1
|
Peton B, Taniguchi M, Mangiola M, Al Malki MM, Gendzekhadze K. Specificity of HLA monoclonal antibodies and their use to determine HLA expression on lymphocytes and peripheral blood stem cells. HLA 2024; 103:e15192. [PMID: 37596840 DOI: 10.1111/tan.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
HLA Class I and II expression are known to differ locus-to-locus, however, HLA expression on the cell-surface is frequently reported as the total amount of HLA Class I or II antigens. This is despite evidence that indicates the differential expression of HLA can influence patient outcomes post-transplantation. Although numerous commercially available HLA monoclonal antibodies (mAbs) exist to characterize HLA expression, there is currently a lack of detailed information regarding their reactivities to HLA specificities. The specificities of locus-specific HLA mAbs (nine Class I and four Class II mAbs) were evaluated by two solid-phase Luminex single antigen bead assays. The reactivity patterns of these mAbs were then confirmed by flow cytometry using lymphocytes and PBSCs (peripheral blood stem cells). Out of the 13 HLA mAbs tested, only four (one Class I and three Class II mAbs) displayed intra-locus reactivity without also reacting to inter-locus specificities. Epitope analysis revealed the presence of shared epitopes across numerous HLA loci, explaining much of the observed inter-locus reactivity. The specificity of the HLA mAbs seen in solid-phase assays was confirmed against PBSCs and lymphocytes by flow cytometry. Using this method, we observed differences in the cell surface expression of HLA-C, HLA-DR, HLA-DQ, and HLA-DP between PBSCs and lymphocytes. Our results emphasize the need to characterize the reactivity patterns of HLA mAbs using solid-phase assays before their use on cells. Through understanding the reactivity of these HLA mAbs, the cellular expression of HLA can be more accurately assessed in downstream assays.
Collapse
Affiliation(s)
- Benjamin Peton
- HLA Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Michiko Taniguchi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Massimo Mangiola
- Transplant Institute, NYU Langone Medical Center, New York, New York, USA
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Ketevan Gendzekhadze
- HLA Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
2
|
Rahman MA, Murata K, Burt BD, Hirano N. Changing the landscape of tumor immunology: novel tools to examine T cell specificity. Curr Opin Immunol 2020; 69:1-9. [PMID: 33307272 DOI: 10.1016/j.coi.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/10/2020] [Indexed: 01/14/2023]
Abstract
Immunotherapy has established itself as a stalwart arm in patient care and with precision medicine forms the new paradigm in cancer treatment. T cells are an important group of immune cells capable of potent cancer immune surveillance and immunity. The advent of bioinformatics, particularly more recent advances incorporating algorithms employing machine learning, provide a seemingly limitless ability for T cell analysis and hypothesis generation. Such endeavors have become indispensable to research efforts accelerating and evolving to such an extent that there exists an appreciable gap between knowledge and proof of function and application. Exciting new technologies such as DNA barcoding, cytometry by time-of-flight (CyTOF), and peptide-exchangeable pHLA multimers inclusive of rare and difficult HLA alleles offer high-throughput cell-by-cell analytical capabilities. These outstanding recent contributions to T cell research will help close this gap and potentially bring practical benefit to patients.
Collapse
Affiliation(s)
- Muhammed A Rahman
- University of Queensland, Australia; Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Canada
| | - Kenji Murata
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Pathology, Sapporo Medical University School of Medicine, Japan
| | - Brian D Burt
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Immunology, University of Toronto, Canada.
| |
Collapse
|
3
|
Osterbye T, Nielsen M, Dudek NL, Ramarathinam SH, Purcell AW, Schafer-Nielsen C, Buus S. HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions. THE JOURNAL OF IMMUNOLOGY 2020; 205:290-299. [PMID: 32482711 DOI: 10.4049/jimmunol.2000224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023]
Abstract
The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.
