1
|
Dialkyl Carbamoyl Chloride-Coated Dressing Prevents Macrophage and Fibroblast Stimulation via Control of Bacterial Growth: An In Vitro Assay. Microorganisms 2022; 10:microorganisms10091825. [PMID: 36144427 PMCID: PMC9502631 DOI: 10.3390/microorganisms10091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, we evaluated the direct effect of a dialkyl carbamoyl chloride (DACC)-coated dressing on Staphylococcus aureus adhesion and growth in vitro, as well as the indirect effect of the dressing on fibroblast and macrophage activity. S. aureus cultures were treated with the dressing or gauze in Müller-Hinton medium or serum-supplemented Dulbecco’s modified Eagle medium. Bacterial growth and attachment were assessed through colony-forming units (CFU) and residual biomass analyses. Fibroblast and macrophage co-cultures were stimulated with filtered supernatants from the bacterial cultures treated with the DACC-coated dressing, following which tumor necrosis factor (TNF)-α/transforming growth factor (TGF)-β1 expression and gelatinolytic activity were assessed by enzyme-linked immunosorbent assays (ELISA) and zymography, respectively. The DACC-coated dressing bound 1.8−6.1% of all of the bacteria in the culture. Dressing-treated cultures presented biofilm formation in the dressing (enabling mechanical removal), with limited formation outside of it (p < 0.001). Filtered supernatants of bacterial cultures treated with the DACC-coated dressing did not over-stimulate TNF-α or TGF-β1 expression (p < 0.001) or increase gelatinolytic activity in eukaryotic cells, suggesting that bacterial cell integrity was maintained. Based on the above data, wound caregivers should consider the use of hydrophobic dressings as a first option for the management of acute or chronic wounds.
Collapse
|
2
|
Chen J, Chen D, Chen J, Shen T, Jin T, Zeng B, Li L, Yang C, Mu Z, Deng H, Cai X. An all-in-one CO gas therapy-based hydrogel dressing with sustained insulin release, anti-oxidative stress, antibacterial, and anti-inflammatory capabilities for infected diabetic wounds. Acta Biomater 2022; 146:49-65. [PMID: 35500813 DOI: 10.1016/j.actbio.2022.04.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022]
Abstract
To effectively treat diabetic wounds, the development of versatile medical dressings that can long-term regulate blood glucose and highly effective anti-oxidative stress, antibacterial and anti-inflammatory are critical. Here, an all-in-one CO gas-therapy-based versatile hydrogel dressing (ICOQF) was developed via the dynamic Schiff base reaction between the amino groups on quaternized chitosan (QCS) and the aldehyde groups on benzaldehyde-terminated F108 (F108-CHO) micelles. CORM-401 (an oxidant-sensitive CO-releasing molecules) was encapsulated in the hydrophobic core of F108-CHO micelles and insulin was loaded in the three-dimensional network structure of ICOQF. The dynamic Schiff base bonds not only endowed ICOQF with good tissue adhesion, injectability and self-healing, but also gave it sustained and controllable insulin release ability. In addition, ICOQF could quickly generate CO in inflamed wound tissue by consuming reactive oxygen species. The generated CO could effectively anti-oxidative stress by activating the expression of heme oxygenase; antibacterial by inducing the rupture of bacterial cell membranes and mitochondrial dysfunction and inhibiting the synthesis of adenosine triphosphate; and anti-inflammatory by inhibiting the proliferation of activated macrophages and promoting the polarization of the M1 phenotype to the M2 phenotype. Due to these outstanding properties, ICOQF significantly promoted the healing of STZ-induced MRSA-infected diabetic wounds accompanied by good biocompatibility. This study clearly shows that ICOQF is a versatile hydrogel dressing with great application potential for the management of diabetic wounds. STATEMENT OF SIGNIFICANCE: The development of some versatile hydrogel dressings that can not only provide a prolonged and controlled insulin release property but also utilize a non-antibiotic treatment modality for highly effective antibacterial, anti-inflammatory, and anti-oxidative stress effects is vital for the successful treatment of diabetic wounds. Herein, we developed an all-in-one CO gas-therapy-based versatile hydrogel dressing (ICOQF) with sustained and controllable insulin release abilities. Moreover, ICOQF could not only quickly release CO in the inflamed wound tissue by consumption of reactive oxygen species but also utilize the generated CO to highly effectively anti-oxidative stress, antibacterial, and anti-inflammatory. ICOQF therapy substantially promoted the healing of STZ-induced MRSA-infected diabetic wounds. Overall, this work provides a multifunctional hydrogel dressing for the management of diabetic wounds.
