1
|
Santos LA, Castro Dutra J, Malaquias LCC, Andrade ND, Gomes BN, Burger E. Paracoccidioides spp.: Escape mechanisms and their implications for the development of this mycosis. Microb Pathog 2024; 196:106951. [PMID: 39299555 DOI: 10.1016/j.micpath.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis prevalent in individuals who carry out rural activities. Its etiological agent is a thermodimorphic fungus belonging to the genus; Paracoccidioides spp. Seven species of this fungus are known: Paracoccidioides brasiliensis, Paracoccidioides lutzii, Paracoccidioides americana, Paracoccidioides restrepiensis, Paracoccidioides venezuelensis, Paracoccidioides loboi and Paracoccidioides ceti. For a long time, Paracoccidioides brasiliensis was attributed as the only causal agent of this mycosis. What is known about adhesins, virulence, escape mechanisms and fungal involvement with the host's immune system is correlated with the species Paracoccidioides brasiliensis. Interactions between Paracoccidioides spp. and the host are complex and dynamic. The fungus needs nutrients for its needs and must adapt to a hostile environment, evading the host's immune system, thus enabling the development of the infectious process. On the other hand, the host's immune system recognizes Paracoccidioides spp. and employs all protective mechanisms to prevent fungal growth and consequently tissue invasion. Knowing this, understanding how Paracoccidioides spp. escapes the host's immune system, can help to understand the pathogenic mechanisms related to the development of the disease and, therefore, in the design of new specific treatment strategies. In this review we discuss these mechanisms and what are the adhesion molecules of Paracoccidioides spp. uses to escape the hostile environment imposed by the host's defense mechanisms; finally, we suggest how to neutralize them with new antifungal therapies.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Julia Castro Dutra
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Luiz Cosme Cotta Malaquias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Nayara Dias Andrade
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Bruno Nascimento Gomes
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil.
| |
Collapse
|
2
|
Rudraprasad D, Gandhi J, Joseph J. Comparative extracellular vesicles proteomics unravels host-pathogen interactions: New insights in bacterial and fungal endophthalmitis in murine models. THE MICROBE 2024; 3:100074. [DOI: 10.1016/j.microb.2024.100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Sarkar R, Sardar SK, Ghosal A, Das K, Saito-Nakano Y, Dutta S, Nozaki T, Ganguly S. Functional characterization of phospholipase B enzyme from Giardia lamblia. Exp Parasitol 2023; 253:108602. [PMID: 37619808 DOI: 10.1016/j.exppara.2023.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The microaerotolarent amitochondriate protozoan Giardia lamblia causes Giardiasis and produces a unique enzyme called Phospholipase B (PLB) in contrast to higher eukaryotes. The enzyme is produced upon induction with oxidative (H2O2) stress, thus leading to prostaglandin E2 (PGE2) production. It exists in dimeric form, and its molecular weight is 56 kDa. This PLB was extracellularly cloned in the pET21d vector. The ORF is 1620 bp (Genbank accession no. -OM939681) long and codes for a protein 539 amino acid long, with a 15 amino acid long amino-terminal signal peptide. The highest enzyme activity of PLB was identified at pH 7.5 and 35 °C. This specific enzyme was also active at 50 °C pH 10, but activity was low. We also analyzed the expression of PLB protein in G. lamblia, which was significantly induced under increased oxidative stress.
Collapse
Affiliation(s)
- Rituparna Sarkar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sanjib Kumar Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Koushik Das
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India; Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
4
|
Jia X, Liu F, Bai J, Zhang Y, Cui L, Cao Y, Luo E. Phosphatase inhibitors BVT-948 and alexidine dihydrochloride inhibit sexual development of the malaria parasite Plasmodium berghei. Int J Parasitol Drugs Drug Resist 2022; 19:81-88. [PMID: 35792443 PMCID: PMC9260261 DOI: 10.1016/j.ijpddr.2022.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND With the emergence of resistance to front-line antimalarials, there is an urgent need to develop new medicines, including those targeting sexual development. This study aimed to assess the activity of a panel of phosphatase inhibitors against the sexual development of Plasmodium berghei and evaluate their potential as transmission-blocking agents. METHODS Twenty-five compounds were screened for transmission-blocking activity in vitro using the P. berghei ookinete culture assay. The inhibitory effects on male gametogenesis, gamete-ookinete, and zygote-ookinete formation were evaluated. The transmission-blocking activity of two compounds was evaluated using an in vivo mosquito feeding assay. Their cytotoxic effects were assessed on the human cell line HepG2. RESULTS Twelve compounds inhibited P. berghei ookinete formation with an IC50 < 10 μM. Two compounds, BVT-948 and alexidine dihydrochloride, significantly inhibited different developmental stages from gametogenesis through ookinete maturation. They also showed a substantial in vivo transmission-blocking activity by the mosquito feeding assay. CONCLUSIONS Some phosphatase inhibitors effectively inhibited Plasmodium sexual development and exhibited evident transmission-blocking activity, suggesting that phosphatases are valid targets for antimalarial development.
