1
|
Simon NM, Kim Y, Gribnau J, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes. Heredity (Edinb) 2024; 133:308-316. [PMID: 39164520 PMCID: PMC11527988 DOI: 10.1038/s41437-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
Affiliation(s)
- Noah M Simon
- Biology of Aging Doctoral Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yujin Kim
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Rotterdam, PO Box 2040, CA, 3000, Netherlands
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Simon NM, Kim Y, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis -regulatory evolution at translation genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549406. [PMID: 37503246 PMCID: PMC10370129 DOI: 10.1101/2023.07.18.549406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis -regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
|
3
|
Zacarías-Fluck MF, Soucek L, Whitfield JR. MYC: there is more to it than cancer. Front Cell Dev Biol 2024; 12:1342872. [PMID: 38510176 PMCID: PMC10952043 DOI: 10.3389/fcell.2024.1342872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
MYC is a pleiotropic transcription factor involved in multiple cellular processes. While its mechanism of action and targets are not completely elucidated, it has a fundamental role in cellular proliferation, differentiation, metabolism, ribogenesis, and bone and vascular development. Over 4 decades of research and some 10,000 publications linking it to tumorigenesis (by searching PubMed for "MYC oncogene") have led to MYC becoming a most-wanted target for the treatment of cancer, where many of MYC's physiological functions become co-opted for tumour initiation and maintenance. In this context, an abundance of reviews describes strategies for potentially targeting MYC in the oncology field. However, its multiple roles in different aspects of cellular biology suggest that it may also play a role in many additional diseases, and other publications are indeed linking MYC to pathologies beyond cancer. Here, we review these physiological functions and the current literature linking MYC to non-oncological diseases. The intense efforts towards developing MYC inhibitors as a cancer therapy will potentially have huge implications for the treatment of other diseases. In addition, with a complementary approach, we discuss some diseases and conditions where MYC appears to play a protective role and hence its increased expression or activation could be therapeutic.
Collapse
Affiliation(s)
- Mariano F. Zacarías-Fluck
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Soucek
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Peptomyc S.L., Barcelona, Spain
| | - Jonathan R. Whitfield
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
4
|
Petrashen AP, Verdesca AD, Kreiling JA, Sedivy JM. Regulation of the somatotropic axis by MYC-mediated miRNA repression. Front Cell Dev Biol 2023; 11:1269860. [PMID: 37908640 PMCID: PMC10615138 DOI: 10.3389/fcell.2023.1269860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
The transcription factor MYC is overexpressed in many human cancers and has a significant causal role in tumor incidence and progression. In contrast, Myc +/- heterozygous mice, which have decreased MYC expression, exhibit a 10-20% increase in lifespan and a decreased incidence or progression of several age-related diseases. Myc heterozygous mice were also reported to have decreased mTOR and IGF1 signaling, two pathways whose reduced activity is associated with longevity in diverse species. Given MYC's downstream role in these pathways, the downregulation of mTOR and IGF1 signaling in Myc heterozygotes suggests the presence of feedback loops within this regulatory network. In this communication we provide further evidence that the reduction of Myc expression in Myc +/- heterozygous mice provokes a female-specific decrease in circulating IGF1 as well as a reduction of IGF1 protein in the liver. In particular, reduced Myc expression led to upregulation of miRNAs that target the Igf1 transcript, thereby inhibiting its translation and leading to decreased IGF1 protein levels. Using Argonaute (AGO)-CLIP-sequencing we found enrichment of AGO binding in the Igf1 transcript at the target sites of let-7, miR-122, and miR-29 in female, but not male Myc heterozygotes. Upregulation of the liver-specific miR-122 in primary hepatocytes in culture and in vivo in mice resulted in significant downregulation of IGF1 protein, but not mRNA. Reduced levels of IGF1 increased GH production in the pituitary through a well-documented negative-feedback relationship. In line with this, we found that IGF1 levels in bone (where miR-122 is not expressed) were unchanged, consistent with the decreased incidence of osteoporosis in female Myc heterozygotes, despite decreased circulating IGF1.
Collapse
Affiliation(s)
| | | | | | - John M. Sedivy
- Center on the Biology of Aging, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
5
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Upregulation of ribosome biogenesis via canonical E-boxes is required for Myc-driven proliferation. Dev Cell 2022; 57:1024-1036.e5. [PMID: 35472319 DOI: 10.1016/j.devcel.2022.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022]
Abstract
The transcription factor Myc drives cell growth across animal phyla and is activated in most forms of human cancer. However, it is unclear which Myc target genes need to be regulated to induce growth and whether multiple targets act additively or if induction of each target is individually necessary. Here, we identified Myc target genes whose regulation is conserved between humans and flies and deleted Myc-binding sites (E-boxes) in the promoters of fourteen of these genes in Drosophila. E-box mutants of essential genes were homozygous viable, indicating that the E-boxes are not required for basal expression. Eight E-box mutations led to Myc-like phenotypes; the strongest mutant, ppanEbox-/-, also made the flies resistant to Myc-induced cell growth without affecting Myc-induced apoptosis. The ppanEbox-/- flies are healthy and display only a minor developmental delay, suggesting that it may be possible to treat or prevent tumorigenesis by targeting individual downstream targets of Myc.
Collapse
|
7
|
Domostegui A, Peddigari S, Mercer CA, Iannizzotto F, Rodriguez ML, Garcia-Cajide M, Amador V, Diepstraten ST, Kelly GL, Salazar R, Kozma SC, Kusnadi EP, Kang J, Gentilella A, Pearson RB, Thomas G, Pelletier J. Impaired ribosome biogenesis checkpoint activation induces p53-dependent MCL-1 degradation and MYC-driven lymphoma death. Blood 2021; 137:3351-3364. [PMID: 33512431 PMCID: PMC8212515 DOI: 10.1182/blood.2020007452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eμ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC. The loss of either protein reduced RiBi, protein synthesis, and cell proliferation to similar extents. However, only RPL7a depletion induced p53-mediated apoptosis through the selective proteasomal degradation of antiapoptotic MCL-1, indicating the critical role of the IRBC in this mechanism. Strikingly, low concentrations of the US Food and Drug Administration-approved anticancer RNA polymerase I inhibitor Actinomycin D (ActD) dramatically prolonged the survival of mice harboring Trp53+/+;Eμ-Myc but not Trp53-/-;Eμ-Myc lymphomas, which provides a rationale for treating MYC-driven B-cell lymphomas with ActD. Importantly, the molecular effects of ActD on Eμ-Myc cells were recapitulated in human B-cell lymphoma cell lines, highlighting the potential for ActD as a therapeutic avenue for p53 wild-type lymphoma.