Collapse
|
3
|
Santos Souza HF, Rocha SC, Damasceno FS, Rapado LN, Pral EMF, Marinho CRF, Silber AM. The effect of memantine, an antagonist of the NMDA glutamate receptor, in in vitro and in vivo infections by Trypanosoma cruzi. PLoS Negl Trop Dis 2019; 13:e0007226. [PMID: 31536489 PMCID: PMC6752752 DOI: 10.1371/journal.pntd.0007226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/01/2019] [Indexed: 01/12/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a neglected tropical disease that affects 5–6 million people in endemic areas of the Americas. Presently, chemotherapy relies on two compounds that were proposed as trypanocidal drugs four decades ago: nifurtimox and benznidazole. Both drugs are able to eliminate parasitemia and to avoid seroconversion in infected people when used in the acute phase; however, their use in the chronic phase (the time when the majority of cases are diagnosed) is limited due to their serious side effects. Memantine is a glutamate receptor antagonist in the central nervous system of mammals that has been used for the treatment of Alzheimer’s disease. Our group previously reported memantine as a trypanocidal drug that is able to induce apoptosis-like death in T. cruzi. In the present work, we further investigated the effects of memantine on the infection of RAW 264.7 macrophages and in vivo (in BALB/c mice). Here, we showed that memantine is able to diminish NO and Ca2+ entry in both LPS-activated and non-activated cells. These results, together with the fact that memantine was also able to reduce the infection of macrophages, led us to propose that this drug is able to activate a pro-oxidant non-NO-dependent cell defense mechanism. Finally, infected mice that were treated with memantine had diminished parasitemia, cardiac parasitic load, and inflammatory infiltrates. In addition, the treated mice had an increased survival rate. Taken together, these results indicate memantine to be a candidate drug for the treatment of Chagas disease. Chagas disease affects approximately 5 million people and is caused by the protist parasite Trypanosoma cruzi. Until now, there are no vaccines to prevent the human infection, and the therapy relies on the use of two drugs discovered more than 50 years ago, nifurtimox and benznidazole. Both drugs are efficient during the acute phase of the disease, however their efficacy in the chronic phase, when most of patients are diagnosed is controversial. In addition, both drugs are toxic, causing severe side effects during the treatment. For these reasons, new drugs against T. cruzi are urgently needed. In this work, we report a series of experiments supporting the repositioning of memantine, a drug used for treating Alzheimer´s disease, to treat the T. cruzi infection in an experimental infection model. Our data show that infected mice treated with memantine have diminished their parasitemia, cardiac parasitic load and inflammatory infiltrates and more importantly, they have diminished their mortality. Taken together, these results prompt memantine as a promising drug for treating Chagas disease.