Collapse
Affiliation(s)
- Xitong Jia
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yongzhe Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612-9415, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
5
|
Braz JD, Sardi JDCO, Pitangui NDS, Voltan AR, Almeida AMF, Mendes-Giannini MJS. Gene expression of Paracoccidioides virulence factors after interaction with macrophages and fibroblasts. Mem Inst Oswaldo Cruz 2021; 116:e200592. [PMID: 33787770 PMCID: PMC8011670 DOI: 10.1590/0074-02760200592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Jaqueline Derissi Braz
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Janaina de Cássia Orlandi Sardi
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade Federal de Mato Grosso do Sul, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Campo Grande, MS, Brasil
| | - Nayla de Souza Pitangui
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| | - Aline Raquel Voltan
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Ana Marisa Fusco Almeida
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Maria José Soares Mendes-Giannini
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| |
Collapse
|
6
|
García-Carnero LC, Martínez-Álvarez JA, Salazar-García LM, Lozoya-Pérez NE, González-Hernández SE, Tamez-Castrellón AK. Recognition of Fungal Components by the Host Immune System. Curr Protein Pept Sci 2021; 21:245-264. [PMID: 31889486 DOI: 10.2174/1389203721666191231105546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.
Collapse
Affiliation(s)
- Laura C García-Carnero
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A Martínez-Álvarez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Luis M Salazar-García
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Nancy E Lozoya-Pérez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - Alma K Tamez-Castrellón
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
7
|
Shen Q, Rappleye CA. Living Within the Macrophage: Dimorphic Fungal Pathogen Intracellular Metabolism. Front Cell Infect Microbiol 2020; 10:592259. [PMID: 33178634 PMCID: PMC7596272 DOI: 10.3389/fcimb.2020.592259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Histoplasma and Paracoccidioides are related thermally dimorphic fungal pathogens that cause deadly mycoses (i.e., histoplasmosis and paracoccidioidomycosis, respectively) primarily in North, Central, and South America. Mammalian infection results from inhalation of conidia and their subsequent conversion into pathogenic yeasts. Macrophages in the lung are the first line of defense, but are generally unable to clear these fungi. Instead, Histoplasma and Paracoccidioides yeasts survive and proliferate within the phagosomal compartment of host macrophages. Growth within macrophages requires strategies for acquisition of sufficient nutrients (e.g., carbon, nitrogen, and essential trace elements and co-factors) from the nutrient-depleted phagosomal environment. We review the transcriptomic and recent functional genetic studies that are defining how these intracellular fungal pathogens tune their metabolism to the resources available in the macrophage phagosome. In addition, recent studies have shown that the nutritional state of the macrophage phagosome is not static, but changes upon activation of adaptive immune responses. Understanding the metabolic requirements of these dimorphic pathogens as they thrive within host cells can provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Shen
- Department of Biology, Rhodes College, Memphis, TN, United States
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Tavakolpour V, Shokri G, Naser Moghadasi A, Mozafari Nahavandi P, Hashemi M, Kouhkan F. Increased expression of mir-301a in PBMCs of patients with relapsing-remitting multiple sclerosis is associated with reduced NKRF and PIAS3 expression levels and disease activity. J Neuroimmunol 2018; 325:79-86. [PMID: 30316680 DOI: 10.1016/j.jneuroim.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
Most of the multiple sclerosis (MS) patients are initially diagnosed with relapsing remitting multiple sclerosis (RRMS). Th17 cells and macrophages have been shown to play critical roles in pathogenesis of MS and initiation of CNS tissue damage. MiR-301a have recently been exposed as an activator of STAT3 in Th17 cells as well as an activator of NF-κB in macrophages by targeting PIAS3 and NKRF correspondingly. However, the possible role of miR-301a in RRMS has not yet been elucidated. Herewith, for the first time, we have studied the expression of miR-301a, NKRF and PIAS3 by quantitative real-time PCR and western blotting method in peripheral blood mononuclear cells (PBMCs) of 71 RRMS patients, including two groups of patients in relapse phase (n = 44) and a group of remitting phase patients (n = 28) in comparison to healthy volunteers (n = 28). In this work, we demonstrate a significant upregulation of miR-301a in relapse phase of MS patients compared to healthy controls and remitting phase patients (P < .05). Our findings also showed a striking decrease of NKRF and PIAS3 expression in relapse phase patients, in contrast to miR-301a and, NF-κB and STAT3 downstream genes (SKA2 and RORc) (P < .05). Subsequently, using luciferase reporter system we confirmed that miR-301a directly targets the mRNA encoding PIAS3 and NKRF proteins. We also showed that miR-301a increasing expression is correlated with down-regulation of PIAS3 and NKRF expression in RRMS patients. Our findings suggest that miR-301a, PIAS3 and NKRF play crucial roles in RRMS and could be considered as promising therapeutic targets.
