availability, acting as plant growth promoters. These associations have the potential to reduce the need for costly synthetic fertilizers if they could be engineered for agricultural applications. However, despite the importance of diazotrophic bacteria, genetic tools are poorly developed in a limited number of species, in turn narrowing the crops and root microbiomes that can be targeted. Here, we report optimized protocols and plasmids to manipulate phylogenetically diverse diazotrophs with the goal of enabling synthetic biology and genetic engineering. Three broad-host-range plasmids can be used across multiple diazotrophs, with the identification of one specific plasmid (containing origin of replication RK2 and a kanamycin resistance marker) showing the highest degree of compatibility across bacteria tested. We then demonstrated modular expression by testing seven promoters and eleven ribosomal binding sites using proxy fluorescent proteins. Finally, we tested four small molecule inducible systems to report expression in three diazotrophs and demonstrated genome editing in Klebsiella michiganensis M5al. ONE-SENTENCE SUMMARY In this study, broad-host plasmids and synthetic genetic parts were leveraged to enable expression tools in a library of diazotrophic bacteria.
Collapse
Affiliation(s)
- Shawn Kulakowski
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Rivier
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rita Kuo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sonya Mengel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Ikeda T, Ogawa T, Aono T. Dethiobiotin uptake and utilization by bacteria possessing bioYB operon. Res Microbiol 2023; 174:104131. [PMID: 37640259 DOI: 10.1016/j.resmic.2023.104131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Biotin is an essential vitamin for all organisms. Some bacteria cannot synthesize biotin and live by acquiring biotin from the environment. Bacterial biotin transporters (BioY) are classified into three mechanistic types. The first forms the BioMNY complex with ATPase (BioM) and transmembrane protein (BioN). The second relies on a promiscuous energy coupling module. The third functions independently. One-third of bioY genes spread in bacteria cluster with bioM and bioN on the genomes, and the rest does not. Interestingly, some bacteria have the bioY gene clustering with bioB gene, which encodes biotin synthase, an enzyme that converts dethiobiotin to biotin, on their genome. This bioY-bioB cluster is observed even though these bacteria cannot synthesize biotin. Azorhizobium caulinodans ORS571, a rhizobium of tropical legume Sesbania rostrata, is one of such bacteria. In this study using this bacterium, we demonstrated that the BioY linked to BioB could transport not only biotin but also dethiobiotin, and the combination of BioY and BioB contributed to the growth of A. caulinodans ORS571 in a biotin-deficient but dethiobiotin-sufficient environment. We propose that such environment universally exists in the natural world, and the identification of such environment will be a new subject in the field of microbial ecology.
Collapse
Affiliation(s)
- Tomoki Ikeda
- Biotechnology Research Center, The University of Tokyo. 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tetsuhiro Ogawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo. 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Aono
- Biotechnology Research Center, The University of Tokyo. 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Han K, Li Y, Zhang Z, Sun L, Wang ET, Li Y. Comparative genome analysis of Sesbania cannabina-nodulating Rhizobium spp. revealing the symbiotic and transferrable characteristics of symbiosis plasmids. Microb Genom 2023; 9. [PMID: 37133904 DOI: 10.1099/mgen.0.001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Symbiotic nitrogen fixation between legumes and rhizobia makes a great contribution to the terrestrial ecosystem. The successful symbiosis between the partners mainly depends on the nod and nif genes in rhizobia, while the specific symbiosis is mainly determined by the structure of Nod factors and the corresponding secretion systems (type III secretion system; T3SS), etc. These symbiosis genes are usually located on symbiotic plasmids or a chromosomal symbiotic island, both could be transferred interspecies. In our previous studies, Sesbania cannabina-nodulating rhizobia across the world were classified into 16 species of four genera and all the strains, especially those of Rhizobium spp., harboured extraordinarily highly conserved symbiosis genes, suggesting that horizontal transfer of symbiosis genes might have happened among them. In order to learn the genomic basis of diversification of rhizobia under the selection of host specificity, we performed this study to compare the complete genome sequences of four Rhizobium strains associated with S. cannabina, YTUBH007, YTUZZ027, YTUHZ044 and YTUHZ045. Their complete genomes were sequenced and assembled at the replicon level. Each strain represents a different species according to the average nucleotide identity (ANI) values calculated using the whole-genome sequences; furthermore, except for YTUBH007, which was classified as Rhizobium binae, the remaining three strains were identified as new candidate species. A single symbiotic plasmid sized 345-402 kb containing complete nod, nif, fix, T3SS and conjugal transfer genes was detected in each strain. The high ANI and amino acid identity (AAI) values, as well as the close phylogenetic relationships among the entire symbiotic plasmid sequences, indicate that they have the same origin and the entire plasmid has been transferred among different Rhizobium species. These results indicate that S. cannabina stringently selects a certain symbiosis gene background of the rhizobia for nodulation, which might have forced the symbiosis genes to transfer from some introduced rhizobia to the related native or local-condition-adapted bacteria. The existence of almost complete conjugal transfer related elements, but not the gene virD, indicated that the self-transfer of the symbiotic plasmid in these rhizobial strains may be realized via a virD-independent pathway or through another unidentified gene. This study provides insight for the better understanding of high-frequency symbiotic plasmid transfer, host-specific nodulation and the host shift for rhizobia.
Collapse
Affiliation(s)
- Kunming Han
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Zhenpeng Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, PR China
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| |
Collapse
|
6
|
Liu Y, Liu X, Dong X, Yin Z, Xie Z, Luo Y. Systematic Analysis of Lysine Acetylation Reveals Diverse Functions in Azorhizobium caulinodans Strain ORS571. Microbiol Spectr 2023; 11:e0353922. [PMID: 36475778 PMCID: PMC9927263 DOI: 10.1128/spectrum.03539-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation can quickly modify the physiology of bacteria to respond to changes in environmental or nutritional conditions, but little information on these modifications is available in rhizobia. In this study, we report the lysine acetylome of Azorhizobium caulinodans strain ORS571, a model rhizobium isolated from stem nodules of the tropical legume Sesbania rostrata that is capable of fixing nitrogen in the free-living state and during symbiosis. Antibody enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used to characterize the acetylome. There are 2,302 acetylation sites from 982 proteins, accounting for 20.8% of the total proteins. Analysis of the acetylated motifs showed the preferences for the amino acid residues around acetylated lysines. The response regulator CheY1, previously characterized to be involved in chemotaxis in strain ORS571, was identified as an acetylated protein, and a mutation of the acetylated site of CheY1 significantly impaired the strain's motility. In addition, a Zn+-dependent deacetylase (AZC_0414) was characterized, and the construction of a deletion mutant strain showed that it played a role in chemotaxis. Our study provides the first global analysis of lysine acetylation in ORS571, suggesting that acetylation plays a role in various physiological processes. In addition, we demonstrate its involvement in the chemotaxis process. The acetylome of ORS571 provides insights to investigate the regulation mechanism of rhizobial physiology. IMPORTANCE Acetylation is an important modification that regulates protein function and has been found to regulate physiological processes in various bacteria. The physiology of rhizobium A. caulinodans ORS571 is regulated by multiple mechanisms both when free living and in symbiosis with the host; however, the regulatory role of acetylation is not yet known. Here, we took an acetylome-wide approach to identify acetylated proteins in A. caulinodans ORS571 and performed clustering analyses. Acetylation of chemotaxis proteins was preliminarily investigated, and the upstream acetylation-regulating enzyme involved in chemotaxis was characterized. These findings provide new insights to explore the physiological mechanisms of rhizobia.
Collapse
Affiliation(s)
- Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
7
|
Provorov NA, Andronov EE, Kimeklis AK, Onishchuk OP, Igolkina AA, Karasev ES. Microevolution, speciation and macroevolution in rhizobia: Genomic mechanisms and selective patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:1026943. [PMID: 36388581 PMCID: PMC9640933 DOI: 10.3389/fpls.2022.1026943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Nodule bacteria (rhizobia), N2-fixing symbionts of leguminous plants, represent an excellent model to study the fundamental issues of evolutionary biology, including the tradeoff between microevolution, speciation, and macroevolution, which remains poorly understood for free-living organisms. Taxonomically, rhizobia are extremely diverse: they are represented by nearly a dozen families of α-proteobacteria (Rhizobiales) and by some β-proteobacteria. Their genomes are composed of core parts, including house-keeping genes (hkg), and of accessory parts, including symbiotically specialized (sym) genes. In multipartite genomes of evolutionary advanced fast-growing species (Rhizobiaceae), sym genes are clustered on extra-chromosomal replicons (megaplasmids, chromids), facilitating gene transfer in plant-associated microbial communities. In this review, we demonstrate that in rhizobia, microevolution and speciation involve different genomic and ecological mechanisms: the first one is based on the diversification of sym genes occurring under the impacts of host-induced natural selection (including its disruptive, frequency-dependent and group forms); the second one-on the diversification of hkgs under the impacts of unknown factors. By contrast, macroevolution represents the polyphyletic origin of super-species taxa, which are dependent on the transfer of sym genes from rhizobia to various soil-borne bacteria. Since the expression of newly acquired sym genes on foreign genomic backgrounds is usually restricted, conversion of resulted recombinants into the novel rhizobia species involves post-transfer genetic changes. They are presumably supported by host-induced selective processes resulting in the sequential derepression of nod genes responsible for nodulation and of nif/fix genes responsible for symbiotic N2 fixation.