Collapse
Affiliation(s)
- Higo Fernando Santos Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra Carla Rocha
- Laboratory of Biochemistry of Tryps–LaBTryps, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ludmila Nakamura Rapado
- Laboratory of Biochemistry of Tryps–LaBTryps, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Elisabeth Mieko Furusho Pral
- Laboratory of Biochemistry of Tryps–LaBTryps, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
4
|
Del Arroyo AG, Hadjihambi A, Sanchez J, Turovsky E, Kasymov V, Cain D, Nightingale TD, Lambden S, Grant SGN, Gourine AV, Ackland GL. NMDA receptor modulation of glutamate release in activated neutrophils. EBioMedicine 2019; 47:457-469. [PMID: 31401196 PMCID: PMC6796524 DOI: 10.1016/j.ebiom.2019.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/05/2023] Open
Abstract
Background Neutrophil depletion improves neurologic outcomes in experimental sepsis/brain injury. We hypothesized that neutrophils may exacerbate neuronal injury through the release of neurotoxic quantities of the neurotransmitter glutamate. Methods Real-time glutamate release by primary human neutrophils was determined using enzymatic biosensors. Bacterial and direct protein-kinase C (Phorbol 12-myristate 13-acetate; PMA) activation of neutrophils in human whole blood, isolated neutrophils or human cell lines were compared in the presence/absence of N-Methyl-d-aspartic acid receptor (NMDAR) antagonists. Bacterial and direct activation of neutrophils from wild-type and transgenic murine neutrophils deficient in NMDAR-scaffolding proteins were compared using flow cytometry (phagocytosis, reactive oxygen species (ROS) generation) and real-time respirometry (oxygen consumption). Findings Both glutamate and the NMDAR co-agonist d-serine are rapidly released by neutrophils in response to bacterial and PMA-induced activation. Pharmacological NMDAR blockade reduced both the autocrine release of glutamate, d-serine and the respiratory burst by activated primary human neutrophils. A highly specific small-molecule inhibitor ZL006 that limits NMDAR-mediated neuronal injury also reduced ROS by activated neutrophils in a murine model of peritonitis, via uncoupling of the NMDAR GluN2B subunit from its' scaffolding protein, postsynaptic density protein-95 (PSD-95). Genetic ablation of PSD-95 reduced ROS production by activated murine neutrophils. Pharmacological blockade of the NMDAR GluN2B subunit reduced primary human neutrophil activation induced by Pseudomonas fluorescens, a glutamate-secreting Gram-negative bacillus closely related to pathogens that cause hospital-acquired infections. Interpretation These data suggest that release of glutamate by activated neutrophils augments ROS production in an autocrine manner via actions on NMDAR expressed by these cells. Fund GLA: Academy Medical Sciences/Health Foundation Clinician Scientist. AVG is a Wellcome Trust Senior Research Fellow. Neutrophil depletion improves neurologic outcome after injury and infection. Pharmacologic NMDAR blockade reduces rapid autocrine release of glutamate/d-serine from activated neutrophils. Genetic ablation/small-molecule inhibition of PSD-95 reduces neutrophil ROS. NMDAR blockade reduces human neutrophil activated by glutamate-secreting bacteria. Activated neutrophils may exacerbate neuronal injury in various forms of critical illness through the release of glutamate.
Collapse
Affiliation(s)
- Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Jenifer Sanchez
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Egor Turovsky
- Institute of Cell Biophysics, Federal Research Center, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Russia
| | - Vitaly Kasymov
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - David Cain
- Clinical Physiology, Department of Medicine, University College London, United Kingdom
| | - Tom D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Simon Lambden
- Clinical Physiology, Department of Medicine, University College London, United Kingdom