Collapse
Affiliation(s)
- Ana Domostegui
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Suresh Peddigari
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Carol A Mercer
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Flavia Iannizzotto
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta L Rodriguez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Marta Garcia-Cajide
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Virginia Amador
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ramón Salazar
- Catalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, IDIBELL, Barcelona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eric P Kusnadi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Jian Kang
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | - George Thomas
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
8
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|
9
|
A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa. G3-GENES GENOMES GENETICS 2020; 10:811-826. [PMID: 31879283 PMCID: PMC7003098 DOI: 10.1534/g3.119.400951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The evolutionary diversification of animals is one of Earth’s greatest marvels, yet its earliest steps are shrouded in mystery. Animals, the monophyletic clade known as Metazoa, evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals and the evolution of nervous systems. Here we describe a comparative phylogenetic approach based on gene duplications. We computationally identify and analyze gene families with early metazoan duplications using an approach that mitigates apparent gene loss resulting from the miscalling of paralogs. In the transmembrane channel-like (TMC) family of mechano-transducing channels, we find ancient duplications that define separate clades for Eumetazoa (Placozoa + Cnidaria + Bilateria) vs. Ctenophora, and one duplication that is shared only by Eumetazoa and Porifera. In the Max-like protein X (MLX and MLXIP) family of bHLH-ZIP regulators of metabolism, we find that all major lineages from Eumetazoa and Porifera (sponges) share a duplicated gene pair that is sister to the single-copy gene maintained in Ctenophora. These results suggest a new avenue for deducing deep phylogeny by choosing rather than avoiding ancient gene paralogies.
Collapse
|
10
|
Feris EJ, Hinds JW, Cole MD. Formation of a structurally-stable conformation by the intrinsically disordered MYC:TRRAP complex. PLoS One 2019; 14:e0225784. [PMID: 31790487 PMCID: PMC6886782 DOI: 10.1371/journal.pone.0225784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023] Open
Abstract
Our primary goal is to therapeutically target the oncogenic transcription factor MYC to stop tumor growth and cancer progression. Here, we report aspects of the biophysical states of the MYC protein and its interaction with one of the best-characterized MYC cofactors, TRansactivation/tRansformation-domain Associated Protein (TRRAP). The MYC:TRRAP interaction is critical for MYC function in promoting cancer. The interaction between MYC and TRRAP occurs at a precise region in the MYC protein, called MYC Homology Box 2 (MB2), which is central to the MYC transactivation domain (TAD). Although the MYC TAD is inherently disordered, this report suggests that MB2 may acquire a defined structure when complexed with TRRAP which could be exploited for the investigation of inhibitors of MYC function by preventing this protein-protein interaction (PPI). The MYC TAD, and in particular the MB2 motif, is unique and invariant in evolution, suggesting that MB2 is an ideal site for inhibiting MYC function.
Collapse
Affiliation(s)
- Edmond J. Feris
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - John W. Hinds
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Michael D. Cole
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
- * E-mail:
| |
Collapse
|
11
|
AMPK-Mediated Regulation of Alpha-Arrestins and Protein Trafficking. Int J Mol Sci 2019; 20:ijms20030515. [PMID: 30691068 PMCID: PMC6387238 DOI: 10.3390/ijms20030515] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) plays a central role in the regulation of cellular metabolism. Recent studies reveal a novel role for AMPK in the regulation of glucose and other carbohydrates flux by controlling the endocytosis of transporters. The first step in glucose metabolism is glucose uptake, a process mediated by members of the GLUT/SLC2A (glucose transporters) or HXT (hexose transporters) family of twelve-transmembrane domain glucose transporters in mammals and yeast, respectively. These proteins are conserved from yeast to humans, and multiple transporters—each with distinct kinetic properties—compete for plasma membrane occupancy in order to enhance or limit the rate of glucose uptake. During growth in the presence of alternative carbon sources, glucose transporters are removed and replaced with the appropriate transporter to help support growth in response to this environment. New insights into the regulated protein trafficking of these transporters reveal the requirement for specific α-arrestins, a little-studied class of protein trafficking adaptor. A defining feature of the α-arrestins is that each contains PY-motifs, which can bind to the ubiquitin ligases from the NEDD4/Rsp5 (Neural precursor cell Expressed, Developmentally Down-regulated 4 and Reverses Spt- Phenotype 5, respectively) family. Specific association of α-arrestins with glucose and carbohydrate transporters is thought to bring the ubiquitin ligase in close proximity to its membrane substrate, and thereby allows the membrane cargo to become ubiquitinated. This ubiquitination in turn serves as a mark to stimulate endocytosis. Recent results show that AMPK phosphorylation of the α-arrestins impacts their abundance and/or ability to stimulate carbohydrate transporter endocytosis. Indeed, AMPK or glucose limitation also controls α-arrestin gene expression, adding an additional layer of complexity to this regulation. Here, we review the recent studies that have expanded the role of AMPK in cellular metabolism to include regulation of α-arrestin-mediated trafficking of transporters and show that this mechanism of regulation is conserved over the ~150 million years of evolution that separate yeast from man.
Collapse
|
12
|
Tiku V, Antebi A. Nucleolar Function in Lifespan Regulation. Trends Cell Biol 2018; 28:662-672. [PMID: 29779866 DOI: 10.1016/j.tcb.2018.03.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
The nucleolus is a prominent membraneless organelle residing within the nucleus. The nucleolus has been regarded as a housekeeping structure mainly known for its role in ribosomal RNA (rRNA) production and ribosome assembly. However, accumulating evidence has revealed its functions in numerous cellular processes that control organismal physiology, thereby taking the nucleolus much beyond its conventional role in ribosome biogenesis. Perturbations in nucleolar functions have been associated with severe diseases such as cancer and progeria. Recent studies have also uncovered the role of the nucleolus in development and aging. In this review we discuss major nucleolar functions that impact organismal aging.
Collapse
Affiliation(s)
- Varnesh Tiku
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Present Address: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
13
|
Lombardi O, Varshney D, Phillips NM, Cowling VH. c-Myc deregulation induces mRNA capping enzyme dependency. Oncotarget 2018; 7:82273-82288. [PMID: 27756891 PMCID: PMC5347691 DOI: 10.18632/oncotarget.12701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023] Open
Abstract
c-Myc is a potent driver of many human cancers. Since strategies for directly targeting c-Myc protein have had limited success, upstream regulators and downstream effectors of c-Myc are being investigated as alternatives for therapeutic intervention. c-Myc regulates transcription and formation of the mRNA cap, which is important for transcript maturation and translation. However, the direct mechanism by which c-Myc upregulates mRNA capping is unclear. mRNA cap formation initiates with the linkage of inverted guanosine via a triphosphate bridge to the first transcribed nucleotide, catalysed by mRNA capping enzyme (CE/RNGTT). Here we report that c-Myc increases the recruitment of catalytically active CE to RNA polymerase II and to its target genes. c-Myc-induced target gene expression, cell proliferation and cell transformation is highly dependent on CE, but only when c-Myc is deregulated. Cells retaining normal control of c-Myc expression are insensitive to repression of CE. c-Myc expression is also dependent on CE. Therefore, inhibiting CE provides an attractive route for selective therapeutic targeting of cancer cells which have acquired deregulated c-Myc.