Collapse
Affiliation(s)
- Nikolay A. Provorov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
| | - Evgeny E. Andronov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
- Laboratory of Soil Biology and Biochemistry, V.V. Dokuchaev Soil Science Institute, Moscow, Russia
| | - Anastasiia K. Kimeklis
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
- Department of Applied Ecology, St. Petersburg State University, Saint-Petersburg, Russia
| | - Olga P. Onishchuk
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
| | - Anna A. Igolkina
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Evgeny S. Karasev
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute for Agricultural Microbiology, Pushkin, Russia
| |
Collapse
|
8
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
9
|
Liu Y, Liu X, Dong X, Yan J, Xie Z, Luo Y. The effect of Azorhizobium caulinodans ORS571 and γ-aminobutyric acid on salt tolerance of Sesbania rostrata. FRONTIERS IN PLANT SCIENCE 2022; 13:926850. [PMID: 36046585 PMCID: PMC9423025 DOI: 10.3389/fpls.2022.926850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 05/27/2023]
Abstract
Salt stress seriously affects plant growth and crop yield, and has become an important factor that threatens the soil quality worldwide. In recent years, the cultivation of salt-tolerant plants such as Sesbania rostrata has a positive effect on improving coastal saline-alkali land. Microbial inoculation and GABA addition have been shown to enhance the plant tolerance in response to the abiotic stresses, but studies in green manure crops and the revelation of related mechanisms are not clear. In this study, the effects of inoculation with Azorhizobium caulinodans ORS571 and exogenous addition of γ-Aminobutyric Acid (GABA; 200 mg·L-1) on the growth and development of S. rostrata under salt stress were investigated using potting experiments of vermiculite. The results showed that inoculation with ORS571 significantly increased the plant height, biomass, chlorophyll content, proline content (PRO), catalase (CAT) activity, and superoxide dismutase (SOD) activity of S. rostrata and reduced the malondialdehyde (MDA) level of leaves. The exogenous addition of GABA also increased the height, biomass, and CAT activity and reduced the MDA and PRO level of leaves. In addition, exogenous addition of GABA still had a certain improvement on the CAT activity and chlorophyll content of the ORS571-S. rostrata symbiotic system. In conclusion, ORS571 inoculation and GABA application have a positive effect on improving the salt stress tolerance in S. rostrata, which are closely associated with increasing chlorophyll synthesis and antioxidant enzyme activity and changing the amino acid content. Therefore, it can be used as a potential biological measure to improve the saline-alkali land.
Collapse
Affiliation(s)
- Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jiaming Yan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Yongming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
10
|
Ren CG, Kong CC, Liu ZY, Zhong ZH, Yang JC, Wang XL, Qin S. A Perspective on Developing a Plant ‘Holobiont’ for Future Saline Agriculture. Front Microbiol 2022; 13:763014. [PMID: 35602056 PMCID: PMC9120776 DOI: 10.3389/fmicb.2022.763014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Soil salinity adversely affects plant growth and has become a major limiting factor for agricultural development worldwide. There is a continuing demand for sustainable technology innovation in saline agriculture. Among various bio-techniques being used to reduce the salinity hazard, symbiotic microorganisms such as rhizobia and arbuscular mycorrhizal (AM) fungi have proved to be efficient. These symbiotic associations each deploy an array of well-tuned mechanisms to provide salinity tolerance for the plant. In this review, we first comprehensively cover major research advances in symbiont-induced salinity tolerance in plants. Second, we describe the common signaling process used by legumes to control symbiosis establishment with rhizobia and AM fungi. Multi-omics technologies have enabled us to identify and characterize more genes involved in symbiosis, and eventually, map out the key signaling pathways. These developments have laid the foundation for technological innovations that use symbiotic microorganisms to improve crop salt tolerance on a larger scale. Thus, with the aim of better utilizing symbiotic microorganisms in saline agriculture, we propose the possibility of developing non-legume ‘holobionts’ by taking advantage of newly developed genome editing technology. This will open a new avenue for capitalizing on symbiotic microorganisms to enhance plant saline tolerance for increased sustainability and yields in saline agriculture.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Cun-Cui Kong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zheng-Yi Liu
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-Hai Zhong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Xiao-Li Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Song Qin
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Song Qin,
| |
Collapse
|
11
|
Abstract
Inoculation of cereals with diazotrophic (N2-fixing) bacteria offers a sustainable alternative to the application of nitrogen fertilizers in agriculture. While natural diazotrophs have evolved multilayered regulatory mechanisms that couple N2 fixation with assimilation of the product NH3 and prevent release to plants, genetic modifications can permit excess production and excretion of NH3. However, a lack of stringent host-specificity for root colonization by the bacteria would allow growth promotion of target and nontarget plants species alike. Here, we exploit synthetic transkingdom signaling to establish plant host-specific control of the N2-fixation catalyst nitrogenase in Azorhizobium caulinodans occupying barley roots. This work demonstrates how partner-specific interactions can be established to avoid potential growth promotion of nontarget plants. Engineering N2-fixing symbioses between cereals and diazotrophic bacteria represents a promising strategy to sustainably deliver biologically fixed nitrogen (N) in agriculture. We previously developed novel transkingdom signaling between plants and bacteria, through plant production of the bacterial signal rhizopine, allowing control of bacterial gene expression in association with the plant. Here, we have developed both a homozygous rhizopine producing (RhiP) barley line and a hybrid rhizopine uptake system that conveys upon our model bacterium Azorhizobium caulinodans ORS571 (Ac) 103-fold improved sensitivity for rhizopine perception. Using this improved genetic circuitry, we established tight rhizopine-dependent transcriptional control of the nitrogenase master regulator nifA and the N metabolism σ-factor rpoN, which drove nitrogenase expression and activity in vitro and in situ by bacteria colonizing RhiP barley roots. Although in situ nitrogenase activity was suboptimally effective relative to the wild-type strain, activation was specific to RhiP barley and was not observed on the roots of wild-type plants. This work represents a key milestone toward the development of a synthetic plant-controlled symbiosis in which the bacteria fix N2 only when in contact with the desired host plant and are prevented from interaction with nontarget plant species.
Collapse
|
12
|
Yurgel SN, Ajeethan N, Smertenko A. Response of Plant-Associated Microbiome to Plant Root Colonization by Exogenous Bacterial Endophyte in Perennial Crops. Front Microbiol 2022; 13:863946. [PMID: 35479645 PMCID: PMC9037143 DOI: 10.3389/fmicb.2022.863946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The application of bacterial inoculums for improving plant growth and production is an important component of sustainable agriculture. However, the efficiency of perennial crop inoculums depends on the ability of the introduced endophytes to exert an impact on the host-plant over an extended period of time. This impact might be evaluated by the response of plant-associated microbiome to the inoculation. In this study, we monitored the effect of a single bacterial strain inoculation on the diversity, structure, and cooperation in plant-associated microbiome over 1-year period. An endophyte (RF67) isolated from Vaccinium angustifolium (wild blueberry) roots and annotated as Rhizobium was used for the inoculation of 1-year-old Lonicera caerulea (Haskap) plants. A significant level of bacterial community perturbation was detected in plant roots after 3 months post-inoculation. About 23% of root-associated community variation was correlated with an application of the inoculant, which was accompanied by increased cooperation between taxa belonging to Proteobacteria and Actinobacteriota phyla and decreased cooperation between Firmicutes in plant roots. Additionally, a decrease in bacterial Shannon diversity and an increase in the relative abundances of Rhizobiaceae and Enterobacteriaceae were detected in the roots of inoculated plants relative to the non-inoculated control. A strong effect of the inoculation on the bacterial cooperation was also detected after 1 year of plant field growth, whereas no differences in bacterial community composition and also alpha and beta diversities were detected between bacterial communities from inoculated and non-inoculated roots. These findings suggest that while exogenous endophytes might have a short-term effect on the root microbiome structure and composition, they can boost cooperation between plant-growth-promoting endophytes, which can exist for the extended period of time providing the host-plant with long-lasting beneficial effects.