Collapse
Affiliation(s)
- Vahid Tavakolpour
- Stem Cell Technology Research Center, Tehran, Iran; Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
9
|
Watanabe Y, Kobayashi I, Ohnaka T, Watanabe S. In vitro synthesis of phospholipids with yeast phospholipase B, a phospholipid deacylating enzyme. ACTA ACUST UNITED AC 2018; 18:e00250. [PMID: 29876301 PMCID: PMC5989593 DOI: 10.1016/j.btre.2018.e00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 11/30/2022]
Abstract
Saccharomyces cerevisiae PLB enzyme was expressed in E. coli. Purified Scplb1p exhibited deacylation activity. Purified Scplb1p transacylated LPC to PC and esterified LPC with FFA.
The gene encoding the Saccharomyces cerevisiae phospholipid deacylation enzyme, phospholipase B (ScPLB1), was successfully expressed in E. coli. The enzyme (Scplb1p) was engineered to have a histidine-tag at the C-terminal end and was purified by metal (Ni) affinity chromatography. Enzymatic properties, optimal pH, and substrate specificity were similar to those reported previously. For example, deacylation activity was observed in acidic pH in the absence of Ca2+ and was additive in neutral pH in the presence of Ca2+, and the enzyme had the same substrate priority as reported previously, with the exception of PE, suggesting that yeast phospholipase B could be produced in its native structure in bacterial cells. Scplb1p retained transacylation activity in aqueous medium, and esterified lysophosphatidylcholine with free fatty acid to form phosphatidylcholine in a non-aqueous, glycerin medium. We propose that phospholipase B could serve as an additional tool for in vitro enzyme-mediated phospholipid synthesis.
Collapse
Key Words
- CL, cardiolipin
- DHA, docosahexaenoic acid
- EDTA, ethylenediaminetetraacetic acid
- ELSD, evaporated light scattering detector
- Enzyme-mediated phospholipid synthesis
- Esterification
- FFA, free fatty acid
- HPLC, high-pressure liquid chromatography
- LPC, lysophosphatidylcholine
- PA, phosphatidic acid
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PI, phosphatidylinositol
- PLA2, phospholipase A2
- PLB, phospholipase B
- PS, phosphatidylserine
- Phospholipid deacylating enzyme
- Saccharomyces cerevisiae phospholipase B
- Transacylation
Collapse
Affiliation(s)
- Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Itsuki Kobayashi
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Takanori Ohnaka
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| |
Collapse
|
10
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
11
|
Pritchard M, Jack A, Powell L, Sadh H, Rye P, Hill K, Thomas D. Alginate oligosaccharides modify hyphal infiltration ofCandida albicansin anin vitromodel of invasive human candidosis. J Appl Microbiol 2017. [DOI: 10.1111/jam.13516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- M.F. Pritchard
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | - A.A. Jack
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | - L.C. Powell
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | - H. Sadh
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | | | - K.E. Hill
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | - D.W. Thomas
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| |
Collapse
|
12
|
Romera LMD, Kaihami GH, Jannuzzi GP, de Almeida JRF, de Almeida SR. The Critical Role of Notch1–TLR 4 Signaling in the Inflammatory and Fungicidal Activity of Macrophages Against Paracoccidioides brasiliensis Strain Pb18. Mycopathologia 2017; 182:797-807. [DOI: 10.1007/s11046-017-0154-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
|
13
|
Camacho E, Niño-Vega GA. Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm 2017; 2017:5313691. [PMID: 28553014 PMCID: PMC5434249 DOI: 10.1155/2017/5313691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Paracoccidioides spp. are dimorphic fungal pathogens responsible for one of the most relevant systemic mycoses in Latin America, paracoccidioidomycosis (PCM). Their exact ecological niche remains unknown; however, they have been isolated from soil samples and armadillos (Dasypus novemcinctus), which have been proposed as animal reservoir for these fungi. Human infection occurs by inhalation of conidia or mycelia fragments and is mostly associated with immunocompetent hosts inhabiting and/or working in endemic rural areas. In this review focusing on the pathogen perspective, we will discuss some of the microbial attributes and molecular mechanisms that enable Paracoccidioides spp. to tolerate, adapt, and ultimately avoid the host immune response, establishing infection.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunobiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, GTO, Mexico