Collapse
Affiliation(s)
- Olivia Lombardi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dhaval Varshney
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola M Phillips
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.,School of Science and the Environment, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
14
|
Sista Kameshwar AK, Qin W. Analyzing Phanerochaete chrysosporium gene expression patterns controlling the molecular fate of lignocellulose degrading enzymes. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Zhao LJ, Loewenstein PM, Green M. Enhanced MYC association with the NuA4 histone acetyltransferase complex mediated by the adenovirus E1A N-terminal domain activates a subset of MYC target genes highly expressed in cancer cells. Genes Cancer 2017; 8:752-761. [PMID: 29321817 PMCID: PMC5755721 DOI: 10.18632/genesandcancer.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The proto-oncogene MYC is a transcription factor over-expressed in many cancers and required for cell survival. Its function is regulated by histone acetyltransferase (HAT) complexes, such as the GCN5 complex and the NuA4/Tip60 complex. However, the roles of the HAT complexes during MYC function in cancer have not been well characterized. We recently showed that adenovirus E1A and its N-terminal 80 aa region, E1A 1-80, interact with the NuA4 complex, through the E1A TRRAP-targeting (ET) domain, and enhance MYC association with the NuA4 complex. We show here that the ET domain mainly targets the MYC-NuA4 complex. By global gene expression analysis using E1A 1-80 and deletion mutants, we have identified a panel of genes activated by targeting the MYC-NuA4 complex and notably enriched for genes involved in ribosome biogenesis and gene expression. A second panel of genes is activated by E1A 1-80 targeting of both the MYC-NuA4 complex and p300, and is enriched for genes involved in DNA replication and cell cycle processes. Both panels of genes are highly expressed in cancer cells. Since the ET domain is essential for E1A-mediated cellular transformation, our results suggest that MYC and the NuA4 complex function cooperatively in cell transformation and cancer.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Paul M Loewenstein
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Maurice Green
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Baumann DG, Gilmour DS. A sequence-specific core promoter-binding transcription factor recruits TRF2 to coordinately transcribe ribosomal protein genes. Nucleic Acids Res 2017; 45:10481-10491. [PMID: 28977400 PMCID: PMC5737516 DOI: 10.1093/nar/gkx676] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Ribosomal protein (RP) genes must be coordinately expressed for proper assembly of the ribosome yet the mechanisms that control expression of RP genes in metazoans are poorly understood. Recently, TATA-binding protein-related factor 2 (TRF2) rather than the TATA-binding protein (TBP) was found to function in transcription of RP genes in Drosophila. Unlike TBP, TRF2 lacks sequence-specific DNA binding activity, so the mechanism by which TRF2 is recruited to promoters is unclear. We show that the transcription factor M1BP, which associates with the core promoter region, activates transcription of RP genes. Moreover, M1BP directly interacts with TRF2 to recruit it to the RP gene promoter. High resolution ChIP-exo was used to analyze in vivo the association of M1BP, TRF2 and TFIID subunit, TAF1. Despite recent work suggesting that TFIID does not associate with RP genes in Drosophila, we find that TAF1 is present at RP gene promoters and that its interaction might also be directed by M1BP. Although M1BP associates with thousands of genes, its colocalization with TRF2 is largely restricted to RP genes, suggesting that this combination is key to coordinately regulating transcription of the majority of RP genes in Drosophila.
Collapse
Affiliation(s)
- Douglas G Baumann
- The Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David S Gilmour
- The Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell 2017; 43:124-140. [PMID: 29065305 PMCID: PMC6089241 DOI: 10.1016/j.devcel.2017.09.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
Over 600 million years ago, animals evolved from a unicellular or colonial organism whose cell(s) captured bacteria with a collar complex, a flagellum surrounded by a microvillar collar. Using principles from evolutionary cell biology, we reason that the transition to multicellularity required modification of pre-existing mechanisms for extracellular matrix synthesis and cytokinesis. We discuss two hypotheses for the origin of animal cell types: division of labor from ancient plurifunctional cells and conversion of temporally alternating phenotypes into spatially juxtaposed cell types. Mechanistic studies in diverse animals and their relatives promise to deepen our understanding of animal origins and cell biology.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
18
|
Dave K, Sur I, Yan J, Zhang J, Kaasinen E, Zhong F, Blaas L, Li X, Kharazi S, Gustafsson C, De Paepe A, Månsson R, Taipale J. Mice deficient of Myc super-enhancer region reveal differential control mechanism between normal and pathological growth. eLife 2017; 6. [PMID: 28583252 PMCID: PMC5461110 DOI: 10.7554/elife.23382] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The gene desert upstream of the MYC oncogene on chromosome 8q24 contains susceptibility loci for several major forms of human cancer. The region shows high conservation between human and mouse and contains multiple MYC enhancers that are activated in tumor cells. However, the role of this region in normal development has not been addressed. Here we show that a 538 kb deletion of the entire MYC upstream super-enhancer region in mice results in 50% to 80% decrease in Myc expression in multiple tissues. The mice are viable and show no overt phenotype. However, they are resistant to tumorigenesis, and most normal cells isolated from them grow slowly in culture. These results reveal that only cells whose MYC activity is increased by serum or oncogenic driver mutations depend on the 8q24 super-enhancer region, and indicate that targeting the activity of this element is a promising strategy of cancer chemoprevention and therapy.
Collapse
Affiliation(s)
- Kashyap Dave
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Inderpreet Sur
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian Yan
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jilin Zhang
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eevi Kaasinen
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fan Zhong
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leander Blaas
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoze Li
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shabnam Kharazi
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ayla De Paepe
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Grieb BC, Boyd K, Mitra R, Eischen CM. Haploinsufficiency of the Myc regulator Mtbp extends survival and delays tumor development in aging mice. Aging (Albany NY) 2016; 8:2590-2602. [PMID: 27803394 PMCID: PMC5115908 DOI: 10.18632/aging.101092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/15/2016] [Indexed: 04/20/2023]
Abstract
Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp+/- mice also had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic system, and an altered tumor spectrum compared to Mtbp+/+ mice. Therefore, the data suggest Mtbp is a regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging.
Collapse
Affiliation(s)
- Brian C. Grieb
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Kelli Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ramkrishna Mitra
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christine M. Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
20
|
Dergai M, Iershov A, Novokhatska O, Pankivskyi S, Rynditch A. Evolutionary Changes on the Way to Clathrin-Mediated Endocytosis in Animals. Genome Biol Evol 2016; 8:588-606. [PMID: 26872775 PMCID: PMC4824007 DOI: 10.1093/gbe/evw028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endocytic pathways constitute an evolutionarily ancient system that significantly contributed to the eukaryotic cell architecture and to the diversity of cell type-specific functions and signaling cascades, in particular of metazoans. Here we used comparative proteomic studies to analyze the universal internalization route in eukaryotes, clathrin-mediated endocytosis (CME), to address the issues of how this system evolved and what are its specific features. Among 35 proteins crucially required for animal CME, we identified a subset of 22 proteins common to major eukaryotic branches and 13 gradually acquired during evolution. Based on exploration of structure-function relationship between conserved homologs in sister, distantly related and early diverged branches, we identified novel features acquired during evolution of endocytic proteins on the way to animals: Elaborated way of cargo recruitment by multiple sorting proteins, structural changes in the core endocytic complex AP2, the emergence of the Fer/Cip4 homology domain-only protein/epidermal growth factor receptor substrate 15/intersectin functional complex as an additional interaction hub and activator of AP2, as well as changes in late endocytic stages due to recruitment of dynamin/sorting nexin 9 complex and involvement of the actin polymerization machinery. The evolutionary reconstruction showed the basis of the CME process and its subsequent step-by-step development. Documented changes imply more precise regulation of the pathway, as well as CME specialization for the uptake of specific cargoes and cell type-specific functions.