Collapse
Affiliation(s)
- Thomas Osterbye
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B1650 San Martín, Argentina
| | - Nadine L Dudek
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; and
| | - Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; and
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; and
| | | | - Soren Buus
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Serra P, Garabatos N, Singha S, Fandos C, Garnica J, Solé P, Parras D, Yamanouchi J, Blanco J, Tort M, Ortega M, Yang Y, Ellestad KK, Santamaria P. Increased yields and biological potency of knob-into-hole-based soluble MHC class II molecules. Nat Commun 2019; 10:4917. [PMID: 31664029 PMCID: PMC6820532 DOI: 10.1038/s41467-019-12902-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Assembly of soluble peptide-major histocompatibility complex class II (pMHCII) monomers into multimeric structures enables the detection of antigen-specific CD4+ T cells in biological samples and, in some configurations, their reprogramming in vivo. Unfortunately, current MHCII-αβ chain heterodimerization strategies are typically associated with low production yields and require the use of foreign affinity tags for purification, precluding therapeutic applications in humans. Here, we show that fusion of peptide-tethered or empty MHCII-αβ chains to the IgG1-Fc mutated to form knob-into-hole structures results in the assembly of highly stable pMHCII monomers. This design enables the expression and rapid purification of challenging pMHCII types at high yields without the need for leucine zippers and purification affinity tags. Importantly, this design increases the antigen-receptor signaling potency of multimerized derivatives useful for therapeutic applications and facilitates the detection and amplification of low-avidity T cell specificities in biological samples using flow cytometry.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain.
| | - Nahir Garabatos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Santiswarup Singha
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - César Fandos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Josep Garnica
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Daniel Parras
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Jun Yamanouchi
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Jesús Blanco
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
- Division of Endocrinology, Hospital Clinic i Provincial de Barcelona, Barcelona, Spain
| | - Meritxell Tort
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Mireia Ortega
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Kristofor K Ellestad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain.
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
5
|
Jurewicz MM, Willis RA, Ramachandiran V, Altman JD, Stern LJ. MHC-I peptide binding activity assessed by exchange after cleavage of peptide covalently linked to β2-microglobulin. Anal Biochem 2019; 584:113328. [PMID: 31201791 DOI: 10.1016/j.ab.2019.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
A common approach to measuring binding constants involves combining receptor and ligand and measuring the distribution of bound and free states after equilibration. For class I major histocompatibility (MHC-I) proteins, which bind short peptides for presentation to T cells, this approach is precluded by instability of peptide-free protein. Here we develop a method wherein a weakly-binding peptide covalently attached to the N-terminus of the MHC-I β2m subunit is released from the peptide binding site after proteolytic cleavage of the linker. The resultant protein is able to bind added peptide. A direct binding assay and method for estimation of peptide binding constant (Kd) are described, in which fluorescence polarization is used to follow peptide binding. A competition binding assay and method for estimation of inhibitor binding constant (Ki) using the same principle also are also described. The method uses a cubic equation to relate observed binding to probe concentration, probe Kd, inhibitor concentration, and inhibitor Ki under general reaction conditions without assumptions relating to relative binding affinities or concentrations. We also delineate advantages of this approach compared to the Cheng-Prusoff and Munson-Rodbard approaches for estimation of Ki using competition binding data.