| |
Collapse
|
14
|
Zhu M, Geng L, Shen W, Wang Y, Liu J, Cheng Y, Wang C, Dai J, Jin G, Hu Z, Ma H, Shen H. Exome-Wide Association Study Identifies Low-Frequency Coding Variants in 2p23.2 and 7p11.2 Associated with Survival of Non-Small Cell Lung Cancer Patients. J Thorac Oncol 2017; 12:644-656. [PMID: 28104536 DOI: 10.1016/j.jtho.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
INTRODUCTION A growing body of evidence has suggested that low-frequency or rare coding variants might have strong effects on the development and prognosis of cancer. Here, we aim to assess the role of low-frequency and rare coding variants in the survival of NSCLC in Chinese populations. METHODS We performed an exome-wide scan of 247,870 variants in 1008 patients with NSCLC and replicated the promising variants by using imputed genotype data of The Cancer Genome Atlas (TCGA) with a Cox regression model. Gene-based and pathway-based analysis were also performed for nonsynonymous or splice site variants. Additionally, analysis of gene expression data in the TCGA was used to increase the reliability of candidate loci and genes. RESULTS A low-frequency missense variant in chaperonin containing TCP1 subunit 6A gene (CCT6A) (rs33922584: adjusted hazard ratio [HRadjusted] = 1.75, p = 6.06 × 10-4) was significantly related to the survival of patients with NSCLC, which was further replicated by the TCGA samples (HRadjusted = 4.19, p = 0.015). Interestingly, the G allele of rs33922584 was significantly associated with high expression of CCT6A (p = 0.019) that might induce the worse survival in the TCGA samples (HRadjusted = 1.15, p = 0.047). Besides, rs117512489 in gene phospholipase B1 gene (PLB1) (HR = 2.02, p = 7.28 × 10-4) was also associated with survival of the patients with NSCLC in our samples, but it was supported only by gene expression analysis in the TCGA (HRadjusted = 1.15, p = 0.023). Gene-based and pathway-based analysis revealed a total of 32 genes, including CCT6A and 34 potential pathways might account for the survival of NSCLC, respectively. CONCLUSION These results provided more evidence for the important role of low-frequency or rare variants in the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Liguo Geng
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jia Liu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Cheng
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Scorzoni L, de Paula e Silva ACA, Singulani JDL, Leite FS, de Oliveira HC, Moraes da Silva RA, Fusco-Almeida AM, Mendes-Giannini MJS. Comparison of virulence between Paracoccidioides brasiliensis and Paracoccidioides lutzii using Galleria mellonella as a host model. Virulence 2015; 6:766-76. [PMID: 26552324 PMCID: PMC4826127 DOI: 10.1080/21505594.2015.1085277] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 10/22/2022] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis, endemic in Latin America. The etiologic agents of this mycosis are composed of 2 species: Paracoccidioides brasiliensis and P. lutzii. Murine animal models are the gold standard for in vivo studies; however, ethical, economical and logistical considerations limit their use. Galleria mellonella is a suitable model for in vivo studies of fungal infections. In this study, we compared the virulence of P. brasiliensis and P. lutzii in G. mellonella model. The deaths of larvae infected with P. brasiliensis or P. lutzii were similar, and both species were able to reduce the number of hemocytes, which were estimated by microscopy and flow cytometer. Additionally, the phagocytosis percentage was similar for both species, but when we analyze hemocyte-Paracoccidioides spp. interaction using flow cytometer, P. lutzii showed higher interactions with hemocytes. The gene expression of gp43 as well as this protein was higher for P. lutzii, and this expression may contribute to a greater adherence to hemocytes. These results helped us evaluate the behavior of Paracoccidioides spp in G. mellonella, which is a convenient model for investigating the host-Paracoccidioides spp. interaction.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Carolina Alves de Paula e Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Fernanda Sangalli Leite