Collapse
Affiliation(s)
- Mykola Dergai
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, Kyiv, Ukraine
| | - Anton Iershov
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, NASU, Kyiv, Ukraine
| | - Olga Novokhatska
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, Kyiv, Ukraine
| | - Serhii Pankivskyi
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, Kyiv, Ukraine
| | - Alla Rynditch
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, Kyiv, Ukraine
| |
Collapse
|
21
|
MacInnes AW. The role of the ribosome in the regulation of longevity and lifespan extension. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:198-212. [PMID: 26732699 DOI: 10.1002/wrna.1325] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
The most energy-consuming process that a cell must undertake to stay viable is the continuous biogenesis of ribosomes for the translation of RNA into protein. Given the inextricable links between energy consumption and cellular lifespan, it is not surprising that mutations and environmental cues that reduce ribosome biogenesis result in an extension of eukaryotic lifespan. This review goes into detail describing recent discoveries of different and often unexpected elements that play a role in the regulation of longevity by virtue of their ribosome biogenesis functions. These roles include controlling the transcription and processing of ribosomal RNA (rRNA), the translation of ribosomal protein (RP) genes, and the number of ribosomes overall. Together these findings suggest that a fundamental mechanism across eukaryotic species for extending lifespan is to slow down or halt the expenditure of cellular energy that is normally absorbed by the manufacturing and assembly of new ribosomes.
Collapse
|
22
|
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and Cancer. Cancer Discov 2015; 5:1024-39. [PMID: 26382145 DOI: 10.1158/2159-8290.cd-15-0507] [Citation(s) in RCA: 906] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective gene expression amplification to promote cell growth and proliferation. Through its targets, MYC coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic derangements silence checkpoints and unleash MYC's cell growth- and proliferation-promoting metabolic activities. Unbridled growth in response to deregulated MYC expression creates dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic enzymes provides novel targets for cancer therapy. SIGNIFICANCE MYC's expression and activity are tightly regulated in normal cells by multiple mechanisms, including a dependence upon growth factor stimulation and replete nutrient status. In cancer, genetic deregulation of MYC expression and loss of checkpoint components, such as TP53, permit MYC to drive malignant transformation. However, because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities.
Collapse
Affiliation(s)
- Zachary E Stine
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zandra E Walton
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian J Altman
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annie L Hsieh
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
23
|
Erives AJ. Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions. Dev Genes Evol 2015; 225:259-73. [PMID: 26173873 PMCID: PMC4568025 DOI: 10.1007/s00427-015-0508-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
Animals use a stereotypical set of developmental genes to build body architectures of varying sizes and organizational complexity. Some genes are critical to developmental patterning, while other genes are important to physiological control of growth. However, growth regulator genes may not be as important in small-bodied “micro-metazoans” such as nematodes. Nematodes use a simplified developmental strategy of lineage-based cell fate specifications to produce an adult bilaterian body composed of a few hundreds of cells. Nematodes also lost the MYC proto-oncogenic regulator of cell proliferation. To identify additional regulators of cell proliferation that were lost with MYC, we computationally screened and determined 839 high-confidence genes that are conserved in bilaterians/lost in nematodes (CIBLIN genes). We find that 30 % of all CIBLIN genes encode transcriptional regulators of cell proliferation, epithelial-to-mesenchyme transitions, and other processes. Over 50 % of CIBLIN genes are unnamed genes in Drosophila, suggesting that there are many understudied genes. Interestingly, CIBLIN genes include many Myc synthetic lethal (MycSL) hits from recent screens. CIBLIN genes include key regulators of heparan sulfate proteoglycan (HSPG) sulfation patterns, and lysyl oxidases involved in cross-linking and modification of the extracellular matrix (ECM). These genes and others suggest the CIBLIN repertoire services critical functions in ECM remodeling and cell migration in large-bodied bilaterians. Correspondingly, CIBLIN genes are co-expressed with Myc in cancer transcriptomes, and include a preponderance of known determinants of cancer progression and tumor aggression. We propose that CIBLIN gene research can improve our understanding of regulatory control of cellular growth in metazoans.
Collapse
Affiliation(s)
- Albert J Erives
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| |
Collapse
|
24
|
Jung M, Jin SG, Zhang X, Xiong W, Gogoshin G, Rodin AS, Pfeifer GP. Longitudinal epigenetic and gene expression profiles analyzed by three-component analysis reveal down-regulation of genes involved in protein translation in human aging. Nucleic Acids Res 2015; 43:e100. [PMID: 25977295 PMCID: PMC4551908 DOI: 10.1093/nar/gkv473] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/29/2015] [Indexed: 12/28/2022] Open
Abstract
Data on biological mechanisms of aging are mostly obtained from cross-sectional study designs. An inherent disadvantage of this design is that inter-individual differences can mask small but biologically significant age-dependent changes. A serially sampled design (same individual at different time points) would overcome this problem but is often limited by the relatively small numbers of available paired samples and the statistics being used. To overcome these limitations, we have developed a new vector-based approach, termed three-component analysis, which incorporates temporal distance, signal intensity and variance into one single score for gene ranking and is combined with gene set enrichment analysis. We tested our method on a unique age-based sample set of human skin fibroblasts and combined genome-wide transcription, DNA methylation and histone methylation (H3K4me3 and H3K27me3) data. Importantly, our method can now for the first time demonstrate a clear age-dependent decrease in expression of genes coding for proteins involved in translation and ribosome function. Using analogies with data from lower organisms, we propose a model where age-dependent down-regulation of protein translation-related components contributes to extend human lifespan.
Collapse
Affiliation(s)
- Marc Jung
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Seung-Gi Jin
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaoying Zhang
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Wenying Xiong
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Grigoriy Gogoshin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Andrei S Rodin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
25
|
Dunn S, Cowling VH. Myc and mRNA capping. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:501-5. [PMID: 24681440 PMCID: PMC6414814 DOI: 10.1016/j.bbagrm.2014.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 01/05/2023]
Abstract
c-Myc is upregulated in response to growth factors and transmits the signal to proliferate by altering the gene expression landscape. When genetic alterations result in growth factor-independent c-Myc expression, it can become an oncogene. The majority of human tumour types exhibit a degree of c-Myc deregulation, resulting in unrestrained cell proliferation. c-Myc binds proximal to the promoter region of genes and recruits co-factors including histone acetyltransferases and RNA pol II kinases, which promote transcription. c-Myc also promotes formation of the cap structure at the 5' end of mRNA. The cap is 7-methylguanosine linked to the first transcribed nucleotide of RNA pol II transcripts via a 5' to 5' triphosphate bridge. The cap is added to the first transcribed nucleotide by the capping enzymes, RNGTT and RNMT-RAM. During the early stages of transcription, the capping enzymes are recruited to RNA pol II phosphorylated on Serine-5 of the C-terminal domain. The mRNA cap protects transcripts from degradation during transcription and recruits factors which promote RNA processing including, splicing, export and translation initiation. The proportion of transcripts with a cap structure is increased by elevating c-Myc expression, resulting in increased rates of translation. c-Myc promotes capping by promoting RNA pol II phosphorylation and by upregulating the enzyme SAHH which neutralises the inhibitory bi-product of methylation reactions, SAH. c-Myc-induced capping is required for c-Myc-dependent gene expression and cell proliferation. Targeting capping may represent a new therapeutic opportunity to inhibit c-Myc function in tumours. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Sianadh Dunn
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
26
|
Sinkovics JG. The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp) 2015; 5:25-43. [PMID: 25883792 PMCID: PMC4397846 DOI: 10.1556/eujmi-d-14-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix-loop-helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt-β-catenin, Hedgehog, PI3K, MAPK-ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous "cancer cells".