Collapse
Affiliation(s)
- Svetlana N. Yurgel
- Grain Legume Genetics and Physiology Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Prosser, WA, United States
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Department of Biosystems Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
13
|
Zhu C, Friman VP, Li L, Xu Q, Guo J, Guo S, Shen Q, Ling N. Meta-analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale. Environ Microbiol 2022; 24:2013-2028. [PMID: 35362656 DOI: 10.1111/1462-2920.15984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
Biological nitrogen fixation performed by diazotrophs forms a cornerstone of Earth's terrestrial ecosystem productivity. However, the composition, diversity and distribution of soil diazotrophs are poorly understood across different soil ecosystems. Furthermore, the biological potential of the key diazotroph species in relation to key environmental parameters is unknown. To address this, we used meta-analysis approach to merge together 39 independent diazotroph amplicon sequencing (nifH gene) datasets consisting of 1988 independent soil samples. We then employed multiple statistical analyses and machine-learning approaches to compare diazotroph community differences and indicator species between terrestrial ecosystems on a global scale. The distribution, composition and structure of diazotroph communities varied across seven different terrestrial ecosystems, with community composition exhibiting an especially clear effect. The Cyanobacteria were the most abundant taxa in crust ecosystems (accounting for ~45% of diazotrophs), while other terrestrial ecosystems were dominated by Proteobacteria, including Alpha-, Beta- and Gamma-Proteobacteria (accounting for ~70% of diazotrophs). Farmland ecosystems harboured the highest and crust ecosystems the lowest alpha and phylogenetic diversities. Azospirillum zeae, Skermanella aerolata and four Bradyrhizobium species were identified as key indicator species of potential diazotroph activity. Overall, diazotroph abundances and distribution were affected by multiple environmental parameters, including soil pH, nitrogen, organic carbon, C:N ratio and annual mean precipitation and temperature. Together, our findings suggest that based on the relative abundance and diversity of nifH marker gene, diazotrophs have adapted to a range of environmental niches globally.
Collapse
Affiliation(s)
- Chen Zhu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ling Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qicheng Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Sun L, Wang D, Yin Z, Zhang C, Bible A, Xie Z. The FtcR-Like Protein ActR in Azorhizobium caulinodans ORS571 Is Involved in Bacterial Motility and Symbiosis With the Host Plant. Front Microbiol 2021; 12:744268. [PMID: 34867860 PMCID: PMC8639532 DOI: 10.3389/fmicb.2021.744268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial signal transduction pathways are important for a variety of adaptive responses to environment, such as two-component systems (TCSs). In this paper, we reported the characterization of a transcriptional regulator in Azorhizobium caulinodans ORS571, ActR, with an N-terminal receiver domain and one C-terminal OmpR/PhoB-type DNA binding domain. Sequence analysis showed that ActR shared a high similarity with FtcR regulator of Brucella melitensis 16M known to be involved in flagellar regulation. The structural gene of this regulator was largely distributed in Alphaproteobacteria, in particular in Rhizobiales and Rhodobacterales, and was located within clusters of genes related to motility functions. Furthermore, we studied the biological function of ActR in A. caulinodans grown at the free-living state or in association with Sesbania rostrata by constructing actR gene deletion mutant. In the free-living state, the bacterial flagellum and motility ability were entirely deleted, the expression of flagellar genes was downregulated; and the exopolysaccharide production, biofilm formation, and cell flocculation decreased significantly compared with those of the wild-type strain. In the symbiotic state, ΔactR mutant strain showed weakly competitive colonization and nodulation on the host plant. These results illustrated that FtcR-like regulator in A. caulinodans is involved in flagellar biosynthesis and provide bacteria with an effective competitive nodulation for symbiosis. These findings improved our knowledge of FtcR-like transcriptional regulator in A. caulinodans.
Collapse
Affiliation(s)
- Li Sun
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Dandan Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Amber Bible
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Zhihong Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
15
|
Culture-independent assessment of the diazotrophic Bradyrhizobium communities in the Pampa and Atlantic Forest Biomes localities in southern Brazil. Syst Appl Microbiol 2021; 44:126228. [PMID: 34265499 DOI: 10.1016/j.syapm.2021.126228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.
Collapse
|
16
|
Rosselli R, La Porta N, Muresu R, Stevanato P, Concheri G, Squartini A. Pangenomics of the Symbiotic Rhizobiales. Core and Accessory Functions Across a Group Endowed with High Levels of Genomic Plasticity. Microorganisms 2021; 9:microorganisms9020407. [PMID: 33669391 PMCID: PMC7920277 DOI: 10.3390/microorganisms9020407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pangenome analyses reveal major clues on evolutionary instances and critical genome core conservation. The order Rhizobiales encompasses several families with rather disparate ecological attitudes. Among them, Rhizobiaceae, Bradyrhizobiaceae, Phyllobacteriacreae and Xanthobacteriaceae, include members proficient in mutualistic symbioses with plants based on the bacterial conversion of N2 into ammonia (nitrogen-fixation). The pangenome of 12 nitrogen-fixing plant symbionts of the Rhizobiales was analyzed yielding total 37,364 loci, with a core genome constituting 700 genes. The percentage of core genes averaged 10.2% over single genomes, and between 5% to 7% were found to be plasmid-associated. The comparison between a representative reference genome and the core genome subset, showed the core genome highly enriched in genes for macromolecule metabolism, ribosomal constituents and overall translation machinery, while membrane/periplasm-associated genes, and transport domains resulted under-represented. The analysis of protein functions revealed that between 1.7% and 4.9% of core proteins could putatively have different functions.
Collapse
Affiliation(s)
- Riccardo Rosselli
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, NL-1790 AB Den Burg, The Netherlands;
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Nicola La Porta
- Department of Sustainable Agrobiosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy;
- MOUNTFOR Project Centre, European Forest Institute, 38098 San Michele all’Adige, Italy
| | - Rosella Muresu
- Institute of Animal Production Systems in Mediterranean Environments-National Research Council, 07040 Sassari, Italy;
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
- Correspondence: ; Tel.: +39-049-8272-923
| |
Collapse
|
17
|
Aroney STN, Poole PS, Sánchez-Cañizares C. Rhizobial Chemotaxis and Motility Systems at Work in the Soil. FRONTIERS IN PLANT SCIENCE 2021; 12:725338. [PMID: 34512702 PMCID: PMC8429497 DOI: 10.3389/fpls.2021.725338] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 05/17/2023]
Abstract
Bacteria navigate their way often as individual cells through their chemical and biological environment in aqueous medium or across solid surfaces. They swim when starved or in response to physical and chemical stimuli. Flagella-driven chemotaxis in bacteria has emerged as a paradigm for both signal transduction and cellular decision-making. By altering motility, bacteria swim toward nutrient-rich environments, movement modulated by their chemotaxis systems with the addition of pili for surface movement. The numbers and types of chemoreceptors reflect the bacterial niche and lifestyle, with those adapted to complex environments having diverse metabolic capabilities, encoding far more chemoreceptors in their genomes. The Alpha-proteobacteria typify the latter case, with soil bacteria such as rhizobia, endosymbionts of legume plants, where motility and chemotaxis are essential for competitive symbiosis initiation, among other processes. This review describes the current knowledge of motility and chemotaxis in six model soil bacteria: Sinorhizobium meliloti, Agrobacterium fabacearum, Rhizobium leguminosarum, Azorhizobium caulinodans, Azospirillum brasilense, and Bradyrhizobium diazoefficiens. Although motility and chemotaxis systems have a conserved core, rhizobia possess several modifications that optimize their movements in soil and root surface environments. The soil provides a unique challenge for microbial mobility, since water pathways through particles are not always continuous, especially in drier conditions. The effectiveness of symbiont inoculants in a field context relies on their mobility and dispersal through the soil, often assisted by water percolation or macroorganism movement or networks. Thus, this review summarizes the factors that make it essential to consider and test rhizobial motility and chemotaxis for any potential inoculant.
Collapse
|
18
|
Cao Y, Jiang G, Li M, Fang X, Zhu D, Qiu W, Zhu J, Yu D, Xu Y, Zhong Z, Zhu J. Glutaredoxins Play an Important Role in the Redox Homeostasis and Symbiotic Capacity of Azorhizobium caulinodans ORS571. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1381-1393. [PMID: 32970520 DOI: 10.1094/mpmi-04-20-0098-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glutaredoxin (GRX) plays an essential role in the control of the cellular redox state and related pathways in many organisms. There is limited information on GRXs from the model nitrogen (N2)-fixing bacterium Azorhizobium caulinodans. In the present work, we identified and performed functional analyses of monothiol and dithiol GRXs in A. caulinodans in the free-living state and during symbiosis with Sesbania rostrata. Our data show that monothiol GRXs may be very important for bacterial growth under normal conditions and in response to oxidative stress due to imbalance of the redox state in grx mutants of A. caulinodans. Functional redundancies were also observed within monothiol and dithiol GRXs in terms of different physiological functions. The changes in catalase activity and iron content in grx mutants were assumed to favor the maintenance of bacterial resistance against oxidants, nodulation, and N2 fixation efficiency in this bacterium. Furthermore, the monothiol GRX12 and dithiol GRX34 play a collective role in symbiotic associations between A. caulinodans and Sesbania rostrata. Our study provided systematic evidence that further investigations are required to understand the importance of glutaredoxins in A. caulinodans and other rhizobia.
