1
|
Hsu FT, Liu YC, Tsai CL, Yueh PF, Chang CH, Lan KL. Preclinical Evaluation of Recombinant Human IL15 Protein Fused with Albumin Binding Domain on Anti-PD-L1 Immunotherapy Efficiency and Anti-Tumor Immunity in Colon Cancer and Melanoma. Cancers (Basel) 2021; 13:cancers13081789. [PMID: 33918641 PMCID: PMC8070266 DOI: 10.3390/cancers13081789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this manuscript, we reported that a newly developed recombinant human IL15 fused with albumin binding domain (hIL15-ABD) showed superior biological half-life, pharmacokinetic and anti-tumor immunity than wild-type (WT) hIL15. Our hIL-15-ABD can effectively enhance anti-tumor efficacy of anti-PD-L1 on colon cancer and melanoma animal models. The anti-tumor potential of hIL-15-ABD was associated with tumor microenvironment (TME) regulation, including the activation of NK cells and CD8+ T cells, the reduction of immunosuppressive cells (MDSCs and Tregs) and the suppression of immunosuppressive factors (IDO, FOXP3 and VEGF). In conclusion, our new hIL15-ABD combined with anti-PD-L1 antibody increased the activity of anti-tumor effector cells involved in both innate and adaptive immunities, decreased the TME’s immunosuppressive cells, and showed greater anti-tumor effect than that of either monotherapy. We suggested hIL15-ABD as the potential complementary agent may effectively augment the therapeutic efficacy of anti-PD-L1 antibody in colon cancer and melanoma model. Abstract Anti-PD-L1 antibody monotherapy shows limited efficacy in a significant proportion of the patients. A common explanation for the inefficacy is a lack of anti-tumor effector cells in the tumor microenvironment (TME). Recombinant human interleukin-15 (hIL15), a potent immune stimulant, has been investigated in clinical trial with encouraging results. However, hIL15 is constrained by the short half-life of hIL15 and a relatively unfavorable pharmacokinetics profile. We developed a recombinant fusion IL15 protein composed of human IL15 (hIL15) and albumin binding domain (hIL15-ABD) and explored the therapeutic efficacy and immune regulation of hIL-15, hIL15-ABD and/or combination with anti-PD-L1 on CT26 murine colon cancer (CC) and B16-F10 murine melanoma models. We demonstrated that hIL15-ABD has significant inhibitory effect on the CT26 and B16-F10 tumor growths as compared to hIL-15. hIL-15-ABD not only showed superior half-life and pharmacokinetics data than hIL-15, but also enhance anti-tumor efficacy of antibody against PD-L1 via suppressive effect on accumulation of Tregs and MDSCs and activation of NK and CD8+T cells. Immune suppressive factors including VEGF and IDO were also decreased by combination treatment. hIL15-ABD combined with anti-PD-L1 antibody increased the activity of anti-tumor effector cells involved in both innate and adaptive immunities, decreased the TME’s immunosuppressive cells, and showed greater anti-tumor effect than that of either monotherapy.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan; (F.-T.H.); (P.-F.Y.)
| | - Yu-Chang Liu
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan;
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Chang-Liang Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-L.T.); (C.-H.C.)
| | - Po-Fu Yueh
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan; (F.-T.H.); (P.-F.Y.)
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-L.T.); (C.-H.C.)
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 325, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence: or ; Tel.: +886-2-2826-7000 (ext. 7121)
| |
Collapse
|
2
|
Bai X, Wang N, Zhou J, Cui M, Jing X, Liu N. DX5 + NKT cells' increase was correlated with liver damage in FVB mice not in BALB/c mice infected by Clonorchis sinensis. Parasite Immunol 2020; 43:e12796. [PMID: 32984976 DOI: 10.1111/pim.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
AIMS DX5+ NKT cells' distribution and population change in BALB/c and FVB mice infected by C sinensis and their function in liver damage were investigated. METHODS AND RESULTS Mice were infected by Clonorchis sinensis metacercariae, and lymphocytes were isolated from the livers, spleens and peripheral blood. NK, DX5+ NKT, INF-γ+ DX5+ NKT cells and liver fibrosis were analysed. The DX5+ NKT cells displayed the largest amount in normal BALB/c mice liver followed by peripheral blood and spleen. Although the hepatic DX5+ NKT cells of BALB/c mice were more than that of FVB mice, they did not show significant percentage change after C sinensis infection. The hepatic DX5+ NKT cells of FVB mice increased remarkably after infection accompanied with heavier liver injury and fibrosis than the BALB/c mice. And hydroxyproline content was also positively correlated with DX5+ NKT cells only in FVB mice. However, the increase of IFN-γ producing DX5+ NKT cells was lower in FVB mice than in BALB/c mice which showed sharp increase with mild liver damage after infection. The frequencies of anti-fibrotic NK cells were similar in both of the two mouse strains. CONCLUSIONS C sinensis could induce different DX5+ NKT cells responses in different mouse strains which may play roles in liver injury and fibrosis in FVB mice.