Collapse
Affiliation(s)
- J G Sinkovics
- St. Joseph's Hospital Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Morsani College of Medicine, Department of Molecular Medicine, The University of South Florida Tampa, FL USA
| |
Collapse
|
27
|
Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, Hubbard GB, Ikeno Y, Zhang Y, Feng B, Li X, Serre T, Qi W, Van Remmen H, Miller RA, Bath KG, de Cabo R, Xu H, Neretti N, Sedivy JM. Reduced expression of MYC increases longevity and enhances healthspan. Cell 2015; 160:477-88. [PMID: 25619689 DOI: 10.1016/j.cell.2014.12.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 10/21/2014] [Accepted: 12/03/2014] [Indexed: 01/18/2023]
Abstract
MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan.
Collapse
Affiliation(s)
- Jeffrey W Hofmann
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Xiaoai Zhao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Marco De Cecco
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Luca Pagliaroli
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jayameenakshi Manivannan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gene B Hubbard
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuji Ikeno
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yongqing Zhang
- Translational Gerontology Branch, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Bin Feng
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Xiaxi Li
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Thomas Serre
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Wenbo Qi
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Haiyan Xu
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
28
|
Campbell KJ, White RJ. MYC regulation of cell growth through control of transcription by RNA polymerases I and III. Cold Spring Harb Perspect Med 2014; 4:4/5/a018408. [PMID: 24789877 DOI: 10.1101/cshperspect.a018408] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MYC's tumorigenic potential involves increased ribosome biogenesis and translational capacity, which supply the cell with protein required for enhanced cell growth and subsequent cell division. In addition to activation of protein-encoding genes transcribed by RNA polymerase II, MYC must stimulate transcription by RNA polymerase I and RNA polymerase III to meet this synthetic demand. In the past decade our knowledge of the mechanisms and importance of MYC regulation of RNA polymerases I and III has flourished. Here we discuss MYC's influence on transcription by these "odd" RNA polymerases and the physiological impact of this regulation is evaluated with relevance to cancer development and treatment.
Collapse
|
29
|
Abstract
The first animals arose more than six hundred million years ago, yet they left little impression in the fossil record. Nonetheless, the cell biology and genome composition of the first animal, the Urmetazoan, can be reconstructed through the study of phylogenetically relevant living organisms. Comparisons among animals and their unicellular and colonial relatives reveal that the Urmetazoan likely possessed a layer of epithelium-like collar cells, preyed on bacteria, reproduced by sperm and egg, and developed through cell division, cell differentiation, and invagination. Although many genes involved in development, body patterning, immunity, and cell-type specification evolved in the animal stem lineage or after animal origins, several gene families critical for cell adhesion, signaling, and gene regulation predate the origin of animals. The ancestral functions of these and other genes may eventually be revealed through studies of gene and genome function in early-branching animals and their closest non-animal relatives.
Collapse
Affiliation(s)
- Daniel J Richter
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200; ,
| | | |
Collapse
|
30
|
Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 2014; 34:403-12. [PMID: 24608428 DOI: 10.1038/onc.2014.13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 02/06/2023]
Abstract
The MYC oncoprotein and transcription factor is dysregulated in a majority of human cancers and is considered a major driver of the malignant phenotype. As such, developing drugs for effective inhibition of MYC in a manner selective to malignancies is a 'holy grail' of transcription factor-based cancer therapy. Recent advances in elucidating MYC biology in both normal cells and pathological settings were anticipated to bring inhibition of tumorigenic MYC function closer to the clinic. However, while the extensive array of cellular pathways that MYC impacts present numerous fulcrum points on which to leverage MYC's therapeutic potential, identifying the critical target(s) for MYC-specific cancer therapy has been difficult to achieve. Somewhat unexpectedly, MYC's fundamental role in regulating the 'housekeeping' process of ribosome biogenesis, one of the most ubiquitously required and conserved cell functions, may provide the Achilles' heel for therapeutically targeting MYC-driven tumors.
Collapse
|
31
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
32
|
The MYC oncogene family in human cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
33
|
Cowling VH, Turner SA, Cole MD. Burkitt's lymphoma-associated c-Myc mutations converge on a dramatically altered target gene response and implicate Nol5a/Nop56 in oncogenesis. Oncogene 2013; 33:3519-27. [PMID: 24013231 PMCID: PMC5003617 DOI: 10.1038/onc.2013.338] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 06/03/2013] [Accepted: 06/28/2013] [Indexed: 12/13/2022]
Abstract
Burkitt’s Lymphomas (BLs) acquire consistent point mutations in a conserved domain of Myc, Myc Box I. We report that the enhanced transforming activity of BL-associated Myc mutants can be uncoupled from loss of phosphorylation and increased protein stability. Furthermore, two different BL-associated Myc mutations induced similar gene expression profiles independently of T58 phosphorylation, and these profiles are dramatically different from MycWT. Nol5a/Nop56, which is required for rRNA methylation, was identified as a gene hyperactivated by the BL-associated Myc mutants. We show that Nol5a is necessary for Myc-induced cell transformation, enhances MycWT-induced cell transformation, and increases the size of MycWT induced tumors. Thus, Nol5a expands the link between Myc-induced regulation of nucleolar target genes which are rate-limiting for cell transformation and tumor growth.
Collapse
Affiliation(s)
- V H Cowling
- Department of Pharmacology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| | - S A Turner
- Department of Genetics, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| | - M D Cole
- 1] Department of Pharmacology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA [2] Department of Genetics, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| |
Collapse
|
34
|
Martyanov V, Gross RH. Computational discovery of transcriptional regulatory modules in fungal ribosome biogenesis genes reveals novel sequence and function patterns. PLoS One 2013; 8:e59851. [PMID: 23555806 PMCID: PMC3612091 DOI: 10.1371/journal.pone.0059851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/20/2013] [Indexed: 11/24/2022] Open
Abstract
Genes involved in ribosome biogenesis and assembly (RBA) are responsible for ribosome formation. In Saccharomyces cerevisiae, their transcription is regulated by two dissimilar DNA motifs. We were interested in analyzing conservation and divergence of RBA transcription regulation machinery throughout fungal evolution. We have identified orthologs of S. cerevisiae RBA genes in 39 species across fungal phylogeny and searched upstream regions of these gene sets for DNA sequences significantly similar to S. cerevisiae RBA regulatory motifs. In addition to confirming known motif arrangements comprising two different motifs in a set of S. cerevisiae close relatives or two instances of the same motif (that we refer to as modules), we have also discovered novel modules in a group of fungi closely related to Neurospora crassa. Despite a single nucleotide difference between consensus sequences of RBA motifs, modules associated with S, cerevisiae group and N. crassa group displayed consistently different characteristics with respect to preferred module organization and several other module properties. For a given species, we have found a correlation between the configuration of the RBA module and significant enrichment in a set of specific Gene Ontology biological processes. We have identified several likely new candidates for a role in ribosome biogenesis in S. cerevisiae based on the combined evidence of RBA module presence in the upstream regions, functional annotation information and microarray expression profiles. We believe that this approach will be useful in terms of generating hypotheses about functional roles of genes for which only fragmentary data from a single source are available.