Collapse
Affiliation(s)
- Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Mingxu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xingxing Fang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Dan Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Wei Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Juanjuan Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Daogeng Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, 571737 Danzhou, Hainan, PR China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| |
Collapse
|
19
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Massive rhizobial genomic variation associated with partner quality in Lotus-Mesorhizobium symbiosis. FEMS Microbiol Ecol 2020; 96:5917975. [PMID: 33016310 DOI: 10.1093/femsec/fiaa202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/29/2020] [Indexed: 11/14/2022] Open
Abstract
Variation in partner quality is commonly observed in diverse cooperative relationships, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variation. Here, we investigated how genetic variation in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variation in the core genome and the similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using 9 sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variation represented by plant growth phenotypes, including genotype-by-genotype interactions. Variation in quality was not associated with the presence/absence variation in known symbiosis-related genes in the symbiosis island; rather, it showed significant correlation with the core genome variation. Given the recurrent HGT of the symbiosis islands into diverse Mesorhizobium strains, local Mesorhizobium communities could serve as a major source of variation for core genomes, which might prevent variation in partner quality from fixing, even in the presence of selection favoring high-quality partners. These findings highlight the novel role of HGT of symbiosis islands in maintaining partner quality variation in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, The University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takashi Tsuchimatsu
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571. Genes (Basel) 2020; 11:genes11030335. [PMID: 32245101 PMCID: PMC7141136 DOI: 10.3390/genes11030335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Azorhizobium caulinodans is a symbiotic nitrogen-fixing bacterium that forms both root and stem nodules on Sesbania rostrata. During nodule formation, bacteria have to withstand organic peroxides that are produced by plant. Previous studies have elaborated on resistance to these oxygen radicals in several bacteria; however, to the best of our knowledge, none have investigated this process in A. caulinodans. In this study, we identified and characterised the organic hydroperoxide resistance gene ohr (AZC_2977) and its regulator ohrR (AZC_3555) in A. caulinodans ORS571. Hypersensitivity to organic hydroperoxide was observed in an ohr mutant. While using a lacZ-based reporter system, we revealed that OhrR repressed the expression of ohr. Moreover, electrophoretic mobility shift assays demonstrated that OhrR regulated ohr by direct binding to its promoter region. We showed that this binding was prevented by OhrR oxidation under aerobic conditions, which promoted OhrR dimerization and the activation of ohr. Furthermore, we showed that one of the two conserved cysteine residues in OhrR, Cys11, was critical for the sensitivity to organic hydroperoxides. Plant assays revealed that the inactivation of Ohr decreased the number of stem nodules and nitrogenase activity. Our data demonstrated that Ohr and OhrR are required for protecting A. caulinodans from organic hydroperoxide stress and play an important role in the interaction of the bacterium with plants. The results that were obtained in our study suggested that a thiol-based switch in A. caulinodans might sense host organic peroxide signals and enhance symbiosis.
Collapse
|
21
|
Sun Y, Liu Y, Liu X, Dang X, Dong X, Xie Z. Azorhizobium caulinodans c-di-GMP phosphodiesterase Chp1 involved in motility, EPS production, and nodulation of the host plant. Appl Microbiol Biotechnol 2020; 104:2715-2729. [PMID: 32002604 DOI: 10.1007/s00253-020-10404-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Establishment of the rhizobia-legume symbiosis is usually accompanied by hydrogen peroxide (H2O2) production by the legume host at the site of infection, a process detrimental to rhizobia. In Azorhizobium caulinodans ORS571, deletion of chp1, a gene encoding c-di-GMP phosphodiesterase, led to increased resistance against H2O2 and to elevated nodulation efficiency on its legume host Sesbania rostrata. Three domains were identified in the Chp1: a PAS domain, a degenerate GGDEF domain, and an EAL domain. An in vitro enzymatic activity assay showed that the degenerate GGDEF domain of Chp1 did not have diguanylate cyclase activity. The phosphodiesterase activity of Chp1 was attributed to its EAL domain which could hydrolyse c-di-GMP into pGpG. The PAS domain functioned as a regulatory domain by sensing oxygen. Deletion of Chp1 resulted in increased intracellular c-di-GMP level, decreased motility, increased aggregation, and increased EPS (extracellular polysaccharide) production. H2O2-sensitivity assay showed that increased EPS production could provide ORS571 with resistance against H2O2. Thus, the elevated nodulation efficiency of the ∆chp1 mutant could be correlated with a protective role of EPS in the nodulation process. These data suggest that c-di-GMP may modulate the A. caulinodans-S. rostrata nodulation process by regulating the production of EPS which could protect rhizobia against H2O2.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Yanan Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoxiao Dang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoyan Dong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Zhihong Xie
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China.
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China.
| |
Collapse
|
22
|
Jiang G, Yang J, Li X, Cao Y, Liu X, Ling J, Wang H, Zhong Z, Zhu J. Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS Microbiol Lett 2019; 366:5290313. [PMID: 30657885 DOI: 10.1093/femsle/fnz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are not only toxic products of oxygen from aerobic metabolism or stress but also signalling molecules involved in the development of the legume-Rhizobium symbiosis. To assess the importance of alkyl hydroperoxide reductase (AhpCD) in the nitrogen-fixating bacterium Azorhizobium caulinodans, we investigated the phenotypes of the ∆ahpCD strain with regards to ROS resistance and symbiotic interactions with Sesbania rostrata. The ∆ahpCD strain was notably more sensitive than its parent strain to hydrogen peroxide (H2O2) but not to two organic peroxides, in the early log phase. The expression of ahpCD was not controlled by a LysR-type transcriptional activator either in vitro or in vivo. The catalase activity of the ∆ahpCD strain was affected at a relatively low level of H2O2 stress. Furthermore, the ∆ahpCD strain induced a reduced number of stem nodules in S. rostrata with lowering of nitrogenase activity. These data suggest that A. caulinodans AhpCD is not only important for H2O2 detoxification in vitro but also critical for symbiosis with S. rostrata. Functional analysis of AhpCD is worth investigating in other rhizobia to gain a comprehensive view of its contributions to ROS defence and symbiotic association with legumes.
Collapse
Affiliation(s)
- Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, National Engineering Research Centre for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Juan Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xingjuan Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xiaomeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Ling
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| |
Collapse
|
23
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Liu X, Qiu W, Rao B, Cao Y, Fang X, Yang J, Jiang G, Zhong Z, Zhu J. Bacterioferritin comigratory protein is important in hydrogen peroxide resistance, nodulation, and nitrogen fixation in Azorhizobium caulinodans. Arch Microbiol 2019; 201:823-831. [PMID: 30953092 DOI: 10.1007/s00203-019-01654-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/16/2019] [Accepted: 03/22/2019] [Indexed: 12/01/2022]
Abstract
Reactive oxygen species are not only harmful for rhizobia but also required for the establishment of symbiotic interactions between rhizobia and their legume hosts. In this work, we first investigated the preliminary role of the bacterioferritin comigratory protein (BCP), a member of the peroxiredoxin family, in the nitrogen-fixing bacterium Azorhizobium caulinodans. Our data revealed that the bcp-deficient strain of A. caulinodans displayed an increased sensitivity to inorganic hydrogen peroxide (H2O2) but not to two organic peroxides in a growth-phase-dependent manner. Meanwhile, BCP was found to be involved in catalase activity under relatively low H2O2 conditions. Furthermore, nodulation and N2 fixation were significantly impaired by mutation of the bcp gene in A. caulinodans. Our work initially documented the importance of BCP in the bacterial defence against H2O2 in the free-living stage of rhizobia and during their symbiotic interactions with legumes. Molecular signalling in vivo is required to decipher the holistic functions of BCP in A. caulinodans as well as in other rhizobia.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Wei Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Bei Rao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xingxing Fang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Juan Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Sun Y, Xie Z, Sui F, Liu X, Cheng W. Identification of Cbp1, a c-di-GMP Binding Chemoreceptor in Azorhizobium caulinodans ORS571 Involved in Chemotaxis and Nodulation of the Host Plant. Front Microbiol 2019; 10:638. [PMID: 31001223 PMCID: PMC6454048 DOI: 10.3389/fmicb.2019.00638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/13/2019] [Indexed: 01/10/2023] Open
Abstract
Cbp1, a chemoreceptor containing a PilZ domain was identified in Azorhizobium caulinodans ORS571, a nitrogen-fixing free-living soil bacterium that induces nodule formation in both the roots and stems of the host legume Sesbania rostrata. Chemoreceptors are responsible for sensing signals in the chemotaxis pathway, which guides motile bacteria to beneficial niches and plays an important role in the establishment of rhizobia-legume symbiosis. PilZ domain proteins are known to bind the second messenger c-di-GMP, an important regulator of motility, biofilm formation and virulence. Cbp1 was shown to bind c-di-GMP through the conserved RxxxR motif of its PilZ domain. A mutant strain carrying a cbp1 deletion was impaired in chemotaxis, a feature that could be restored by genetic complementation. Compared with the wild type strain, the Δcbp1 mutant displayed enhanced aggregation and biofilm formation. The Δcbp1 mutant induced functional nodules when inoculated individually. However, the Δcbp1 mutant was less competitive than the wild type in competitive root colonization and nodulation. These data are in agreement with the hypothesis that the c-di-GMP binding chemoreceptor Cbp1 in A. caulinodans is involved in chemotaxis and nodulation.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihong Xie