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Rosangela Aparecida Moraes da Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
16
|
rPbPga1 from Paracoccidioides brasiliensis Activates Mast Cells and Macrophages via NFkB. PLoS Negl Trop Dis 2015; 9:e0004032. [PMID: 26317855 PMCID: PMC4552726 DOI: 10.1371/journal.pntd.0004032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background The fungus Paracoccidioides brasiliensis is the leading etiological agent of paracoccidioidomycosis (PCM), a systemic granulomatous disease that typically affects the lungs. Cell wall components of P. brasiliensis interact with host cells and influence the pathogenesis of PCM. In yeast, many glycosylphosphatidylinositol (GPI)-anchored proteins are important in the initial contact with the host, mediating host-yeast interactions that culminate with the disease. PbPga1 is a GPI anchored protein located on the surface of the yeast P. brasiliensis that is recognized by sera from PCM patients. Methodology/Principal Findings Endogenous PbPga1 was localized to the surface of P. brasiliensis yeast cells in the lungs of infected mice using a polyclonal anti-rPbPga1 antibody. Furthermore, macrophages stained with anti-CD38 were associated with P. brasiliensis containing granulomas. Additionally, rPbPga1 activated the transcription factor NFkB in the macrophage cell line Raw 264.7 Luc cells, containing the luciferase gene downstream of the NFkB promoter. After 24 h of incubation with rPbPga1, alveolar macrophages from BALB/c mice were stimulated to release TNF-α, IL-4 and NO. Mast cells, identified by toluidine blue staining, were also associated with P. brasiliensis containing granulomas. Co-culture of P. Brasiliensis yeast cells with RBL-2H3 mast cells induced morphological changes on the surface of the mast cells. Furthermore, RBL-2H3 mast cells were degranulated by P. brasiliensis yeast cells, but not by rPbPga1, as determined by the release of beta-hexosaminidase. However, RBL-2H3 cells activated by rPbPga1 released the inflammatory interleukin IL-6 and also activated the transcription factor NFkB in GFP-reporter mast cells. The transcription factor NFAT was not activated when the mast cells were incubated with rPbPga1. Conclusions/Significance The results indicate that PbPga1 may act as a modulator protein in PCM pathogenesis and serve as a useful target for additional studies on the pathogenesis of P. brasiliensis. Paracoccidioidomycosis (PCM), one of the most prevalent mycoses in Latin America, is caused by the thermodimorphic fungus Paracoccidioides brasiliensis. P. brasiliensis is thought to infect the host through the respiratory tract. Cell wall components of P. brasiliensis interact with host cells producing granulomas, thus influencing the pathogenesis of PCM. PbPga1 is an O-glycosylated, GPI-anchored protein that is localized on the yeast cell surface and is up-regulated in the pathogenic yeast form. GPI anchored proteins are involved in cell-cell and cell-tissue adhesion and have a key role in the interaction between fungal and host cells. In the present study, the authors show that both macrophages and mast cells are associated with the P.brasiliensis granulomas. Furthermore, recombinant PbPga1 was able to activate both alveolar macrophages and mast cells via the transcription factor NFkB to release inflammatory mediators. The results of this study indicate that the surface antigen, PbPga1, may play an important role in PCM pathogenesis by activating macrophages and mast cells. Additionally, PbPga1 may be a target for new strategies for detecting and treating PCM.