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Motaghi E, Hajhashemi V, Mahzouni P, Minaiyan M. Protective Effect of Dizocilpine (MK-801) On TNBS-Induced Experimental Colitis in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1341-1850. [PMID: 32641944 PMCID: PMC6934960 DOI: 10.22037/ijpr.2019.1100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ulcerative colitis is chronic and recurrent disease of the gastrointestinal tract with uncertain etiology and incomplete treatment options. N-methyl-d-aspartate (NMDA) receptor suppression has shown anti-inflammatory effects in-vitro and in-vivo. The aim of present study was to evaluate the role of dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist, on TNBS (trinitrobenzene sulfonic acid)-induced murine model of colitis. Dizocilpine (0.1, 1 and 5 mg/kg) was given to mice intraperitoneally from 24 h before induction of colitis and daily thereafter for 4 days. Dexamethasone (1 mg/kg) was used as the reference drug. Colitis was induced by intracolonic administration of TNBS/Ethanol (50/50 v/v, 40mg/kg). Animals were sacrificed 5 days after colitis induction and distal colons were examined macroscopically and microscopically. The colonic tissue level of pro-inflammatory cytokines including interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed by ELISA. Myeloperoxidase (MPO) level was also measured in colon. Dizocilpine, particularly with intermediate dose of 1mg/kg significantly improved animal's weight loss as well as macroscopic and microscopic signs of colitis, reduced colonic levels of IL-1β, IL-6, TNF-α and MPO activity. Hence, dizocilpine has significant protective effects in TNBS-induced colitis and NMDA suppression may be a new and effective therapeutic strategy in ulcerative colitis via decreasing in pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Ehsan Motaghi
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Valiollah Hajhashemi
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Parvin Mahzouni
- Department of Clinical Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohsen Minaiyan
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Eldufani J, Nekoui A, Blaise G. Nonanesthetic Effects of Ketamine: A Review Article. Am J Med 2018; 131:1418-1424. [PMID: 29753795 DOI: 10.1016/j.amjmed.2018.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Ketamine is considered a dissociative anesthetic medication, and it is commonly administered by a parenteral route. It works mainly by blocking the N-methyl-D-aspartate receptor. It inhibits the voltage-gated Na and K channels and serotonin and dopamine reuptake; also, it affects specific receptors, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and aminobutyric acid A receptors. Ketamine appears to have particular mechanisms that are potentially involved during analgesic induction, including enhancing of descending inhibition and antiinflammatory effects. More recently, it has been shown that ketamine has potential in clinical practice for the management of chronic pain, cognitive function, depression, acute brain injury, and disorders of the immune system.
Collapse
Affiliation(s)
- Jabril Eldufani
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | - Alireza Nekoui
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gilbert Blaise
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Department of Anesthesiology and Pain Management, Centre Hospitalier de l'université de Montréal (CHUM), Montreal, Quebec, Canada
| |
Collapse
|
7
|
Steiner AA, Flatow EA, Brito CF, Fonseca MT, Komegae EN. Respiratory gas exchange as a new aid to monitor acidosis in endotoxemic rats: relationship to metabolic fuel substrates and thermometabolic responses. Physiol Rep 2017; 5:5/1/e13100. [PMID: 28082427 PMCID: PMC5256159 DOI: 10.14814/phy2.13100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 11/26/2022] Open
Abstract
This study introduces the respiratory exchange ratio (RER; the ratio of whole‐body CO2 production to O2 consumption) as an aid to monitor metabolic acidosis during the early phase of endotoxic shock in unanesthetized, freely moving rats. Two serotypes of lipopolysaccharide (lipopolysaccharide [LPS] O55:B5 and O127:B8) were tested at shock‐inducing doses (0.5–2 mg/kg). Phasic rises in RER were observed consistently across LPS serotypes and doses. The RER rise often exceeded the ceiling of the quotient for oxidative metabolism, and was mirrored by depletion of arterial bicarbonate and decreases in pH. It occurred independently of ventilatory adjustments. These data indicate that the rise in RER results from a nonmetabolic CO2 load produced via an acid‐induced equilibrium shift in the bicarbonate buffer. Having validated this new experimental aid, we asked whether acidosis was interconnected with the metabolic and thermal responses that accompany endotoxic shock in unanesthetized rats. Contrary to this hypothesis, however, acidosis persisted regardless of whether the ambient temperature favored or prevented downregulation of mitochondrial oxidation and regulated hypothermia. We then asked whether the substrate that fuels aerobic metabolism could be a relevant factor in LPS‐induced acidosis. Food deprivation was employed to divert metabolism away from glucose oxidation and toward fatty acid oxidation. Interestingly, this intervention attenuated the RER response to LPS by 58%, without suppressing other key aspects of systemic inflammation. We conclude that acid production in unanesthetized rats with endotoxic shock results from a phasic activation of glycolysis, which occurs independently of physiological changes in mitochondrial oxidation and body temperature.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth A Flatow