Collapse
Affiliation(s)
- Mollie M Jurewicz
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Richard A Willis
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States
| | - Vasanthi Ramachandiran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States
| | - John D Altman
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States; Department of Microbiology and Immunology, Emory Vaccine Center at Yerkes, Emory University School of Medicine, Atlanta, GA, 30329, United States
| | - Lawrence J Stern
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
6
|
Laubreton D, Bay S, Sedlik C, Artaud C, Ganneau C, Dériaud E, Viel S, Puaux AL, Amigorena S, Gérard C, Lo-Man R, Leclerc C. The fully synthetic MAG-Tn3 therapeutic vaccine containing the tetanus toxoid-derived TT830-844 universal epitope provides anti-tumor immunity. Cancer Immunol Immunother 2016; 65:315-25. [PMID: 26847142 PMCID: PMC4779142 DOI: 10.1007/s00262-016-1802-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
Malignant transformations are often associated with aberrant glycosylation processes that lead to the expression of new carbohydrate antigens at the surface of tumor cells. Of these carbohydrate antigens, the Tn antigen is particularly highly expressed in many carcinomas, especially in breast carcinoma. We designed MAG-Tn3, a fully synthetic vaccine based on three consecutive Tn moieties that are O-linked to a CD4+ T cell epitope, to induce anti-Tn antibody responses that could be helpful for therapeutic vaccination against cancer. To ensure broad coverage within the human population, the tetanus toxoid-derived peptide TT830-844 was selected as a T-helper epitope because it can bind to various HLA-DRB molecules. We showed that the MAG-Tn3 vaccine, which was formulated with the GSK proprietary immunostimulant AS15 and designed for human cancer therapy, is able to induce an anti-Tn antibody response in mice of various H-2 haplotypes, and this response correlates with the ability to induce a specific T cell response against the TT830-844 peptide. The universality of the TT830-844 peptide was extended to new H-2 and HLA-DRB molecules that were capable of binding this T cell epitope. Finally, the MAG-Tn3 vaccine was able to induce anti-Tn antibody responses in cynomolgus monkeys, which targeted Tn-expressing tumor cells and mediated tumor cell death both in vitro and in vivo. Thus, MAG-Tn3 is a highly promising anticancer vaccine that is currently under evaluation in a phase I clinical trial.
Collapse
Affiliation(s)
- Daphné Laubreton
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1041, Paris, France
| | - Sylvie Bay
- Unité de Chimie des Biomolécules, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3523, Paris, France
| | - Christine Sedlik
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Cécile Artaud
- Pôle Intégré de Recherche Clinique, Institut Pasteur, Paris, France
| | - Christelle Ganneau
- Unité de Chimie des Biomolécules, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3523, Paris, France
| | - Edith Dériaud
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1041, Paris, France
| | - Sophie Viel
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | | | - Sebastian Amigorena
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | | | - Richard Lo-Man
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1041, Paris, France
| | - Claude Leclerc
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale U1041, Paris, France.
| |
Collapse
|
7
|
Generating a transgenic mouse line stably expressing human MHC surface antigen from a HAC carrying multiple genomic BACs. Chromosoma 2014; 124:107-18. [PMID: 25308419 PMCID: PMC4339693 DOI: 10.1007/s00412-014-0488-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 01/30/2023]
Abstract
The human artificial chromosome (HAC) vector is a promising tool to improve the problematic suppression and position effects of transgene expression frequently seen in transgenic cells and animals produced by conventional plasmid or viral vectors. We generated transgenic mice maintaining a single HAC vector carrying two genomic bacterial artificial chromosomes (BACs) from human HLA-DR loci (DRA and DRB1). Both transgenes on the HAC in transgenic mice exhibited tissue-specific expression in kidney, liver, lung, spleen, lymph node, bone marrow, and thymus cells in RT-PCR analysis. Stable functional expression of a cell surface HLA-DR marker from both transgenes, DRA and DRB1 on the HAC, was detected by flow cytometric analysis of splenocytes and maintained through at least eight filial generations. These results indicate that the de novo HAC system can allow us to manipulate multiple BAC transgenes with coordinated expression as a surface antigen through the generation of transgenic animals.