Collapse
Affiliation(s)
- Viktor Martyanov
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert H. Gross
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
35
|
Deciphering the transcriptional cis-regulatory code. Trends Genet 2012; 29:11-22. [PMID: 23102583 DOI: 10.1016/j.tig.2012.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 02/07/2023]
Abstract
Information about developmental gene expression resides in defined regulatory elements, called enhancers, in the non-coding part of the genome. Although cells reliably utilize enhancers to orchestrate gene expression, a cis-regulatory code that would allow their interpretation has remained one of the greatest challenges of modern biology. In this review, we summarize studies from the past three decades that describe progress towards revealing the properties of enhancers and discuss how recent approaches are providing unprecedented insights into regulatory elements in animal genomes. Over the next years, we believe that the functional characterization of regulatory sequences in entire genomes, combined with recent computational methods, will provide a comprehensive view of genomic regulatory elements and their building blocks and will enable researchers to begin to understand the sequence basis of the cis-regulatory code.
Collapse
|
36
|
Abstract
The Myc family of proto-oncogenes plays a central role in tumorigenesis, yet identifying the specific transcriptional targets required for its oncogenic function remains a challenge. Given Myc's broad role in transcriptional regulation, it seems unlikely that there exists one or even a small set of Myc effectors strictly required for transformation. Over the last decade or so, it has become clear that Myc can drive several metabolic pathways associated with cell growth. There is compelling evidence that Myc regulates these pathways directly and that their regulation is not an epiphenomenon. As such, for understanding Myc's pleiotropic role in cell growth, cell division, and cell death, it may be fruitful to focus more broadly on Myc-regulated pathways than on specific targets. Myc was first shown to regulate glycolysis, but it is now clear that Myc regulates many biosynthetic pathways required for cell growth and division. A related family of transcriptional regulators, the Mondo family, has recently been discovered that may interact with members of the Myc family to control cell growth. The Mondo family is a key sensor of intracellular bioenergetic charge, and one function appears to be in controlling the availability and utilization of intracellular glucose. Here we focus on the metabolic pathways regulated by Myc and Mondo and speculate on the largely unexplored question of their cooperation in controlling cancer cell metabolism.
Collapse
Affiliation(s)
- Elizabeth J Sloan
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
37
|
Seitz V, Butzhammer P, Hirsch B, Hecht J, Gütgemann I, Ehlers A, Lenze D, Oker E, Sommerfeld A, von der Wall E, König C, Zinser C, Spang R, Hummel M. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS One 2011; 6:e26837. [PMID: 22102868 PMCID: PMC3213110 DOI: 10.1371/journal.pone.0026837] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 10/04/2011] [Indexed: 01/30/2023] Open
Abstract
Background MYC is a key transcription factor involved in central cellular processes such as regulation of the cell cycle, histone acetylation and ribosomal biogenesis. It is overexpressed in the majority of human tumors including aggressive B-cell lymphoma. Especially Burkitt lymphoma (BL) is a highlight example for MYC overexpression due to a chromosomal translocation involving the c-MYC gene. However, no genome-wide analysis of MYC-binding sites by chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) has been conducted in BL so far. Methodology/Principal Findings ChIP-Seq was performed on 5 BL cell lines with a MYC-specific antibody giving rise to 7,054 MYC-binding sites after bioinformatics analysis of a total of approx. 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the cell cycle, ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC-binding sites also accumulate in many B-cell relevant genes. To assess the functional consequences of MYC binding, the ChIP-Seq data were supplemented with siRNA- mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in the B-cell function were up-regulated in response to MYC silencing. Conclusion/Significance The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in BL and shed further light on the enormous complexity of the MYC regulatory network. Especially our observations that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlight an interesting aspect of BL biology.
Collapse
Affiliation(s)
- Volkhard Seitz
- Institute of Pathology, Charité - University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Peter Butzhammer
- Institute for Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Burkhard Hirsch
- Institute of Pathology, Charité - University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Jochen Hecht
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine, Berlin, Germany
| | - Ines Gütgemann
- Department of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Anke Ehlers
- Institute of Pathology, Charité - University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Dido Lenze
- Institute of Pathology, Charité - University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Elisabeth Oker
- Institute of Pathology, Charité - University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Anke Sommerfeld
- Institute of Pathology, Charité - University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Edda von der Wall
- Institute of Pathology, Charité - University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | | | | | - Rainer Spang
- Institute for Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - University Medicine, Campus Benjamin Franklin, Berlin, Germany
- * E-mail:
| |
Collapse
|
38
|
Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation. PLoS One 2011; 6:e26057. [PMID: 22039435 PMCID: PMC3198433 DOI: 10.1371/journal.pone.0026057] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/16/2011] [Indexed: 12/16/2022] Open
Abstract
The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP), global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs). We further document that a Myc core signature (MCS) set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.
Collapse
|
39
|
Daneshvar K, Khan A, Goodliffe JM. Myc localizes to histone locus bodies during replication in Drosophila. PLoS One 2011; 6:e23928. [PMID: 21886841 PMCID: PMC3160328 DOI: 10.1371/journal.pone.0023928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/28/2011] [Indexed: 11/21/2022] Open
Abstract
Myc is an important protein at the center of multiple pathways required for growth and proliferation in animals. The absence of Myc is lethal in flies and mice, and its over-production is a potent inducer of over-proliferation and cancer. Myc protein is localized to the nucleus where it executes its many functions, however the specific sub-nuclear localization of Myc has rarely been reported. The work we describe here began with an observation of unexpected, punctate spots of Myc protein in certain regions of Drosophila embryos. We investigated the identity of these puncta and demonstrate that Myc is co-localized with coilin, a marker for sub-nuclear organelles known as Cajal Bodies (CBs), in embryos, larvae and ovaries. Using antibodies specific for U7 snRNP component Lsm11, we show that the majority of Myc and coilin co-localization occurs in Histone Locus Bodies (HLBs), the sites of histone mRNA transcription and processing. Furthermore, Myc localizes to HLBs only during replication in mitotic and endocycling cells, suggesting that its role there relates to replication-dependent canonical histone gene transcription. These results provide evidence that sub-nuclear localization of Myc is cell-cycle dependent and potentially important for histone mRNA production and processing.
Collapse
Affiliation(s)
- Kaveh Daneshvar
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Abid Khan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Julie M. Goodliffe
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.