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila F Brito
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Monique T Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evilin N Komegae
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
The effect of memantine on trinitrobenzene sulfonic acid-induced ulcerative colitis in mice. Eur J Pharmacol 2016; 793:28-34. [DOI: 10.1016/j.ejphar.2016.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
|
9
|
do Vale EM, Xavier CC, Nogueira BG, Campos BC, de Aquino PEA, da Costa RO, Leal LKAM, de Vasconcelos SMM, Neves KRT, de Barros Viana GS. Antinociceptive and Anti-Inflammatory Effects of Ketamine and the Relationship to Its Antidepressant Action and GSK3 Inhibition. Basic Clin Pharmacol Toxicol 2016; 119:562-573. [PMID: 27390215 DOI: 10.1111/bcpt.12637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/30/2016] [Indexed: 12/20/2022]
Abstract
Ketamine (KET), a NMDA antagonist, exerts an antidepressant effect at subanaesthetic doses and possesses analgesic and anti-inflammatory activities. We evaluated the involvement of KET antinociceptive and anti-inflammatory effects with its antidepressant action. Male Swiss mice were subjected to formalin, carrageenan-induced paw oedema and forced swimming tests, for assessing antinociceptive, anti-inflammatory and antidepressant effects. The treatment groups were as follows: control, KET (2, 5 and 10 mg/kg), lithium (LI: 5 mg/kg) and KET2 + LI5 combination. Immunohistochemistry analyses (TNF-α, iNOS, COX-2 and GSK3) in oedematous paws were performed. KET5 and KET10 reduced licking times in neurogenic (22 and 38%) and inflammatory (67 and 78%) phases of the formalin test, respectively, as related to controls. While LI5 inhibited the second phase by 24%, the licking time was inhibited by 26 and 59% in the KET2 + LI5 group (first and second phases). Furthermore, oedema volumes were reduced by 37 and 45% in the KET5 and KET10 groups, respectively. Oedema reductions were 29% in the LI5 group and 48% in the KET2 + LI5 group. In the forced swimming test, there were 23, 38 and 53% decreases in the immobility time in KET2, KET5 and KET10 groups, respectively. While LI5 caused no significant effect, decreases of 52% were observed with KET2 + LI5. KET also decreased TNF-α, iNOS, COX-2 and GSK3 immunostainings in oedematous paws, effects intensified with KET2 + LI5. We showed that KET presents antinociceptive and anti-inflammatory effects associated with its antidepressant response. Furthermore, our results indicate the close involvement of GSK3 inhibition and blockade of inflammatory responses, in the antidepressant drug effect.
Collapse
Affiliation(s)
- Eduardo Mulato do Vale
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil
| | - Cecília Coelho Xavier
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil
| | - Brenda Gomes Nogueira
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil
| | - Bruna Caldas Campos
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil
| | | | | | | | | | | | - Glauce Socorro de Barros Viana
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil.,Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| |
Collapse
|
10
|
Meng C, Liu Z, Liu GL, Fu LS, Zhang M, Zhang Z, Xia HM, Zhang SH, Xu YN. Ketamine promotes inflammation through increasing TLR4 expression in RAW264.7 cells. ACTA ACUST UNITED AC 2015; 35:419-425. [DOI: 10.1007/s11596-015-1447-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/19/2015] [Indexed: 10/23/2022]
|
11
|
I n Vitro Anti-inflammatory and Immunomodulatory Effects of Ciprofloxacin or Azithromycin in Staphylococcus aureus-Stimulated Murine Macrophages are Beneficial in the Presence of Cytochalasin D. Inflammation 2014; 38:1050-69. [DOI: 10.1007/s10753-014-0070-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Differential Role of Rapamycin and Torin/KU63794 in Inflammatory Response of 264.7 RAW Macrophages Stimulated by CA-MRSA. Int J Inflam 2014; 2014:560790. [PMID: 24800098 PMCID: PMC3995311 DOI: 10.1155/2014/560790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Background. Rapamycin suppresses the RAW264.7 macrophage mediated inflammatory response but in lower doses induces it. In the present study, we tested the suppression of the inflammatory response in the presence of mTOR 1 and 2 inhibitors, Torin and KU63794.