Collapse
Affiliation(s)
- Xuelian Bai
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Nan Wang
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Jie Zhou
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Min Cui
- Department of Pediatrics, Binzhou City People's Hospital, Binzhou, China
| | - Xuening Jing
- Department of Immunology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Naiguo Liu
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
3
|
Zhou Z, Pan C, Wang N, Zhou L, Shan H, Gao Y, Yu X. A high-fat diet aggravates osteonecrosis through a macrophage-derived IL-6 pathway. Int Immunol 2020; 31:263-273. [PMID: 30779845 DOI: 10.1093/intimm/dxz002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/11/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation plays an important role in osteonecrosis. Obesity, a risk factor for osteonecrosis, leads to a chronic inflammatory status. We hypothesized that inflammation mediated the effects of obesity on osteonecrosis and tested our hypothesis in a mouse model of osteonecrosis. We fed mice with a high-fat diet (HFD) for 12 weeks before osteonecrosis induction by methylprednisolone and examined bone structure and IL-6 expression. Then we investigated the effects of IL-6 deletion in mice with osteonecrosis on the HFD. Next, we isolated bone marrow cells and determined the cell types responsible for HFD-induced IL-6 secretion. Finally, we investigated the roles of macrophages and macrophage-driven IL-6 in HFD-mediated effects on osteonecrosis and osteogenesis of bone marrow stromal cells (BMSCs). The HFD lead to exacerbated destruction of the femoral head in mice with osteonecrosis and increased IL-6 expression in macrophages. Il-6 knockout or macrophage depletion suppressed the effects of the HFD on bone damage. When co-cultured with macrophages isolated from HFD-fed mice with osteonecrosis, BMSCs showed reduced viability and suppressed osteogenic differentiation. Our results suggest that macrophage-driven IL-6 bridges obesity and osteonecrosis and inhibition of IL-6 or depletion of macrophage may represent a therapeutic strategy for obesity-associated osteonecrosis.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo, Zhejiang, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Mačák Kubašková T, Mudroňová D, Velebný S, Hrčková G. The utilisation of human dialyzable leukocyte extract (IMMODIN) as adjuvant in albendazole therapy on mouse model of larval cestode infection: Immunomodulatory and hepatoprotective effects. Int Immunopharmacol 2018; 65:148-158. [PMID: 30316073 DOI: 10.1016/j.intimp.2018.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023]
Abstract
Metacestode (larval) stages of zoonotic cestodes of medical and veterinary importance cause chronic infections associated with immunosuppression. During mouse model of cestode infection induced by larvae of Mesocestoides (M.) vogae, we investigated the effects of dialyzable leukocyte extract (DLE) containing low-molecular weight substances (under 10 kDa) prepared from peripheral blood leukocytes of healthy human donors (available under commercial name IMMODIN). In the experiment, the effects of DLE as adjuvant to anthelmintic albendazole (ABZ) as well ABZ mono-therapy were also investigated. We showed that DLE enhanced therapeutic effect of ABZ by significant reduction of parasites number in both biased sites. Furthermore, administration of DLE reduced fibrosis and concentrations of lipid peroxides in the liver and thereby showed cytoprotective effect. In contrast, higher hydroxyproline level and numbers of larvae enclosed in fibrous capsules were found in ABZ-treated group. In order to investigate whether DLE could affect parasite-induced immunosuppression, we evaluated selected immune parameters. The results showed that DLE administration to mice increased proliferation of concanavalin A stimulated splenic cells ex vivo. Similarly, in vitro study confirmed that DLE ameliorated hypo-responsiveness of T lymphocytes and partially reverted suppressive effect of parasites excretory-secretory products. In addition, flow cytometric analysis revealed higher numbers of T helper and NK cells in the spleen and peritoneal cavity of infected mice after DLE + ABZ therapy. We also found strongly reduced serum levels of TGF-β1 and IL-17 as well as modulation of cytokines associated with Th1/Th2 immunity. These results suggest that IMMODIN could serve as a suitable adjuvant to the primary anthelmintic therapy.