Collapse
Affiliation(s)
- Lisa G McFerrin
- Bioinformatics Research Center, North Carolina State University, USA.
| | | |
Collapse
|
41
|
Young SL, Diolaiti D, Conacci-Sorrell M, Ruiz-Trillo I, Eisenman RN, King N. Premetazoan ancestry of the Myc-Max network. Mol Biol Evol 2011; 28:2961-71. [PMID: 21571926 DOI: 10.1093/molbev/msr132] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The origin of metazoans required the evolution of mechanisms for maintaining differentiated cell types within a multicellular individual, in part through spatially differentiated patterns of gene transcription. The unicellular ancestor of metazoans was presumably capable of regulating gene expression temporally in response to changing environmental conditions, and spatial cell differentiation in metazoans may represent a co-option of preexisting regulatory mechanisms. Myc is a critical regulator of cell growth, proliferation, and death that is found in all metazoans but absent in other multicellular lineages, including fungi and plants. Homologs of Myc and its binding partner, Max, exist in two of the closest living relatives of animals, the choanoflagellate Monosiga brevicollis (Mb) and Capsaspora owczarzaki, a unicellular opisthokont that is closely related to metazoans and choanoflagellates. We find that Myc and Max from M. brevicollis heterodimerize and bind to both canonical and noncanonical E-boxes, the DNA-binding sites through which metazoan Myc proteins act. Moreover, in M. brevicollis, MbMyc protein can be detected in nuclear and flagellar regions. Like metazoan Max proteins, MbMax can form homodimers that bind to E-boxes. However, cross-species dimerization between Mb and human Myc and Max proteins was not observed, suggesting that the binding interface has diverged. Our results reveal that the Myc/Max network arose before the divergence of the choanoflagellate and metazoan lineages. Furthermore, core features of metazoan Myc function, including heterodimerization with Max, binding to E-box sequences in DNA, and localization to the nucleus, predate the origin of metazoans.
Collapse
Affiliation(s)
- Susan L Young
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, University of California, Berkeley, CA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The Myc proteins c-Myc and N-Myc are essential for development and tissue homoeostasis. They are up-regulated by growth factors and transmit the signal for cell growth and proliferation. Myc proteins are also prominent oncogenes in many human tumour types. Myc proteins regulate the transcription of protein-encoding mRNAs and the tRNAs and rRNA which mediate mRNA translation into protein. Myc proteins also up-regulate translation by increasing addition of the 7-methylguanosine cap (methyl cap) to the 5' end of pre-mRNA. Addition of the methyl cap increases the rate at which transcripts are translated by directing RNA modifications and translation initiation. Myc induces methyl cap formation by promoting RNA polymerase II phosphorylation which recruits the capping enzymes to RNA, and by up-regulating the enzyme SAHH (S-adenosylhomocysteine hydrolase), which neutralizes the inhibitory by-product of methylation reactions. Myc-induced cap methylation is a major effect of Myc function, being necessary for activated protein synthesis, cell proliferation and cell transformation. Inhibition of cap methylation is synthetic lethal with elevated Myc protein expression, which indicates the potential for cap methylation to be a therapeutic target.
Collapse
|
43
|
Morello LG, Hesling C, Coltri PP, Castilho BA, Rimokh R, Zanchin NIT. The NIP7 protein is required for accurate pre-rRNA processing in human cells. Nucleic Acids Res 2010; 39:648-65. [PMID: 20798176 PMCID: PMC3025556 DOI: 10.1093/nar/gkq758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic ribosome biogenesis requires the function of a large number of trans-acting factors which interact transiently with the nascent pre-rRNA and dissociate as the ribosomal subunits proceed to maturation and export to the cytoplasm. Loss-of-function mutations in human trans-acting factors or ribosome components may lead to genetic syndromes. In a previous study, we have shown association between the SBDS (Shwachman-Bodian-Diamond syndrome) and NIP7 proteins and that downregulation of SBDS in HEK293 affects gene expression at the transcriptional and translational levels. In this study, we show that downregulation of NIP7 affects pre-rRNA processing, causing an imbalance of the 40S/60S subunit ratio. We also identified defects at the pre-rRNA processing level with a decrease of the 34S pre-rRNA concentration and an increase of the 26S and 21S pre-rRNA concentrations, indicating that processing at site 2 is particularly slower in NIP7-depleted cells and showing that NIP7 is required for maturation of the 18S rRNA. The NIP7 protein is restricted to the nuclear compartment and co-sediments with complexes with molecular masses in the range of 40S-80S, suggesting an association to nucleolar pre-ribosomal particles. Downregulation of NIP7 affects cell proliferation, consistently with an important role for NIP7 in rRNA biosynthesis in human cells.
Collapse
Affiliation(s)
- Luis G Morello
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas SP, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The enigmatic MYC oncogene, which participates broadly in cancers, revealed itself recently as the maestro of an unfolding symphony of cell growth, proliferation, death, and metabolism. The study of MYC is arguably most challenging to its students but at the same time exhilarating when MYC reveals its deeply held secrets. It is the excitement of our richer understanding of MYC that is captured in each review of this special issue of Genes & Cancer. Collectively, our deeper understanding of MYC reveals that it is a symphony conductor, controlling a large orchestra of target genes. Although MYC controls many orchestra sections, which are necessary but not sufficient for Myc function, ribosome biogenesis stands out to reveal Myc's primordial function particularly in fruit flies. Because ribosome biogenesis and the associated translational machinery are bioenergetically demanding, Myc's other target genes involved in energy metabolism must be coupled with energy demand to ensure that cells can replicate their genome and produce daughter cells. Normal cells have feedback loops that diminish MYC expression when nutrients are scarce. On the other hand, when deregulated Myc transforms cells, their constitutive bioenergetic demand can trigger cell death when energy is unavailable. This special issue captures the unfolding symphony of MYC-mediated tumorigenesis through reviews that span from a timeline of MYC research, fundamental understanding of how the MYC gene itself is regulated, the study of Myc in model organisms, Myc function, and target genes to translational research in search of new therapeutic modalities for the treatment of cancer.
Collapse
Affiliation(s)
- Chi V Dang
- Division of Hematology, Department of Medicine, and Departments of Cell Biology, Oncology, Pathology, and Molecular Biology & Genetics, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Abstract
The c-myc proto-oncogene regulates the expression of 15% to 20% of all genes, depending on the cell type, and the regulation is usually modest (1.5- to 2.0-fold). The authors discovered that in addition to regulating mRNA abundance, c-Myc regulates the formation of the 7-methylguanosine cap on many mRNAs, including transcriptional target genes and others not transcriptionally activated. Because the 7-methylguanosine cap is required for effective translation, enhanced methyl cap formation leads to increased protein production from Myc-responsive genes that exceeds the transcriptional induction. Increased cap methylation is linked to Myc-dependent enhanced activity of 2 critical kinases, TFIIH and p-TEFb, which phosphorylate the RNA polymerase II carboxy-terminal domain (CTD). Phosphorylation of the CTD recruits RNGTT and RNMT, the enzymes involved in mRNA capping, to the nascent transcript. Evidence is accumulating that enhanced cap methylation makes a significant contribution to Myc-dependent gene regulation and protein production.