Collapse
|
17
|
Soares DA, Oliveira MB, Evangelista AF, Venancio EJ, Andrade RV, Felipe MSS, Petrofeza S. Phospholipase gene expression during Paracoccidioides brasiliensis morphological transition and infection. Mem Inst Oswaldo Cruz 2014; 108:808-11. [PMID: 24037207 PMCID: PMC3970691 DOI: 10.1590/0074-0276108062013021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 06/07/2013] [Indexed: 11/24/2022] Open
Abstract
Phospholipase is an important virulence factor for pathogenic fungi. In this
study, we demonstrate the following: (i) the Paracoccidioides
brasiliensis pld gene is preferentially expressed in mycelium
cells, (ii) the plb1 gene is mostly up-regulated by infection
after 6 h of co-infection of MH-S cells or during BALB/c mice
lung infection, (iii) during lung infection, plb1,
plc and pld gene expression are
significantly increased 6-48 h post-infection compared to 56 days after
infection, strongly suggesting that phospholipases play a role in the early
events of infection, but not during the chronic stages of pulmonary infection by
P. brasiliensis.
Collapse
Affiliation(s)
- Deyze Alencar Soares
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, GoiâniaGO, Brasil
| | | | | | | | | | | | | |
Collapse
|
18
|
Teixeira MM, Theodoro RC, Nino-Vega G, Bagagli E, Felipe MSS. Paracoccidioides species complex: ecology, phylogeny, sexual reproduction, and virulence. PLoS Pathog 2014; 10:e1004397. [PMID: 25357210 PMCID: PMC4214758 DOI: 10.1371/journal.ppat.1004397] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Marcus M. Teixeira
- Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília, Brazil
| | - Raquel C. Theodoro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Gustavo Nino-Vega
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, Brazil
| | - Maria S. S. Felipe
- Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
19
|
Hemoglobin uptake by Paracoccidioides spp. is receptor-mediated. PLoS Negl Trop Dis 2014; 8:e2856. [PMID: 24831516 PMCID: PMC4022528 DOI: 10.1371/journal.pntd.0002856] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms. Fungal infections contribute substantially to human morbidity and mortality. During infectious processes, fungi have evolved mechanisms to obtain iron from high-affinity iron-binding proteins. In the current study, we demonstrated that hemoglobin is the preferential host iron source for the thermodimorphic fungus Paracoccidioides spp. To acquire hemoglobin, the fungus presents hemolytic activity and the ability to internalize protoporphyrin rings. A putative hemoglobin receptor, Rbt5, was demonstrated to be GPI-anchored at the yeast cell surface. Rbt5 was able to bind to hemin, protoporphyrin and hemoglobin in vitro. When rbt5 expression was inhibited, the survival of Paracoccidioides sp. inside macrophages and the fungal burden in mouse spleen diminished, which indicated that Rbt5 could participate in the establishment of the fungus inside the host. Drugs or vaccines could be developed against Paracoccidioides spp. Rbt5 to disturb iron uptake of this micronutrient and, thus, the proliferation of the fungus. Moreover, this protein could be used in routes to introduce antifungal agents into fungal cells.
Collapse
|
20
|
Voltan AR, Sardi JDCO, Soares CP, Pelajo Machado M, Fusco Almeida AM, Mendes-Giannini MJS. Early Endosome Antigen 1 (EEA1) decreases in macrophages infected with Paracoccidioides brasiliensis. Med Mycol 2013; 51:759-64. [PMID: 23566224 DOI: 10.3109/13693786.2013.777859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a chronic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis, endemic in Latin America. P. brasiliensis has been observed in epithelial cells in vivo and in vitro, as well as within the macrophages. The identification of the mechanism by which it survives within the host cell is fertile ground for the discovery of its pathogenesis since this organism has the ability to induce its own endocytosis in epithelial cells and most likely in macrophages. The study of the expression of endocytic proteins pathway and co-localization of microorganisms enable detection of the mechanism by which microorganisms survive within the host cell. The aim of this study was to evaluate the expression of the endocytic protein EEA1 (early endosome antigen 1) in macrophages infected with P. brasiliensis. For detection of EEA1, three different techniques were employed: immunofluorescence, real-time polymerase chain reaction (PCR) and immunoblotting. In the present study, decreased expression of EEA1 as well as the rearrangement of the actin was observed when the fungus was internalized, confirming that the input mechanism of the fungus in macrophages occurs through phagocytosis.