Collapse
|
8
|
Zhang YL, Jia K, Zhao BP, Li Y, Yuan CX, Yang JM, Lin JJ, Feng XG. Identification of Th1 epitopes within molecules from the lung-stage schistosomulum of Schistosoma japonicum by combining prediction analysis of the transcriptome with experimental validation. Parasitol Int 2012; 61:586-93. [PMID: 22617496 DOI: 10.1016/j.parint.2012.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 05/04/2012] [Accepted: 05/14/2012] [Indexed: 01/01/2023]
Abstract
The lung-stage schistosomulum has been regarded as the main target of protective immunity induced by radiation-attenuated vaccines (RAV) in the mouse model of schistosomiasis, and immune mechanisms mediated by the CD4+ Th1 response play a major role in the RAV model. To identify Th1 epitopes rapidly within molecules from the lung schistosomulum of Schistosoma japonicum, in the present study we analyzed transcriptome data from normal and radiation-attenuated lung schistosomula of S. japonicum and Schistosoma mansoni. We selected six genes with high levels of expression of their transcripts as sample sequences from the lung schistosomula. From these six sequences, by using different algorithms, we predicted six promiscuous Th cell epitopes that are capable of binding to both murine and human MHC class II molecules. To validate our in silico prediction experimentally, first, the gene expressions of the six sequences in day 3 lung-stage schistosomula were assessed using reverse-transcription PCR (polymerase chain reaction) analysis. The result showed that all six sequences predicted can be expressed in normal day 3 schistosomula. Second, we measured the direct binding of the four peptides predicted above to APCs (Antigen Presenting Cells) from the BALB/c mouse strain using a fluorometric method, and found that the four peptides could bind to both I-Ad and I-Ed molecules of the mice. Finally, the proliferation and profiles of cytokine production by spleen lymphocytes from the BALB/c mice immunized with the six predicted peptides were detected in vitro using modified MTT (Methyl Thiazolyl Tetrazolium), and flow cytometry methods, respectively. The results showed that three of the six predicted peptides could induce a recall CD4+ Th1 response in vitro. These results demonstrate that potential Th1-type epitopes can be identified rapidly by a combination of in silico analysis of transcriptomes of lung-stage schistosomula with experimental validation.
Collapse
Affiliation(s)
- Yan Li Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, 518 Zi'yue Road Shanghai 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Use of HLA-DR*08032/E7 and HLA-DR*0818/E7 tetramers in tracking of epitope-specific CD4+ T cells in active and convalescent tuberculosis patients compared with control donors. Immunobiology 2011; 216:947-60. [PMID: 21281984 DOI: 10.1016/j.imbio.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 01/02/2011] [Accepted: 01/04/2011] [Indexed: 11/22/2022]
Abstract
Comparative tracking of tetramer-positive and epitope-specific CD4(+) T cells in blood and other tissues from tuberculosis (TB) patients during TB development and treatment using control donor samples is not well characterized. In this study, a novel HLA-DR-restricted peptide E7 from the ESAT-6 protein of Mycobacterium tuberculosis (MTB) was used to prepare modified HLA-DR*08032/E7 tetramer (tetramer 1) and HLA-DR*0818/E7 tetramer (tetramer 2) to monitor a series of samples from TB patients and control donors. Tetramer staining showed that (1) by direct staining of single sample and flow cytometric analyses, detection of tetramer-positive CD4(+) T cells ranged from 0.1% to 8.8% (median 0.67% in tetramer 1 and 0.5% in tetramer 2), 0.1 to 10.7% (0.74% and 0.71%), 0.02 to 2.2% (0.25% and 0.25%), 0.02 to 0.48% (0.2% and 0.2%) and most at under 0-0.2% (0.2% and 0.16%) in the initial pulmonary TB (PTB) patients' blood, pleural fluid (PLF) of initial tuberculous pleuritis patients, non-TB patients' blood, healthy donors' blood and umbilical cord blood, respectively; significantly higher levels of CD4(+) T cells were detected in samples of TB patients than in three control donor groups; (2) by direct staining of time point TB samples and flow cytometric analyses, along with TB symptom amendment at day 60, tetramer-positive CD4(+) T cells began to decrease, until after 90-120 days, reached and kept at a relatively low even normal level about at 0.03-0.3%; (3) by enrichment approach, at least 10-fold increased memory tetramer-positive CD4(+) T cells were seen; (4) by in situ staining, tetramer-positive, IFN-γ-producing and/or TNF-α-producing CD4(+) T cells in the lymph node and lung granuloma and cavernous tissues of TB patients could be determined. Therefore, by further increasing the sample size tested to confirm the specificity and sensitivity of tetrameric molecules, it should be possible to develop them for use as research and diagnostic reagents.