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fu Sui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Wuzeng Cheng
- Shandong Huibang Bohai Agriculture Development Limited Company, Dongying, China
| |
Collapse
|
26
|
Lin HH, Huang HM, Yu M, Lai EM, Chien HL, Liu CT. Functional Exploration of the Bacterial Type VI Secretion System in Mutualism: Azorhizobium caulinodans ORS571-Sesbania rostrata as a Research Model. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018. [PMID: 29516754 DOI: 10.1094/mpmi-01-18-0026-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The bacterial type VI secretion system (T6SS) has been considered the armed force of bacteria because it can deliver toxin effectors to prokaryotic or eukaryotic cells for survival and fitness. Although many legume symbiotic rhizobacteria encode T6SS in their genome, the biological function of T6SS in these bacteria is still unclear. To elucidate this issue, we used Azorhizobium caulinodans ORS571 and its symbiotic host Sesbania rostrata as our research model. By using T6SS gene deletion mutants, we found that T6SS provides A. caulinodans with better symbiotic competitiveness when coinfected with a T6SS-lacking strain, as demonstrated by two independent T6SS-deficient mutants. Meanwhile, the symbiotic effectiveness was not affected by T6SS because the nodule phenotype, nodule size, and nodule nitrogen-fixation ability did not differ between the T6SS mutants and the wild type when infected alone. Our data also suggest that under several lab culture conditions tested, A. caulinodans showed no T6SS-dependent interbacterial competition activity. Therefore, instead of being an antihost or antibacterial weapon of the bacterium, the T6SS in A. caulinodans ORS571 seems to participate specifically in symbiosis by increasing its symbiotic competitiveness.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Hsin-Mei Huang
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Manda Yu
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Erh-Min Lai
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Hsiao-Lin Chien
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Chi-Te Liu
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
- 3 Agricultural Biotechnology Research Center, Academia Sinica
| |
Collapse
|
27
|
Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia-the roots of a success story. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:7-15. [PMID: 29289792 DOI: 10.1016/j.pbi.2017.12.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 05/12/2023]
Abstract
By evolving the dual capacity of intracellular survival and symbiotic nitrogen fixation in legumes, rhizobia have achieved an ecological and evolutionary success that has reshaped our biosphere. Despite complex challenges, including a dual lifestyle of intracellular infection separated by a free-living phase in soil, rhizobial symbiosis has spread horizontally to hundreds of bacterial species and geographically throughout the globe. This symbiosis has also persisted and been reshaped through millions of years of history. Here, we summarize recent advances in our understanding of the molecular mechanisms, ecological settings, and evolutionary pathways that are collectively responsible for this symbiotic success story. We offer predictions of how this symbiosis can evolve under new influences and for the benefit of a burgeoning human population.
Collapse
Affiliation(s)
| | - Joel L Sachs
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, CA, USA
| |
Collapse
|
28
|
Liu W, Sun Y, Shen R, Dang X, Liu X, Sui F, Li Y, Zhang Z, Alexandre G, Elmerich C, Xie Z. A Chemotaxis-Like Pathway of Azorhizobium caulinodans Controls Flagella-Driven Motility, Which Regulates Biofilm Formation, Exopolysaccharide Biosynthesis, and Competitive Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:737-749. [PMID: 29424664 DOI: 10.1094/mpmi-12-17-0290-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The genome of the Azorhizobium caulinodans ORS571 contains a unique chemotaxis gene cluster (che) including five chemotaxis genes: cheA, cheW, cheY1, cheB, and cheR. Analysis of the role of the chemotaxis cluster of A. caulinodans using deletion mutant strains revealed that CheA or the Che signaling pathway controls chemotaxis behavior and flagella-driven motility and plays important roles in formation of biofilms and production of extracellular polysaccharides (EPS). Furthermore, the deletion mutants (ΔcheA and ΔcheA-R) were defective in competitive adsorption and colonization on the root surface of host plants. In addition, a functional CheA or Che pathway promoted competitive nodulation on roots and stems. Interestingly, a nonflagellated mutant, ΔfliM, displayed a phenotype highly similar to that of the ΔcheA or ΔcheA-R mutant strains. These findings suggest that through controlling flagella-driven motility behavior, the chemotaxis signaling pathway in A. caulinodans coordinates biofilm formation, EPS, and competitive colonization and nodulation.
Collapse
Affiliation(s)
- Wei Liu
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yu Sun
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Rimin Shen
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- 2 Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoxiao Dang
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaolin Liu
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Fu Sui
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yan Li
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhenpeng Zhang
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Gladys Alexandre
- 3 Biochemistry, Cellular and Molecular Biology Department, University of Tennessee, Knoxville, U.S.A.; and
| | | | - Zhihong Xie
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
29
|
A cheZ-Like Gene in Azorhizobium caulinodans Is a Key Gene in the Control of Chemotaxis and Colonization of the Host Plant. Appl Environ Microbiol 2018; 84:AEM.01827-17. [PMID: 29150498 DOI: 10.1128/aem.01827-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis can provide bacteria with competitive advantages for survival in complex environments. The CheZ chemotaxis protein is a phosphatase, affecting the flagellar motor in Escherichia coli by dephosphorylating the response regulator phosphorylated CheY protein (CheY∼P) responsible for clockwise rotation. A cheZ gene has been found in Azorhizobium caulinodans ORS571, in contrast to other rhizobial species studied so far. The CheZ protein in strain ORS571 has a conserved motif similar to that corresponding to the phosphatase active site in E. coli The construction of a cheZ deletion mutant strain and of cheZ mutant strains carrying a mutation in residues of the putative phosphatase active site showed that strain ORS571 participates in chemotaxis and motility, causing a hyperreversal behavior. In addition, the properties of the cheZ deletion mutant revealed that ORS571 CheZ is involved in other physiological processes, since it displayed increased flocculation, biofilm formation, exopolysaccharide (EPS) production, and host root colonization. In particular, it was observed that the expression of several exp genes, involved in EPS synthesis, was upregulated in the cheZ mutant compared to that in the wild type, suggesting that CheZ negatively controls exp gene expression through an unknown mechanism. It is proposed that CheZ influences the Azorhizobium-plant association by negatively regulating early colonization via the regulation of EPS production. This report established that CheZ in A. caulinodans plays roles in chemotaxis and the symbiotic association with the host plant.IMPORTANCE Chemotaxis allows bacteria to swim toward plant roots and is beneficial to the establishment of various plant-microbe associations. The level of CheY phosphorylation (CheY∼P) is central to the chemotaxis signal transduction. The mechanism of the signal termination of CheY∼P remains poorly characterized among Alphaproteobacteria, except for Sinorhizobium meliloti, which does not contain CheZ but which controls CheY∼P dephosphorylation through a phosphate sink mechanism. Azorhizobium caulinodans ORS571, a microsymbiont of Sesbania rostrata, has an orphan cheZ gene besides two cheY genes similar to those in S. meliloti In addition to controlling the chemotaxis response, the CheZ-like protein in strain ORS571 is playing a role by decreasing bacterial adhesion to the host plant, in contrast to the general situation where chemotaxis-associated proteins promote adhesion. In this study, we identified a CheZ-like protein among Alphaproteobacteria functioning in chemotaxis and the A. caulinodans-S. rostrata symbiosis.
Collapse
|
30
|
Stringent Expression Control of Pathogenic R-body Production in Legume Symbiont Azorhizobium caulinodans. mBio 2017; 8:mBio.00715-17. [PMID: 28743814 PMCID: PMC5527310 DOI: 10.1128/mbio.00715-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
R bodies are insoluble large polymers consisting of small proteins encoded by reb genes and are coiled into cylindrical structures in bacterial cells. They were first discovered in Caedibacter species, which are obligate endosymbionts of paramecia. Caedibacter confers a killer trait on the host paramecia. R-body-producing symbionts are released from their host paramecia and kill symbiont-free paramecia after ingestion. The roles of R bodies have not been explained in bacteria other than Caedibacter. Azorhizobium caulinodans ORS571, a microsymbiont of the legume Sesbania rostrata, carries a reb operon containing four reb genes that are regulated by the repressor PraR. Herein, deletion of the praR gene resulted in R-body formation and death of host plant cells. The rebR gene in the reb operon encodes an activator. Three PraR binding sites and a RebR binding site are present in the promoter region of the reb operon. Expression analyses using strains with mutations within the PraR binding site and/or the RebR binding site revealed that PraR and RebR directly control the expression of the reb operon and that PraR dominantly represses reb expression. Furthermore, we found that the reb operon is highly expressed at low temperatures and that 2-oxoglutarate induces the expression of the reb operon by inhibiting PraR binding to the reb promoter. We conclude that R bodies are toxic not only in paramecium symbiosis but also in relationships between other bacteria and eukaryotic cells and that R-body formation is controlled by environmental factors. Caedibacter species, which are obligate endosymbiotic bacteria of paramecia, produce R bodies, and R-body-producing endosymbionts that are released from their hosts are pathogenic to symbiont-free paramecia. Besides Caedibacter species, R bodies have also been observed in a few free-living bacteria, but the significance of R-body production in these bacteria is still unknown. Recent advances in genome sequencing technologies revealed that many Gram-negative bacteria possess reb genes encoding R-body components, and interestingly, many of them are animal and plant pathogens. Azorhizobium caulinodans, a microsymbiont of the tropical legume Sesbania rostrata, also possesses reb genes. In this study, we demonstrate that A. caulinodans has ability to kill the host plant cells by producing R bodies, suggesting that pathogenicity conferred by an R body might be universal in bacteria possessing reb genes. Furthermore, we provide the first insight into the molecular mechanism underlying the expression of R-body production in response to environmental factors, such as temperature and 2-oxoglutarate.