Collapse
Affiliation(s)
- Terézia Mačák Kubašková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Dagmar Mudroňová
- The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovak Republic
| | - Samuel Velebný
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Gabriela Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic; IMUNA PHARM, a.s., Jarková 269/17, Šarišské Michaľany, Slovak Republic.
| |
Collapse
|
5
|
Murine DX5 +NKT Cells Display Their Cytotoxic and Proapoptotic Potentials against Colitis-Inducing CD4 +CD62L high T Cells through Fas Ligand. J Immunol Res 2018; 2018:8175810. [PMID: 30364054 PMCID: PMC6186349 DOI: 10.1155/2018/8175810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction It has been previously shown that immunoregulatory DX5+NKT cells are able to prevent colitis induced by CD4+CD62Lhigh T lymphocytes in a SCID mouse model. The aim of this study was to further investigate the underlying mechanism in vitro. Methods CD4+CD62Lhigh and DX5+NKT cells from the spleen of Balb/c mice were isolated first by MACS, followed by FACS sorting and cocultured for up to 96 h. After polyclonal stimulation with anti-CD3, anti-CD28, and IL-2, proliferation of CD4+CD62Lhigh cells was assessed using a CFSE assay and activity of proapoptotic caspase-3 was determined by intracellular staining and flow cytometry. Extrinsic apoptotic pathway was blocked using an unconjugated antibody against FasL, and activation of caspase-3 was measured. Results As previously shown in vivo, DX5+NKT cells inhibit proliferation of CD4+CD62Lhigh cells in vitro after 96 h coculture compared to a CD4+CD62Lhigh monoculture (proliferation index: 1.39 ± 0.07 vs. 1.76 ± 0.12; P = 0.0079). The antiproliferative effect of DX5+NKT cells was likely due to an induction of apoptosis in CD4+CD62Lhigh cells as evidenced by increased activation of the proapoptotic caspase-3 after 48 h (38 ± 3% vs. 28 ± 3%; P = 0.0451). Furthermore, DX5+NKT cells after polyclonal stimulation showed an upregulation of FasL on their cell surface (15 ± 2% vs. 2 ± 1%; P = 0.0286). Finally, FasL was blocked on DX5+NKT cells, and therefore, the extrinsic apoptotic pathway abrogated the activation of caspase-3 in CD4+CD62Lhigh cells. Conclusion Collectively, these data confirmed that DX5+NKT cells inhibit proliferation of colitis-inducing CD4+CD62Lhigh cells by induction of apoptosis. Furthermore, DX5+NKT cells likely mediate their cytotoxic and proapoptotic potentials via FasL, confirming recent reports about iNKT cells. Further studies will be necessary to evaluate the therapeutical potential of these immunoregulatory cells in patients with colitis.
Collapse
|
6
|
Kumar A, Bezbradica JS, Stanic AK, Joyce S. Characterization and Functional Analysis of Mouse Semi-invariant Natural T Cells. ACTA ACUST UNITED AC 2017; 117:14.13.1-14.13.55. [PMID: 28369682 DOI: 10.1002/cpim.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Semi-invariant natural killer T (iNKT) cells are CD1d-restricted innate-like lymphocytes that recognize lipid agonists. Activated iNKT cells have immunoregulatory properties. Human and mouse iNKT cell functions elicited by different glycolipid agonists are highly conserved, making the mouse an excellent animal model for understanding iNKT cell biology in vivo. This unit describes basic methods for the characterization and quantification (see Basic Protocol 1) and functional analysis of mouse iNKT cells in vivo or in vitro. This unit also contains protocols that describe enrichment and purification of iNKT cells, generation of CD1d tetramer, and lipid antigen loading onto cell-bound and soluble CD1d for activation of NKT cell hybridomas. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Sebastian Joyce
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Long X, Xie J, Zhao K, Li W, Tang W, Chen S, Zang N, Ren L, Deng Y, Xie X, Wang L, Fu Z, Liu E. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice. Med Microbiol Immunol 2016; 205:459-70. [PMID: 27329138 DOI: 10.1007/s00430-016-0459-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/24/2016] [Indexed: 01/18/2023]
Abstract
RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.