Collapse
|
10
|
Sims S, Willberg C, Klenerman P. MHC-peptide tetramers for the analysis of antigen-specific T cells. Expert Rev Vaccines 2010; 9:765-74. [PMID: 20624049 DOI: 10.1586/erv.10.66] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of the fluorescently labeled tetrameric MHC-peptide complex has enabled the direct visualization, quantification and phenotypic characterization of antigen-specific T cells using flow cytometry and has transformed our understanding of cellular immune responses. The combination of this technology with functional assays provides many new insights into these cells, allowing investigation into their lifecycle, manner of death and effector function. In this article, we hope to provide an overview of the techniques used in the construction of these tetramers, the problems and solutions associated with them, and the methods used in the study of antigen-specific T cells. Understanding how the antigen-specific cells develop and function in different circumstances and with different pathogens will be key to understanding natural host defense, as well as vaccine design and assessment.
Collapse
Affiliation(s)
- Stuart Sims
- Nuffield Department of Medicine and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
11
|
Cecconi V, Moro M, Del Mare S, Sidney J, Bachi A, Longhi R, Sette A, Protti MP, Dellabona P, Casorati G. The CD4+ T-cell epitope-binding register is a critical parameter when generating functional HLA-DR tetramers with promiscuous peptides. Eur J Immunol 2010; 40:1603-16. [PMID: 20306469 DOI: 10.1002/eji.200940123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Detection of CD4(+) T cells specific for tumor-associated antigens is critical to investigate the spontaneous tumor immunosurveillance and to monitor immunotherapy protocols in patients. We investigated the ability of HLA-DR 1101 multimers to detect CD4(+) T cells specific for three highly promiscuous MAGE-A3 derived peptides: MAGE-A3(191-205) (p39), MAGE-A3(281-295) (p57) and MAGE-A3(286-300) (p58). Tetramers stained specific CD4(+) T cells only when loaded with p39, although all peptides activated the specific T cells when presented by plastic-bound HLA-DR 1101 monomers. This suggested that tetramer staining ability was determined by the mode rather than the affinity of peptide binding to HLA-DR 1101. We hypothesized that peptides should bear a single P1 anchor residue to bind all arms of the multimer in a homogeneous register to generate peptide-HLA-DR conformers with maximal avidity. Bioinformatics analysis indicated that p39 contained one putative P1 anchor residue, whereas the other two peptides contained multiple ones. Designing p57 and p58 analogues containing a single anchor residue generated HLA-DR 1101 tetramers that stained specific CD4(+) T cells. Producing HLA-DR 1101 monomers linked with the optimized MAGE-A3 analogues, but not with the original epitopes, further improved tetramer efficiency. Optimization of CD4(+) T-cell epitope-binding registers is thus critical to generate functional HLA-DR tetramers.
Collapse
Affiliation(s)
- Virginia Cecconi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Geiger R, Duhen T, Lanzavecchia A, Sallusto F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med 2009; 206:1525-34. [PMID: 19564353 PMCID: PMC2715094 DOI: 10.1084/jem.20090504] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/05/2009] [Indexed: 11/08/2022] Open
Abstract
The enormous diversity of the naive T cell repertoire is instrumental in generating an immune response to virtually any foreign antigen that can be processed into peptides that bind to MHC molecules. The low frequency of antigen-specific naive T cells, their high activation threshold, and the constrains of antigen-processing and presentation have hampered analysis of naive repertoires to complex protein antigens. In this study, libraries of polyclonally expanded naive T cells were used to determine frequency and antigen dose-response of human naive CD4(+) T cells specific for a variety of antigens and to isolate antigen-specific T cell clones. In the naive repertoire, T cells specific for primary antigens, such as KLH and Bacillus anthracis protective antigen, and for recall antigens, such as tetanus toxoid, cytomegalovirus, and Mycobacterium tuberculosis purified protein derivative, were detected at frequencies ranging from 5 to 170 cells per 10(6) naive T cells. Antigen concentrations required for half-maximal response (EC50) varied over several orders of magnitude for different naive T cells. In contrast, in the memory repertoire, T cells specific for primary antigens were not detected, whereas T cells specific for recall antigens were detected at high frequencies and displayed EC50 values in the low range of antigen concentrations. The method described may find applications for evaluation of vaccine candidates, for testing antigenicity of therapeutic proteins, drugs, and chemicals, and for generation of antigen-specific T cell clones for adoptive cellular immunotherapy.