Collapse
|
31
|
Liu W, Yang J, Sun Y, Liu X, Li Y, Zhang Z, Xie Z. Azorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems. Front Microbiol 2017; 8:1327. [PMID: 28751887 PMCID: PMC5508009 DOI: 10.3389/fmicb.2017.01327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/30/2017] [Indexed: 02/02/2023] Open
Abstract
Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (transducer-like protein in A. caulinodans), a chemoreceptor predicted by SMART (Simple Modular Architecture Research Tool), containing two N-terminal transmembrane regions. The tlpA1 gene is located immediately upstream of the unique che gene cluster and is transcriptionally co-oriented. We found that a ΔtlpA1 mutant is severely impaired for chemotaxis to various organic acids, glycerol and proline. Furthermore, biofilm forming ability of the strain carrying the mutation is reduced under certain growth conditions. Interestingly, competitive colonization ability on S. rostrata root surfaces is impaired in the ΔtlpA1 mutant, suggesting that chemotaxis of the A. caulinodans ORS571 contributes to root colonization. We also found that TlpA1 promotes competitive nodulation not only on roots but also on stems of S. rostrata. Taken together, our data strongly suggest that TlpA1 is a transmembrane chemoreceptor involved in A. caulinodans-S. rostrata symbiosis.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Jinbao Yang
- College of Life Sciences, Shanxi Agricultural UniversityTaigu, China
| | - Yu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- School of Resource and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Xiaolin Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- School of Resource and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Yan Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Zhenpeng Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- School of Resource and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Zhihong Xie
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| |
Collapse
|
32
|
A Rhizobiales-Specific Unipolar Polysaccharide Adhesin Contributes to Rhodopseudomonas palustris Biofilm Formation across Diverse Photoheterotrophic Conditions. Appl Environ Microbiol 2017; 83:AEM.03035-16. [PMID: 27986718 DOI: 10.1128/aem.03035-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022] Open
Abstract
Bacteria predominantly exist as members of surfaced-attached communities known as biofilms. Many bacterial species initiate biofilms and adhere to each other using cell surface adhesins. This is the case for numerous ecologically diverse Alphaprotebacteria, which use polar exopolysaccharide adhesins for cell-cell adhesion and surface attachment. Here, we show that Rhodopseudomonas palustris, a metabolically versatile member of the alphaproteobacterial order Rhizobiales, contains a functional unipolar polysaccharide (UPP) biosynthesis gene cluster. Deletion of genes predicted to be critical for UPP biosynthesis and export abolished UPP production. We also found that R. palustris uses UPP to mediate biofilm formation across diverse photoheterotrophic growth conditions, wherein light and organic substrates are used to support growth. However, UPP was less important for biofilm formation during photoautotrophy, where light and CO2 support growth, and during aerobic respiration with organic compounds. Expanding our analysis beyond R. palustris, we examined the phylogenetic distribution and genomic organization of UPP gene clusters among Rhizobiales species that inhabit diverse niches. Our analysis suggests that UPP is a conserved ancestral trait of the Rhizobiales but that it has been independently lost multiple times during the evolution of this clade, twice coinciding with adaptation to intracellular lifestyles within animal hosts. IMPORTANCE Bacteria are ubiquitously found as surface-attached communities and cellular aggregates in nature. Here, we address how bacterial adhesion is coordinated in response to diverse environments using two complementary approaches. First, we examined how Rhodopseudomonas palustris, one of the most metabolically versatile organisms ever described, varies its adhesion to surfaces in response to different environmental conditions. We identified critical genes for the production of a unipolar polysaccharide (UPP) and showed that UPP is important for adhesion when light and organic substrates are used for growth. Looking beyond R. palustris, we performed the most comprehensive survey to date on the conservation of UPP biosynthesis genes among a group of closely related bacteria that occupy diverse niches. Our findings suggest that UPP is important for free-living and plant-associated lifestyles but dispensable for animal pathogens. Additionally, we propose guidelines for classifying the adhesins produced by various Alphaprotebacteria, facilitating future functional and comparative studies.
Collapse
|
33
|
Shimomura A, Arima S, Hayashi M, Maymon M, Hirsch AM, Suzuki A. Blue light does not inhibit nodulation in Sesbania rostrata. PLANT SIGNALING & BEHAVIOR 2017; 12:e1268313. [PMID: 27935414 PMCID: PMC5289514 DOI: 10.1080/15592324.2016.1268313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Earlier, we reported that root nodulation was inhibited by blue light irradiation of Lotus japonicus. Because some legumes do not establish nodules exclusively on underground roots, we investigated whether nodule formation in Sesbania rostrata, which forms both root and "stem" nodules following inoculation with Azorhizobium caulinodans, is inhibited by blue light as are L. japonicus nodules. We found that neither S. rostrata nodulation nor nitrogen fixation was inhibited by blue light exposure. Moreover, although A. caulinodans proliferation was not affected by blue light irradiation, bacterial survival was decreased. Therefore, blue light appears to impose different responses depending on the legume-rhizobial symbiosis.
Collapse
Affiliation(s)
- Aya Shimomura
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Saga, Japan
| | - Susumu Arima
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Saga, Japan
| | - Makoto Hayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Maskit Maymon
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ann M. Hirsch
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Akihiro Suzuki
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Saga, Japan
| |
Collapse
|
34
|
Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A 2016; 113:13875-13880. [PMID: 27849579 DOI: 10.1073/pnas.1615121113] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.
Collapse
|
35
|
Perazzolli M, Herrero N, Sterck L, Lenzi L, Pellegrini A, Puopolo G, Van de Peer Y, Pertot I. Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat. BMC Genomics 2016; 17:838. [PMID: 27784266 PMCID: PMC5081961 DOI: 10.1186/s12864-016-3174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Soil microorganisms are key determinants of soil fertility and plant health. Soil phytopathogenic fungi are one of the most important causes of crop losses worldwide. Microbial biocontrol agents have been extensively studied as alternatives for controlling phytopathogenic soil microorganisms, but molecular interactions between them have mainly been characterised in dual cultures, without taking into account the soil microbial community. We used an RNA sequencing approach to elucidate the molecular interplay of a soil microbial community in response to a plant pathogen and its biocontrol agent, in order to examine the molecular patterns activated by the microorganisms. RESULTS A simplified soil microcosm containing 11 soil microorganisms was incubated with a plant root pathogen (Armillaria mellea) and its biocontrol agent (Trichoderma atroviride) for 24 h under controlled conditions. More than 46 million paired-end reads were obtained for each replicate and 28,309 differentially expressed genes were identified in total. Pathway analysis revealed complex adaptations of soil microorganisms to the harsh conditions of the soil matrix and to reciprocal microbial competition/cooperation relationships. Both the phytopathogen and its biocontrol agent were specifically recognised by the simplified soil microcosm: defence reaction mechanisms and neutral adaptation processes were activated in response to competitive (T. atroviride) or non-competitive (A. mellea) microorganisms, respectively. Moreover, activation of resistance mechanisms dominated in the simplified soil microcosm in the presence of both A. mellea and T. atroviride. Biocontrol processes of T. atroviride were already activated during incubation in the simplified soil microcosm, possibly to occupy niches in a competitive ecosystem, and they were not further enhanced by the introduction of A. mellea. CONCLUSIONS This work represents an additional step towards understanding molecular interactions between plant pathogens and biocontrol agents within a soil ecosystem. Global transcriptional analysis of the simplified soil microcosm revealed complex metabolic adaptation in the soil environment and specific responses to antagonistic or neutral intruders.