Collapse
Affiliation(s)
- Aline Raquel Voltan
- * Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista , Araraquara , São Paulo
| | | | | | | | | | | |
Collapse
|
21
|
Ishida K, Alviano DS, Silva BG, Guerra CR, Costa AS, Nucci M, Alviano CS, Rozental S. Negative correlation between phospholipase and esterase activity produced by Fusarium isolates. Braz J Med Biol Res 2012; 45:411-6. [PMID: 22415116 PMCID: PMC3854292 DOI: 10.1590/s0100-879x2012007500034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/28/2012] [Indexed: 11/21/2022] Open
Abstract
Fusarium species have emerged as one of the more outstanding groups of clinically important filamentous fungi, causing localized and life-threatening invasive infections with high morbidity and mortality. The ability to produce different types of hydrolytic enzymes is thought to be an important virulence mechanism of fungal pathogens and could be associated with the environment of the microorganism. Here, we have measured the production of two distinct lipolytic enzymes, phospholipase and esterase, by sixteen Fusarium isolates recovered from the hospital environment, immunocompromised patients' blood cultures, foot interdigital space scrapings from immunocompromised patients, and foot interdigital space scrapings from immunocompetent patients (4 isolates each). Fourteen of these 16 isolates were identified as Fusarium solani species complex (FSSC) and two were identified as F. oxysporum species complex (FOSC). Some relevant genus characteristics were visualized by light and electron microscopy such as curved and multicelled macroconidia with 3 or 4 septa, microconidia, phialides, and abundant chlamydospores. All Fusarium isolates were able to produce esterase and phospholipase under the experimental conditions. However, a negative correlation was observed between these two enzymes, indicating that a Fusarium isolate with high phospholipase activity has low esterase activity and vice versa. In addition, Fusarium isolated from clinical material produced more phospholipases, while environmental strains produced more esterases. These observations may be correlated with the different types of substrates that these fungi need to degrade during their nutrition processes.
Collapse
Affiliation(s)
- K Ishida
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chan CY, Prudom C, Raines SM, Charkhzarrin S, Melman SD, De Haro LP, Allen C, Lee SA, Sklar LA, Parra KJ. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V0 subunit a (Vph1p). J Biol Chem 2012; 287:10236-10250. [PMID: 22215674 DOI: 10.1074/jbc.m111.321133] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vacuolar ATPases (V-ATPases) are important for many cellular processes, as they regulate pH by pumping cytosolic protons into intracellular organelles. The cytoplasm is acidified when V-ATPase is inhibited; thus we conducted a high-throughput screen of a chemical library to search for compounds that acidify the yeast cytosol in vivo using pHluorin-based flow cytometry. Two inhibitors, alexidine dihydrochloride (EC(50) = 39 μM) and thonzonium bromide (EC(50) = 69 μM), prevented ATP-dependent proton transport in purified vacuolar membranes. They acidified the yeast cytosol and caused pH-sensitive growth defects typical of V-ATPase mutants (vma phenotype). At concentrations greater than 10 μM the inhibitors were cytotoxic, even at the permissive pH (pH 5.0). Membrane fractions treated with alexidine dihydrochloride and thonzonium bromide fully retained concanamycin A-sensitive ATPase activity despite the fact that proton translocation was inhibited by 80-90%, indicating that V-ATPases were uncoupled. Mutant V-ATPase membranes lacking residues 362-407 of the tether of Vph1p subunit a of V(0) were resistant to thonzonium bromide but not to alexidine dihydrochloride, suggesting that this conserved sequence confers uncoupling potential to V(1)V(0) complexes and that alexidine dihydrochloride uncouples the enzyme by a different mechanism. The inhibitors also uncoupled the Candida albicans enzyme and prevented cell growth, showing further specificity for V-ATPases. Thus, a new class of V-ATPase inhibitors (uncouplers), which are not simply ionophores, provided new insights into the enzyme mechanism and original evidence supporting the hypothesis that V-ATPases may not be optimally coupled in vivo. The consequences of uncoupling V-ATPases in vivo as potential drug targets are discussed.
Collapse
Affiliation(s)
- Chun-Yuan Chan
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Catherine Prudom
- Center for Molecular Discovery, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Summer M Raines
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sahba Charkhzarrin
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sandra D Melman
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Leyma P De Haro
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Chris Allen
- Center for Molecular Discovery, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Samuel A Lee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Larry A Sklar
- Center for Molecular Discovery, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131; Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131.
| |
Collapse
|
23
|
Dippe M, Ulbrich-Hofmann R. Phospholipid acylhydrolases trigger membrane degradation during fungal sporogenesis. Fungal Genet Biol 2011; 48:921-7. [DOI: 10.1016/j.fgb.2011.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/06/2011] [Accepted: 05/28/2011] [Indexed: 11/27/2022]
|
24
|
|