Collapse
Affiliation(s)
- Xiaoru Long
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Jun Xie
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Keting Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Wei Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Wei Tang
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Sisi Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Luo Ren
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Lijia Wang
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
8
|
Cardillo F, de Pinho RT, Antas PRZ, Mengel J. Immunity and immune modulation in Trypanosoma cruzi infection. Pathog Dis 2015; 73:ftv082. [PMID: 26438729 DOI: 10.1093/femspd/ftv082] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi. The parasite reaches the secondary lymphoid organs, the heart, skeletal muscles, neurons in the intestine and esophagus among other tissues. The disease is characterized by mega syndromes, which may affect the esophagus, the colon and the heart, in about 30% of infected people. The clinical manifestations associated with T. cruzi infection during the chronic phase of the disease are dependent on complex interactions between the parasite and the host tissues, particularly the lymphoid system that may either result in a balanced relationship with no disease or in an unbalanced relationship that follows an inflammatory response to parasite antigens and associated tissues in some of the host organs and/or by an autoimmune response to host antigens. This review discusses the findings that support the notion of an integrated immune response, considering the innate and adaptive arms of the immune system in the control of parasite numbers and also the mechanisms proposed to regulate the immune response in order to tolerate the remaining parasite load, during the chronic phase of infection. This knowledge is fundamental to the understanding of the disease progression and is essential for the development of novel therapies and vaccine strategies.
Collapse
Affiliation(s)
- Fabíola Cardillo
- Oswaldo Cruz Foundation, Bahia, Rua Waldemar Falcão 121, Salvador 40295-001, Brazil
| | - Rosa Teixeira de Pinho
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - José Mengel
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil Faculty of Medicine of Petropolis, FMP-FASE, 25680-120, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Xie H, Chen D, Li L, Yu X, Wu C, Gu H, Tang X, Peng A, Huang J. Immune response of γδT cells in Schistosome japonicum-infected C57BL/6 mouse liver. Parasite Immunol 2015; 36:658-67. [PMID: 25130072 DOI: 10.1111/pim.12135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Abstract
Systematic evaluation of the role of γδT cells during the Schistosoma japonicum infection has not been reported, despite the fact that γδT cells contribute to many infectious diseases in innate immunity. Therefore, the aim of this study was to observe the properties of γδT cells in the liver of C57BL/6 mice infected by S. japonicum. In this report, using immuno-fluorescent histological analysis, γδT cells were found around hepatic granulomatous. Moreover, the flow cytometry results revealed that the percentage of hepatic γδT cells increased significantly after S. japonicum infection. More interestingly, a subset of CD3(-)γδTCR(+) cells were found and markedly increased after infection. Furthermore, expression of activation markers (CD25 and CD69) and cytokine profiles were detected in these hepatic CD3(+)γδTCR(+) and CD3(-)γδTCR(+) cells. The significantly higher level of CD69, IL-4 and IL-17 were observed in CD3(+)γδTCR(+) cells after infection, suggesting that CD3(+)γδTCR(+) cells instead of CD3(-)γδTCR(+) cells might play a predominant role during the infection. Finally, our results indicated that the expression of NKG2D on CD3(+)γδTCR(+) cells was higher than that on CD3(-)γδTCR(+) cells. Collectively, γδT cells could play an important role in the liver of C57BL/6 mouse during japonicum infection.