Collapse
Affiliation(s)
- Michele Perazzolli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy.
| | - Noemí Herrero
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
- Present Address: Institute of Entomology, Biology Centre-The Czech Academy of Sciences, Branišovská 31/1160, České Budějovice, 37005, Czech Republic
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9000, Ghent, Belgium
| | - Luisa Lenzi
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
| | - Alberto Pellegrini
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
| | - Gerardo Puopolo
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9000, Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Hatfield Campus, 0028, Pretoria, South Africa
| | - Ilaria Pertot
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
| |
Collapse
|
36
|
Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism. Appl Environ Microbiol 2016; 82:5259-68. [PMID: 27316960 DOI: 10.1128/aem.01116-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Rhizobia are best known for nodulating legume roots and fixing atmospheric nitrogen for the host in exchange for photosynthates. However, the majority of the diverse strains of rhizobia do not form nodules on legumes, often because they lack key loci that are needed to induce nodulation. Nonnodulating rhizobia are robust heterotrophs that can persist in bulk soil, thrive in the rhizosphere, or colonize roots as endophytes, but their role in the legume-rhizobium mutualism remains unclear. Here, we investigated the effects of nonnodulating strains on the native Acmispon-Bradyrhizobium mutualism. To examine the effects on both host performance and symbiont fitness, we performed clonal inoculations of diverse nonnodulating Bradyrhizobium strains on Acmispon strigosus hosts and also coinoculated hosts with mixtures of sympatric nodulating and nonnodulating strains. In isolation, nonnodulating Bradyrhizobium strains did not affect plant performance. In most cases, coinoculation of nodulating and nonnodulating strains reduced host performance compared to that of hosts inoculated with only a symbiotic strain. However, coinoculation increased host performance only under one extreme experimental treatment. Nearly all estimates of nodulating strain fitness were reduced in the presence of nonnodulating strains. We discovered that nonnodulating strains were consistently capable of coinfecting legume nodules in the presence of nodulating strains but that the fitness effects of coinfection for hosts and symbionts were negligible. Our data suggest that nonnodulating strains most often attenuate the Acmispon-Bradyrhizobium mutualism and that this occurs via competitive interactions at the root-soil interface as opposed to in planta IMPORTANCE Rhizobia are soil bacteria best known for their capacity to form root nodules on legume plants and enhance plant growth through nitrogen fixation. Yet, most rhizobia in soil do not have this capacity, and their effects on this symbiosis are poorly understood. We investigated the effects of diverse nonnodulating rhizobia on a native legume-rhizobium symbiosis. Nonnodulating strains did not affect plant growth in isolation. However, compared to inoculations with symbiotic rhizobia, coinoculations of symbiotic and nonnodulating strains often reduced plant and symbiont fitness. Coinoculation increased host performance only under one extreme treatment. Nonnodulating strains also invaded nodule interiors in the presence of nodulating strains, but this did not affect the fitness of either partner. Our data suggest that nonnodulating strains may be important competitors at the root-soil interface and that their capacity to attenuate this symbiosis should be considered in efforts to use rhizobia as biofertilizers.
Collapse
|
37
|
Zhao Y, Nickels LM, Wang H, Ling J, Zhong Z, Zhu J. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans. FEMS Microbiol Lett 2016; 363:fnw130. [PMID: 27190162 DOI: 10.1093/femsle/fnw130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Logan M Nickels
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Wang
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Jun Ling
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Zengtao Zhong
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Jun Zhu
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095 Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Hollowell AC, Regus JU, Gano KA, Bantay R, Centeno D, Pham J, Lyu JY, Moore D, Bernardo A, Lopez G, Patil A, Patel S, Lii Y, Sachs JL. Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California. MICROBIAL ECOLOGY 2016; 71:700-710. [PMID: 26467244 DOI: 10.1007/s00248-015-0685-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
The patterns and drivers of bacterial strain dominance remain poorly understood in natural populations. Here, we cultured 1292 Bradyrhizobium isolates from symbiotic root nodules and the soil root interface of the host plant Acmispon strigosus across a >840-km transect in California. To investigate epidemiology and the potential role of accessory loci as epidemic drivers, isolates were genotyped at two chromosomal loci and were assayed for presence or absence of accessory "symbiosis island" loci that encode capacity to form nodules on hosts. We found that Bradyrhizobium populations were very diverse but dominated by few haplotypes-with a single "epidemic" haplotype constituting nearly 30 % of collected isolates and spreading nearly statewide. In many Bradyrhizobium lineages, we inferred presence and absence of the symbiosis island suggesting recurrent evolutionary gain and or loss of symbiotic capacity. We did not find statistical phylogenetic evidence that the symbiosis island acquisition promotes strain dominance and both symbiotic and non-symbiotic strains exhibited population dominance and spatial spread. Our dataset reveals that a strikingly few Bradyrhizobium genotypes can rapidly spread to dominate a landscape and suggests that these epidemics are not driven by the acquisition of accessory loci as occurs in key human pathogens.
Collapse
Affiliation(s)
- A C Hollowell
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - J U Regus
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - K A Gano
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - R Bantay
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - D Centeno
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - J Pham
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - J Y Lyu
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - D Moore
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - A Bernardo
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - G Lopez
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - A Patil
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - S Patel
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - Y Lii
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - J L Sachs
- Department of Biology, University of California, Riverside, CA, 92521, USA.
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 95616, USA.
| |
Collapse
|
39
|
Wakao S, Siarot L, Aono T, Oyaizu H. Effects of alteration in LPS structure in Azorhizobium caulinodans on nodule development. J GEN APPL MICROBIOL 2016; 61:248-54. [PMID: 26782655 DOI: 10.2323/jgam.61.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lipopolysaccharide (LPS) of Azorhizobium caulinodans ORS571, which forms N2-fixing nodules on the stems and roots of Sesbania rostrata, is known to be a positive signal required for the progression of nodule formation. In this study, four A. caulinodans mutants producing a variety of defective LPSs were compared. The LPSs of the mutants having Tn5 insertion in the rfaF, rfaD, and rfaE genes were more truncated than the modified LPSs of the oac2 mutants. However, the nodule formation by the rfaF, rfaD, and rfaE mutants was more advanced than that of the oac2 mutant, suggesting that invasion ability depends on the LPS structure. Our hypothesis is that not only the wild-type LPSs but also the altered LPSs of the oac2 mutant may be recognized as signal molecules by plants. The altered LPSs may act as negative signals that halt the symbiotic process, whereas the wild-type LPSs may prevent the halt of the symbiotic process. The more truncated LPSs of the rfaF, rfaD, and rfaE mutants perhaps no longer function as negative signals inducing discontinuation of the symbiotic process, and thus these strains form more advanced nodules than ORS571-oac2.
Collapse
Affiliation(s)
- Seiji Wakao
- Biotechnology Research Center, The University of Tokyo
| | | | | | | |
Collapse
|
40
|
Iida T, Itakura M, Anda M, Sugawara M, Isawa T, Okubo T, Sato S, Chiba-Kakizaki K, Minamisawa K. Symbiosis island shuffling with abundant insertion sequences in the genomes of extra-slow-growing strains of soybean bradyrhizobia. Appl Environ Microbiol 2015; 81:4143-54. [PMID: 25862225 PMCID: PMC4524158 DOI: 10.1128/aem.00741-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
Extra-slow-growing bradyrhizobia from root nodules of field-grown soybeans harbor abundant insertion sequences (ISs) and are termed highly reiterated sequence-possessing (HRS) strains. We analyzed the genome organization of HRS strains with the focus on IS distribution and symbiosis island structure. Using pulsed-field gel electrophoresis, we consistently detected several plasmids (0.07 to 0.4 Mb) in the HRS strains (NK5, NK6, USDA135, 2281, USDA123, and T2), whereas no plasmids were detected in the non-HRS strain USDA110. The chromosomes of the six HRS strains (9.7 to 10.7 Mb) were larger than that of USDA110 (9.1 Mb). Using MiSeq sequences of 6 HRS and 17 non-HRS strains mapped to the USDA110 genome, we found that the copy numbers of ISRj1, ISRj2, ISFK1, IS1632, ISB27, ISBj8, and IS1631 were markedly higher in HRS strains. Whole-genome sequencing showed that the HRS strain NK6 had four small plasmids (136 to 212 kb) and a large chromosome (9,780 kb). Strong colinearity was found between 7.4-Mb core regions of the NK6 and USDA110 chromosomes. USDA110 symbiosis islands corresponded mainly to five small regions (S1 to S5) within two variable regions, V1 (0.8 Mb) and V2 (1.6 Mb), of the NK6 chromosome. The USDA110 nif gene cluster (nifDKENXSBZHQW-fixBCX) was split into two regions, S2 and S3, where ISRj1-mediated rearrangement occurred between nifS and nifB. ISs were also scattered in NK6 core regions, and ISRj1 insertion often disrupted some genes important for survival and environmental responses. These results suggest that HRS strains of soybean bradyrhizobia were subjected to IS-mediated symbiosis island shuffling and core genome degradation.