Collapse
Affiliation(s)
- Victoria H Cowling
- University of Dundee, Division of Cell Biology and Immunology, College of Life Sciences, Dundee, UK
| | | |
Collapse
|
46
|
Fan J, Zeller K, Chen YC, Watkins T, Barnes KC, Becker KG, Dang CV, Cheadle C. Time-dependent c-Myc transactomes mapped by Array-based nuclear run-on reveal transcriptional modules in human B cells. PLoS One 2010; 5:e9691. [PMID: 20300622 PMCID: PMC2837740 DOI: 10.1371/journal.pone.0009691] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/23/2010] [Indexed: 12/24/2022] Open
Abstract
Background The definition of transcriptional networks through measurements of changes in gene expression profiles and mapping of transcription factor binding sites is limited by the moderate overlap between binding and gene expression changes and the inability to directly measure global nuclear transcription (coined “transactome”). Methodology/Principal Findings We developed a method to measure nascent nuclear gene transcription with an Array-based Nuclear Run-On (ANRO) assay using commercial microarray platforms. This strategy provides the missing component, the transactome, to fully map transcriptional networks. ANRO measurements in an inducible c-Myc expressing human P493-6 B cell model reveals time-dependent waves of transcription, with a transactome early after c-Myc induction that does not persist at a late, steady-state phase, when genes that are regulated by c-Myc and E2F predominate. Gene set matrix analysis further uncovers functionally related groups of genes putatively regulated by waves of transcription factor motifs following Myc induction, starting with AP1 and CREB that are followed by EGR1, NFkB and STAT, and ending with E2F, Myc and ARNT/HIF motifs. Conclusions/Significance By coupling ANRO with previous global mapping of c-Myc binding sites by chromatin immunoprecipitation (ChIP) in P493-6 cells, we define a set of transcriptionally regulated direct c-Myc target genes and pave the way for the use of ANRO to comprehensively map any transcriptional network.
Collapse
Affiliation(s)
- JinShui Fan
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Karen Zeller
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yu-Chi Chen
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tonya Watkins
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathleen C. Barnes
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Research Resources Branch, National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Chi V. Dang
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Pathology, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (CVD); (CC)
| | - Chris Cheadle
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (CVD); (CC)
| |
Collapse
|
47
|
Lavoie H, Hogues H, Mallick J, Sellam A, Nantel A, Whiteway M. Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol 2010; 8:e1000329. [PMID: 20231876 PMCID: PMC2834713 DOI: 10.1371/journal.pbio.1000329] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 02/03/2010] [Indexed: 12/14/2022] Open
Abstract
A surprising level of evolutionary plasticity is revealed by analysis of differences between related yeasts in the mechanisms regulating the essential cellular process of ribosomal gene expression. Gene expression variation between species is a major contributor to phenotypic diversity, yet the underlying flexibility of transcriptional regulatory networks remains largely unexplored. Transcription of the ribosomal regulon is a critical task for all cells; in S. cerevisiae the transcription factors Rap1, Fhl1, Ifh1, and Hmo1 form a multi-subunit complex that controls ribosomal gene expression, while in C. albicans this regulation is under the control of Tbf1 and Cbf1. Here, we analyzed, using full-genome transcription factor mapping, the roles, in both S. cerevisiae and C. albicans, of each orthologous component of this complete set of regulators. We observe dramatic changes in the binding profiles of the generalist regulators Cbf1, Hmo1, Rap1, and Tbf1, while the Fhl1-Ifh1 dimer is the only component involved in ribosomal regulation in both fungi: it activates ribosomal protein genes and rDNA expression in a Tbf1-dependent manner in C. albicans and a Rap1-dependent manner in S. cerevisiae. We show that the transcriptional regulatory network governing the ribosomal expression program of two related yeast species has been massively reshaped in cis and trans. Changes occurred in transcription factor wiring with cellular functions, movements in transcription factor hierarchies, DNA-binding specificity, and regulatory complexes assembly to promote global changes in the architecture of the fungal transcriptional regulatory network. Conserved metabolic machineries direct energy production and investment in most life forms. However, variation in the transcriptional regulation of the genes that encode this machinery has been observed and shown to contribute to phenotypic differences between species. Here, we show that the regulatory circuits governing the expression of central metabolic components (in this case the ribosomes) in different yeast species have an unexpected level of evolutionary plasticity. Most transcription factors involved in the regulation of expression of ribosomal genes have in fact been reused in new ways during the evolutionary time separating S. cerevisiae and C. albicans to generate global changes in transcriptional network structures and new ribosomal regulatory complexes.
Collapse
Affiliation(s)
- Hugo Lavoie
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Hervé Hogues
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
| | - Jaideep Mallick
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
| | - Adnane Sellam
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - André Nantel
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
48
|
Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc Natl Acad Sci U S A 2010; 107:4051-6. [PMID: 20142507 DOI: 10.1073/pnas.0911060107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The c-myc protooncogene encodes a transcription factor (Myc) with oncogenic potential. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins controlling fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis and is a hallmark of many human cancers. We have identified and extensively characterized ancestral forms of myc and max genes from the early diploblastic cnidarian Hydra, the most primitive metazoan organism employed so far for the structural, functional, and evolutionary analysis of these genes. Hydra myc is specifically activated in all stem cells and nematoblast nests which represent the rapidly proliferating cell types of the interstitial stem cell system and in proliferating gland cells. In terminally differentiated nerve cells, nematocytes, or epithelial cells, myc expression is not detectable by in situ hybridization. Hydra max exhibits a similar expression pattern in interstitial cell clusters. The ancestral Hydra Myc and Max proteins display the principal design of their vertebrate derivatives, with the highest degree of sequence identities confined to the bHLH-Zip domains. Furthermore, the 314-amino acid Hydra Myc protein contains basic forms of the essential Myc boxes I through III. A recombinant Hydra Myc/Max complex binds to the consensus DNA sequence CACGTG with high affinity. Hybrid proteins composed of segments from the retroviral v-Myc oncoprotein and the Hydra Myc protein display oncogenic potential in cell transformation assays. Our results suggest that the principal functions of the Myc master regulator arose very early in metazoan evolution, allowing their dissection in a simple model organism showing regenerative ability but no senescence.
Collapse
|
49
|
Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol 2010; 30:1411-20. [PMID: 20065031 DOI: 10.1128/mcb.01384-09] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have mapped many single-nucleotide polymorphisms (SNPs) that are linked to cancer risk, but the mechanism by which most SNPs promote cancer remains undefined. The rs6983267 SNP at 8q24 has been associated with many cancers, yet the SNP falls 335 kb from the nearest gene, c-MYC. We show that the beta-catenin-TCF4 transcription factor complex binds preferentially to the cancer risk-associated rs6983267(G) allele in colon cancer cells. We also show that the rs6983267 SNP has enhancer-related histone marks and can form a 335-kb chromatin loop to interact with the c-MYC promoter. Finally, we show that the SNP has no effect on the efficiency of chromatin looping to the c-MYC promoter but that the cancer risk-associated SNP enhances the expression of the linked c-MYC allele. Thus, cancer risk is a direct consequence of elevated c-MYC expression from increased distal enhancer activity and not from reorganization/creation of the large chromatin loop. The findings of these studies support a mechanism for intergenic SNPs that can promote cancer through the regulation of distal genes by utilizing preexisting large chromatin loops.
Collapse
|
50
|
Abstract
The 7-methylguanosine cap added to the 5′ end of mRNA is essential for efficient gene expression and cell viability. Methylation of the guanosine cap is necessary for the translation of most cellular mRNAs in all eukaryotic organisms in which it has been investigated. In some experimental systems, cap methylation has also been demonstrated to promote transcription, splicing, polyadenylation and nuclear export of mRNA. The present review discusses how the 7-methylguanosine cap is synthesized by cellular enzymes, the impact that the 7-methylguanosine cap has on biological processes, and how the mRNA cap methylation reaction is regulated.
Collapse
|