Collapse
Affiliation(s)
- H Xie
- Functional Experiment Centre, Guangzhou Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Adlercreutz EH, Weile C, Larsen J, Engkilde K, Agardh D, Buschard K, Antvorskov JC. A gluten-free diet lowers NKG2D and ligand expression in BALB/c and non-obese diabetic (NOD) mice. Clin Exp Immunol 2014; 177:391-403. [PMID: 24673402 PMCID: PMC4226590 DOI: 10.1111/cei.12340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
The interplay between diet and immune parameters which could affect type 1 diabetes (T1D) pathogenesis is not sufficiently clarified. Intestinal up-regulation of the activating receptor natural killer group 2D (NKG2D) (CD314) and its ligands is a hallmark of coeliac disease. However, the direct effect of gluten on NKG2D expression is not known. We studied, by fluorescence activated cell sorter (lymphoid tissues) and reverse transcription–quantitative polymerase chain reaction (intestine and pancreatic islets), if a gluten-free diet (GF diet) from 4 weeks of age or a gluten-free diet introduced in breeding pairs (SGF diet), induced changes in NKG2D expression on DX5+(CD49b) natural killer (NK) cells, CD8+ T cells and in intestinal and islet levels of NKG2D and ligands in BALB/c and non-obese diabetic (NOD) mice. Gluten-free NOD mice had lower insulitis (P < 0·0001); reduced expression of NKG2D on DX5+ NK cells in spleen and auricular lymph nodes (P < 0·05); and on CD8+ T cells in pancreas-associated lymph nodes (P = 0·04). Moreover, the level of CD71 on DX5+ NK cells and CD8+ T cells (P < 0·005) was markedly reduced. GF and SGF mice had reduced expression of NKG2D and DX5 mRNA in intestine (P < 0·05). Differences in intestinal mRNA expression were found in mice at 8, 13 and 20 weeks. Intestinal expression of NKG2D ligands was reduced in SGF mice with lower expression of all ligands. In isolated islets, a SGF diet induced a higher expression of specific NKG2D ligands. Our data show that a gluten-free diet reduces the level of NKG2D and the expression of NKG2D ligands. These immunological changes may contribute to the lower T1D incidence associated with a gluten-free diet.
Collapse
Affiliation(s)
- E H Adlercreutz
- Diabetes and Celiac Disease Unit, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Valle-Rios R, Maravillas-Montero JL, Burkhardt AM, Martinez C, Buhren BA, Homey B, Gerber PA, Robinson O, Hevezi P, Zlotnik A. Isthmin 1 is a secreted protein expressed in skin, mucosal tissues, and NK, NKT, and th17 cells. J Interferon Cytokine Res 2014; 34:795-801. [PMID: 24956034 DOI: 10.1089/jir.2013.0137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using a comprehensive microarray database of human gene expression, we identified that in mammals, a secreted protein known as isthmin 1 (ISM1) is expressed in skin, mucosal tissues, and selected lymphocyte populations. ISM1 was originally identified in Xenopus brain during development, and it encodes a predicted ∼50-kDa protein containing a signal peptide, a thrombospondin domain, and an adhesion-associated domain. We confirmed the pattern of expression of ISM1 in both human and mouse tissues. ISM1 is expressed by DX5(+) lung lymphocytes that include NK and NKT-like cells, and is also expressed by some CD4(+) T cells upon activation but its expression increases significantly when CD4(+) T cells were polarized to the Th17 lineage in vitro. The presence of IFN-γ during CD4(+) T cell polarization inhibits ISM1 expression. Given that ISM1 has been reported to have anti-angiogenic properties, these observations suggest that ISM1 is a mediator of lymphocyte effector functions and may participate in both innate and acquired immune responses.
Collapse
Affiliation(s)
- Ricardo Valle-Rios
- 1 Department of Physiology and Biophysics, School of Medicine, University of California , Irvine, Irvine, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Martin-Murphy BV, You Q, Wang H, De La Houssaye BA, Reilly TP, Friedman JE, Ju C. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding. PLoS One 2014; 9:e80949. [PMID: 24465369 PMCID: PMC3896335 DOI: 10.1371/journal.pone.0080949] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022] Open
Abstract
Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD). Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT) cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d−/− mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD) feeding. Compared with their WT counterparts, CD1d−/− mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d−/− mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.