Collapse
Affiliation(s)
- Takayuki Iida
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mizue Anda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Tsuyoshi Isawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Okubo
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
41
|
Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, Pujic P, Facciotti MT, Wilbanks EG, O'Brien A, Fournier P, Cruz Hernandez MA, Mendoza Herrera A, Médigue C, Normand P, Pawlowski K, Berry AM. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant. PLoS One 2015; 10:e0127630. [PMID: 26020781 PMCID: PMC4447401 DOI: 10.1371/journal.pone.0127630] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/16/2015] [Indexed: 11/18/2022] Open
Abstract
Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.
Collapse
Affiliation(s)
- Tomas Persson
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California Davis, Davis, California, 95616, United States of America
| | - Irina V. Demina
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Theoden Vigil-Stenman
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Brian Vanden Heuvel
- Department of Biology, Colorado State University, Pueblo, Colorado, 81001, United States of America
| | - Petar Pujic
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | - Marc T. Facciotti
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Elizabeth G. Wilbanks
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Anna O'Brien
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Pascale Fournier
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | | | - Alberto Mendoza Herrera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Tamaulipas, Mexico
| | | | - Philippe Normand
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Alison M. Berry
- Department of Plant Sciences, University of California Davis, Davis, California, 95616, United States of America
| |
Collapse
|
42
|
Tkacz A, Poole P. Role of root microbiota in plant productivity. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2167-75. [PMID: 25908654 PMCID: PMC4986727 DOI: 10.1093/jxb/erv157] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 05/19/2023]
Abstract
The growing human population requires increasing amounts of food, but modern agriculture has limited possibilities for increasing yields. New crop varieties may be bred to have increased yields and be more resistant to environmental stress and pests. However, they still require fertilization to supplement essential nutrients that are normally limited in the soil. Soil microorganisms present an opportunity to reduce the requirement for inorganic fertilization in agriculture. Microorganisms, due to their enormous genetic pool, are also a potential source of biochemical reactions that recycle essential nutrients for plant growth. Microbes that associate with plants can be considered to be part of the plant's pan-genome. Therefore, it is essential for us to understand microbial community structure and their 'metagenome' and how it is influenced by different soil types and crop varieties. In the future we may be able to modify and better utilize the soil microbiota potential for promoting plant growth.
Collapse
Affiliation(s)
- Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Philip Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
43
|
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720-60. [DOI: 10.1111/1574-6976.12058] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
44
|
Abstract
Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.
Collapse
|
45
|
Brewer TE, Stroupe ME, Jones KM. The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Virology 2013; 450-451:84-97. [PMID: 24503070 DOI: 10.1016/j.virol.2013.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 01/21/2023]
Abstract
Phage ΦM12 is an important transducing phage of the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. Here we report the genome, phylogenetic analysis, and proteome of ΦM12, the first report of the genome and proteome of a rhizobium-infecting T4-superfamily phage. The structural genes of ΦM12 are most similar to T4-superfamily phages of cyanobacteria. ΦM12 is the first reported T4-superfamily phage to lack genes encoding class I ribonucleotide reductase (RNR) and exonuclease dexA, and to possess a class II coenzyme B12-dependent RNR. ΦM12's novel collection of genes establishes it as the founder of a new group of T4-superfamily phages, fusing features of cyanophages and phages of enteric bacteria.
Collapse
Affiliation(s)
- Tess E Brewer
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States
| | - M Elizabeth Stroupe
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States; Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way Tallahassee, FL 32306-4380 United States
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States.
| |
Collapse
|
46
|
Function and X-ray crystal structure of Escherichia coli YfdE. PLoS One 2013; 8:e67901. [PMID: 23935849 PMCID: PMC3720670 DOI: 10.1371/journal.pone.0067901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/21/2013] [Indexed: 02/05/2023] Open
Abstract
Many food plants accumulate oxalate, which humans absorb but do not metabolize, leading to the formation of urinary stones. The commensal bacterium Oxalobacter formigenes consumes oxalate by converting it to oxalyl-CoA, which is decarboxylated by oxalyl-CoA decarboxylase (OXC). OXC and the class III CoA-transferase formyl-CoA:oxalate CoA-transferase (FCOCT) are widespread among bacteria, including many that have no apparent ability to degrade or to resist external oxalate. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon encoding YfdW (FCOCT), YfdU (OXC), and YfdE, a class III CoA-transferase that is ~30% identical to YfdW. YfdW and YfdU are necessary and sufficient for oxalate-induced protection against a subsequent acid challenge; neither of the other genes has a known function. We report the purification, in vitro characterization, 2.1-Å crystal structure, and functional assignment of YfdE. YfdE and UctC, an orthologue from the obligate aerobe Acetobacter aceti, perform the reversible conversion of acetyl-CoA and oxalate to oxalyl-CoA and acetate. The annotation of YfdE as acetyl-CoA:oxalate CoA-transferase (ACOCT) expands the scope of metabolic pathways linked to oxalate catabolism and the oxalate-induced acid tolerance response. FCOCT and ACOCT active sites contain distinctive, conserved active site loops (the glycine-rich loop and the GNxH loop, respectively) that appear to encode substrate specificity.
Collapse
|
47
|
Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol Phylogenet Evol 2013; 67:626-30. [DOI: 10.1016/j.ympev.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
|
48
|
Marchetti M, Capela D, Poincloux R, Benmeradi N, Auriac MC, Le Ru A, Maridonneau-Parini I, Batut J, Masson-Boivin C. Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula. PLoS One 2013; 8:e56043. [PMID: 23409119 PMCID: PMC3568095 DOI: 10.1371/journal.pone.0056043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.
Collapse
Affiliation(s)
- Marta Marchetti
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Delphine Capela
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Renaud Poincloux
- CNRS-IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS (Université Paul Sabatier), IPBS, Toulouse, France
| | - Nacer Benmeradi
- Institut de Biologie Cellulaire et de Génétique IBCG CNRS, Toulouse, France
| | - Marie-Christine Auriac
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Plateforme de Microscopie FRBT - Centre de Biologie du Développement, Toulouse, France
| | - Isabelle Maridonneau-Parini
- CNRS-IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS (Université Paul Sabatier), IPBS, Toulouse, France
| | - Jacques Batut
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
- * E-mail:
| | - Catherine Masson-Boivin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| |
Collapse
|
49
|
Kappler U, Davenport K, Beatson S, Lucas S, Lapidus A, Copeland A, Berry KW, Glavina Del Rio T, Hammon N, Dalin E, Tice H, Pitluck S, Richardson P, Bruce D, Goodwin LA, Han C, Tapia R, Detter JC, Chang YJ, Jeffries CD, Land M, Hauser L, Kyrpides NC, Göker M, Ivanova N, Klenk HP, Woyke T. Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093(T)). Stand Genomic Sci 2012; 7:44-58. [PMID: 23450099 PMCID: PMC3570799 DOI: 10.4056/sigs.3006378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Starkeya novella (Starkey 1934) Kelly et al. 2000 is a member of the family Xanthobacteraceae in the order 'Rhizobiales', which is thus far poorly characterized at the genome level. Cultures from this species are most interesting due to their facultatively chemolithoautotrophic lifestyle, which allows them to both consume carbon dioxide and to produce it. This feature makes S. novella an interesting model organism for studying the genomic basis of regulatory networks required for the switch between consumption and production of carbon dioxide, a key component of the global carbon cycle. In addition, S. novella is of interest for its ability to grow on various inorganic sulfur compounds and several C1-compounds such as methanol. Besides Azorhizobium caulinodans, S. novella is only the second species in the family Xanthobacteraceae with a completely sequenced genome of a type strain. The current taxonomic classification of this group is in significant conflict with the 16S rRNA data. The genomic data indicate that the physiological capabilities of the organism might have been underestimated. The 4,765,023 bp long chromosome with its 4,511 protein-coding and 52 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.
Collapse
Affiliation(s)
| | - Karen Davenport
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | | | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Nancy Hammon
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Eileen Dalin
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Hope Tice
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - David Bruce
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne A. Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Cliff Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Roxanne Tapia
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - John C. Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Yun-juan Chang
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Cynthia D. Jeffries
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Hans-Peter Klenk
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| |
Collapse
|
50
|
Kappler U, Davenport K, Beatson S, Lucas S, Lapidus A, Copeland A, Berry KW, Glavina Del Rio T, Hammon N, Dalin E, Tice H, Pitluck S, Richardson P, Bruce D, Goodwin LA, Han C, Tapia R, Detter JC, Chang YJ, Jeffries CD, Land M, Hauser L, Kyrpides NC, Göker M, Ivanova N, Klenk HP, Woyke T. Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093T). Stand Genomic Sci 2012. [DOI: 10.4056/sogs.3006378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Karen Davenport
- 2Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | | | - Susan Lucas
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alex Copeland
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Nancy Hammon
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Eileen Dalin
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Hope Tice
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sam Pitluck
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - David Bruce
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Cliff Han
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Roxanne Tapia
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | - John C. Detter
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Yun-juan Chang
- 4Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Miriam Land
- 4Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- 4Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Markus Göker
- 5Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Hans-Peter Klenk
- 5Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- 3DOE Joint Genome Institute, Walnut Creek, California, USA
| |
Collapse
|