Collapse
Affiliation(s)
- Rebekka Geiger
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
13
|
Justesen S, Harndahl M, Lamberth K, Nielsen LLB, Buus S. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays. Immunome Res 2009; 5:2. [PMID: 19416502 PMCID: PMC2690590 DOI: 10.1186/1745-7580-5-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle in the generation of MHC-II molecules as reagents to study and manipulate specific T helper cell responses. Methods to generate functional MHC-II molecules recombinantly, and measure their interaction with peptides, would be highly desirable; however, no consensus methodology has yet emerged. RESULTS We generated alpha and beta MHC-II chain constructs, where the membrane-spanning regions were replaced by dimerization motifs, and the C-terminal of the beta chains was fused to a biotinylation signal peptide (BSP) allowing for in vivo biotinylation. These chains were produced separately as inclusion bodies in E. coli , extracted into urea, and purified under denaturing and non-reducing conditions using conventional column chromatography. Subsequently, diluting the two chains into a folding reaction with appropriate peptide resulted in efficient peptide-MHC-II complex formation. Several different formats of peptide-binding assay were developed including a homogeneous, non-radioactive, high-throughput (HTS) binding assay. Binding isotherms were generated allowing the affinities of interaction to be determined. The affinities of the best binders were found to be in the low nanomolar range. Recombinant MHC-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both alpha and beta chains are polymorphic, illustrating the advantages of producing the two chains separately. CONCLUSION We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools.
Collapse
Affiliation(s)
- Sune Justesen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Cecconi V, Moro M, Del Mare S, Dellabona P, Casorati G. Use of MHC class II tetramers to investigate CD4+T cell responses: Problems and solutions. Cytometry A 2008; 73:1010-8. [DOI: 10.1002/cyto.a.20603] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Vollers SS, Stern LJ. Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 2008; 123:305-13. [PMID: 18251991 DOI: 10.1111/j.1365-2567.2007.02801.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The use of major histocompatibility complex (MHC) tetramers in the detection and analysis of antigen-specific T cells has become more widespread since its introduction 11 years ago. Early challenges in the application of tetramer staining to CD4+ T cells centred around difficulties in the expression of various class II MHC allelic variants and the detection of low-frequency T cells in mixed populations. As many of the technical obstacles to class II MHC tetramer staining have been overcome, the focus has returned to uncertainties concerning how oligomer valency and T-cell receptor/MHC affinity affect tetramer binding. Such issues have become more important with an increase in the number of studies relying on direct ex vivo analysis of antigen-specific CD4+ T cells. In this review we discuss which problems in class II MHC tetramer staining have been solved to date, and which matters remain to be considered.
Collapse
Affiliation(s)
- Sabrina S Vollers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
16
|
Abstract
Vaccine-induced antibodies that interfere with viral entry are the protective correlate of most existing prophylactic vaccines. However, for highly variable viruses such as HIV-1, the ability to elicit broadly neutralizing antibody responses through vaccination has proven to be extremely difficult. The major targets for HIV-1 neutralizing antibodies are the viral envelope glycoprotein trimers on the surface of the virus that mediate receptor binding and entry. HIV-1 has evolved many mechanisms on the surface of envelope glycoproteins to evade antibody-mediated neutralization, including the masking of conserved regions by glycan, quaternary protein interactions and the presence of immunodominant variable elements. The primary challenge in the development of an HIV-1 vaccine that elicits broadly neutralizing antibodies therefore lies in the design of suitable envelope glycoprotein immunogens that circumvent these barriers. Here, we describe neutralizing determinants on the viral envelope glycoproteins that are defined by their function in receptor binding or by rare neutralizing antibodies isolated from HIV-infected individuals. We also describe the nonvariable cellular receptors involved in the HIV-1 entry process, or other cellular proteins, and ongoing studies to determine if antibodies against these proteins have efficacy as therapeutic reagents or, in some cases, as vaccine targets to interfere with HIV-1 entry.
Collapse
Affiliation(s)
- S Phogat
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|