Collapse
Affiliation(s)
- Brittany V. Martin-Murphy
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Hong Wang
- Division of Endocrinology, Diabetes & Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Becky A. De La Houssaye
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Timothy P. Reilly
- Drug Safety Evaluation, Research & Development, Bristol-Myers Squibb Company, Princeton, New Jersey, United States of America
| | - Jacob E. Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
13
|
Luo X, Xie H, Chen D, Yu X, Wu F, Li L, Wu C, Huang J. Changes in NK and NKT cells in mesenteric lymph nodes after a Schistosoma japonicum infection. Parasitol Res 2013; 113:1001-9. [PMID: 24322293 DOI: 10.1007/s00436-013-3732-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022]
Abstract
The mesenteric lymph node (MLN) is the main draining lymph node in mouse enterocoelia, which contains many types of immune cells. Among these cells, natural killer (NK) and natural killer T (NKT) cells belong to innate lymphoid cells (ILCs), which have potent activities for controlling a variety of pathogenic infections. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-7 weeks. Lymphocytes were isolated from the MLN to detect changes in the phenotype and function of NK and NKT cells using a fluorescence activating cell sorter (FACS). These results demonstrated that a S. japonicum infection could significantly increase the percentage of NK cells in the mouse MLN, (P < 0.05). We found an increase in the cell number of both NK and NKT cells. In addition, we found that NK and NKT cells from infected mice expressed higher levels of CD69 compared to normal mice (P < 0.05). These results demonstrated that a S. japonicum infection could induce MLN NK and NKT cell activation. Moreover, we found that the expression of CD4 was increased in infected MLN NK cells (P < 0.05). Furthermore, intracellular cytokine staining revealed that expression of IL-4 and IL-17 were significantly enhanced in both the NK and NKT cells of infected mice after phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation (P < 0.05). Taken together, these results indicated that infection-induced MLN NK and NKT cells might play roles in modulating the classical T cell response. Finally, our results indicated that the expression of CD94 was decreased in NK cells, suggesting that the downregulation of CD94 expression might served as a mechanism in NK cell activation.
Collapse
Affiliation(s)
- Xueping Luo
- Department of Pathogenic Biology and Immunology, Guangzhou Medical University, 510182, Guangzhou, China,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology 2013; 139:523-32. [PMID: 23551262 DOI: 10.1111/imm.12105] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022] Open
Abstract
Schistosomiasis japonica is a severe tropical disease caused by the parasitic worm Schistosoma japonicum. Among the most serious pathological effects of S. japonicum infection are hepatic lesions (cirrhosis and fibrosis) and portal hypertension. Interleukin-17 (IL-17) is a pro-inflammatory cytokine involved in the pathogenesis of many inflammatory and infectious conditions, including schistosomiasis. We infected C57BL/6 mice with S. japonicum and isolated lymphocytes from the liver to identify cell subsets with high IL-17 expression and release using flow cytometry and ELISA. Expression and release of IL-17 was significantly higher in hepatic lymphocytes from infected mice compared with control mice in response to both non-specific stimulation with anti-CD3 monoclonal antibody plus/anti-CD28 monoclonal antibody and PMA plus ionomycin. We then compared IL-17 expression in three hepatic T-cell subsets, T helper, natural killer T and γδT cells, to determine the major source of IL-17 during infection. Interleukin-17 was induced in all three subsets by PMA + ionomycin, but γδT lymphocytes exhibited the largest increase in expression. We then established a mouse model to further investigate the role of IL-17 in granulomatous and fibrosing inflammation against parasite eggs. Reducing IL-17 activity using anti-IL-17A antibodies decreased infiltration of inflammatory cells and collagen deposition in the livers of infected C57BL/6 mice. The serum levels of soluble egg antigen (IL)-specific IgGs were enhanced by anti-IL-17A monoclonal antibody blockade, suggesting that IL-17 normally serves to suppress this humoral response. These findings suggest that γδT cells are the most IL-17-producing cells and that IL-17 contributes to granulomatous inflammatory and fibrosing reactions in S. japonicum-infected C57BL/6 mouse liver.
Collapse
Affiliation(s)
- Dianhui Chen
- Department of Pathogenic Biology and Immunology, Guangzhou Medical College, Guangzhou, China
| | | | | | | | | | | |
Collapse
|