Methods. RAW264.7 cells were stimulated for 18 hrs with 106 to 107 CFU/mL inocula of community-acquired- (CA-) MRSA isolate, USA400 strain MW2, in the presence of Vancomycin. Then, in sequential experiments, we added Torin, KU63794, and Rapamycin alone and in various combinations. Supernatants were collected and assayed for TNF, IL-1, IL-6, INF, and NO. Results. Rapamycin induces 10–20% of the inflammatory cascade at dose of 0.1 ng/mL and suppresses it by 60% at dose of 10 ng/mL. The induction is abolished in the presence of Torin KU63794. Torin and KU63794 are consistently suppressing cytokine production 50–60%. Conclusions. There is a differential response between Rapamycin (mTOR-1 inhibitor) and Torin KU63794 (mTOR 1 and 2 inhibitors). Torin and KU63794 exhibit a dose related suppression. Rapamycin exhibits a significant induction-suppression biphasic response. Knowledge of such response may allow manipulation of the septic inflammatory cascade for clinical advantages.
Collapse
|
13
|
Zhang X, Feng J, Zhu P, Zhao Z. Ketamine Inhibits Calcium Elevation and Hydroxyl Radical and Nitric Oxide Production in Lipopolysaccharide-Stimulated NR8383 Alveolar Macrophages. Inflammation 2013; 36:1094-100. [DOI: 10.1007/s10753-013-9642-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
Mice are commonly used as an experimental model to investigate the Equid herpesvirus 1 (EHV-1) infection. This model easily reproduces the disease, and the clinical signs are more or less similar to those observed in the horse, the natural host. During natural infection, the acute course of respiratory infection is mandatory for the development of adaptive immune response. Since interactions between EHV-1 and anesthetics are possible, the study investigated whether the early events of murine pulmonary immune response could be affected by different anesthetics. Therefore, mice were experimentally infected with a unique EHV-1 strain under the effects of ether, ketamine/xylazine, or isoflurane. Clinical signs and histopathological lesions in the lungs were described, and the cell death and proliferation rates of sham-inoculated or infected animals were quantified using immunohistochemistry. Clinical signs were more severe in animals anesthetized with ether. Qualitative differences in the recruited inflammatory cells were observed following application of anesthesia. The level of infection between the infected groups was not statistically significant. However, lungs from ketamine/xylazine-anesthetized animals showed the highest cell death rates, whereas those from isoflurane-anesthetized animals showed the highest proliferation rates. It has been emphasized that anesthetics alone or their interactions with EHV-1 modify the response against the infection. An appropriate selection of the anesthetic during experimental studies is relevant to minimize wrong conclusions.
Collapse
|
15
|
Rapamycin Augments the NMDA-Mediated TNF Suppression of MRSA-Stimulated RAW264.7 Murine Macrophages. Int J Inflam 2012; 2012:542727. [PMID: 23094196 PMCID: PMC3474976 DOI: 10.1155/2012/542727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/02/2012] [Indexed: 11/22/2022] Open
Abstract
Background. Methicillin-resistant Staphylococcus aureus (MRSA) can stimulate massive cytokine release. Ketamine suppresses tumor necrosis factor (TNF) secretion by MRSA-stimulated RAW264.7 macrophages, and the mechanism likely involves N-methyl-D-aspartic acid (NMDA) receptor antagonism. The downstream effects of NMDA-mediated TNF suppression, specifically the PI3K/Akt and mTOR modulation, have not been described. Methods. RAW264.7 cells were stimulated for 18 hrs with 105 to 107 CFU/mL inocula of either of two prototypical community-acquired- (CA-) MRSA isolates, USA300 strain LAC and USA400 strain MW2. Then we added the NMDA inhibitors ketamine or 2R-amino-5-phosphonopentanoate (AP5), NMDA substrate, LY294002, and rapamycin in various combinations. Results. NMDA inhibition suppressed TNF secretion by almost a third compared to the no-ketamine control. When NMDA substrate was added, the TNF secretion increased by 10%. Addition of LY294002 suppressed TNF production by macrophages by 20%. Rapamycin exhibited a concentration-dependent TNF induction-suppression response: induction at doses of 0.1 and 1 ng/mL and suppression at 10 and 100 ng/mL. Induction of TNF was abolished when LY294002 was added and the suppression became uniform. Ketamine-induced suppression of TNF secretion was intensified 10–15% when rapamycin was added, but not when LY294002 was added. Conclusion. These findings suggest that NMDA-induced TNF suppression can be augmented by concurrent mTOR inhibition.
Collapse
|