1
|
Tang J, Hu Z, Zhang J, Daroch M. Genome-scale identification and comparative analysis of transcription factors in thermophilic cyanobacteria. BMC Genomics 2024; 25:44. [PMID: 38195395 PMCID: PMC10775510 DOI: 10.1186/s12864-024-09969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The transcription factors (TFs) in thermophilic cyanobacteria might represent a uniquely evolved gene repertoire in light of the strong selective pressure caused by hostile habitats. Understanding the molecular composition of the TF genes in thermophilic cyanobacteria will facilitate further studies regarding verifying their exact biochemical functions and genetic engineering. However, limited information is available on the TFs of thermophilic cyanobacteria. Herein, a thorough investigation and comparative analysis were performed to gain insights into the molecular composition of the TFs in 22 thermophilic cyanobacteria. RESULTS The results suggested a fascinating diversity of the TFs among these thermophiles. The abundance and type of TF genes were diversified in these genomes. The identified TFs are speculated to play various roles in biological regulations. Further comparative and evolutionary genomic analyses revealed that HGT may be associated with the genomic plasticity of TF genes in Thermostichus and Thermosynechococcus strains. Comparative analyses also indicated different pattern of TF composition between thermophiles and corresponding mesophilic reference cyanobacteria. Moreover, the identified unique TFs of thermophiles are putatively involved in various biological regulations, mainly as responses to ambient changes, may facilitating the thermophiles to survive in hot springs. CONCLUSION The findings herein shed light on the TFs of thermophilic cyanobacteria and fundamental knowledge for further research regarding thermophilic cyanobacteria with a broad potential for transcription regulations in responses to environmental fluctuations.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zhe Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Jing Zhang
- Food Safety Detection Key Laboratory of Sichuan, Technical Center of Chengdu Customs, Chengdu, 610041, China.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Yang SK, Jeong S, Baek I, Choi JI, Lim S, Jung JH. Deionococcus proteotlycius Genomic Library Exploration Enhances Oxidative Stress Resistance and Poly-3-hydroxybutyrate Production in Recombinant Escherichia coli. Microorganisms 2023; 11:2135. [PMID: 37763980 PMCID: PMC10538107 DOI: 10.3390/microorganisms11092135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Cell growth is inhibited by abiotic stresses during industrial processes, which is a limitation of microbial cell factories. Microbes with robust phenotypes are critical for its maximizing the yield of the target products in industrial biotechnology. Currently, there are several reports on the enhanced production of industrial metabolite through the introduction of Deinococcal genes into host cells, which confers cellular robustness. Deinococcus is known for its unique genetic function thriving in extreme environments such as radiation, UV, and oxidants. In this study, we established that Deinococcus proteolyticus showed greater resistance to oxidation and UV-C than commonly used D. radiodurans. By screening the genomic library of D. proteolyticus, we isolated a gene (deipr_0871) encoding a response regulator, which not only enhanced oxidative stress, but also promoted the growth of the recombinant E. coli strain. The transcription analysis indicated that the heterologous expression of deipr_0871 upregulated oxidative-stress-related genes such as ahpC and sodA, and acetyl-CoA-accumulation-associated genes via soxS regulon. Deipr_0871 was applied to improve the production of the valuable metabolite, poly-3-hydroxybutyrate (PHB), in the synthetic E. coli strain, which lead to the remarkably higher PHB than the control strain. Therefore, the stress tolerance gene from D. proteolyticus should be used in the modification of E. coli for the production of PHB and other biomaterials.
Collapse
Affiliation(s)
- Seul-Ki Yang
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Inwoo Baek
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
| |
Collapse
|
3
|
Tan C, Zhang W, Wei Y, Zhao N, Li J. Insights into nitrogen removal and microbial response of marine anammox bacteria-based consortia treating saline wastewater: From high to moderate and low salinities. BIORESOURCE TECHNOLOGY 2023; 382:129220. [PMID: 37217147 DOI: 10.1016/j.biortech.2023.129220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Marine anammox bacteria (MAB) have promising nitrogen removal performance in high saline wastewater treatment. Nevertheless, the impact resulting from moderate and low salinities on MAB is still unclear. Herein, MAB were applied to treat saline wastewater from high to moderate and low salinities for the first time. Independent of salinities (35-3.5 g/L), MAB consistently exhibited good nitrogen removal performance, and maximum total nitrogen removal rate (0.97 kg/(m3·d)) occurred at 10.5 g/L salts. More extracellular polymeric substances (EPSs) were secreted by MAB-based consortia to resist hypotonic surroundings. However, a sharp EPS decrease was accompanied by the collapse of MAB-driven anammox process, and MAB granules disintegrated due to long-term exposure to salt-free environment. The relative abundance of MAB varied from 10.7% to 15.9% and 3.8% as salinity decreased from 35 to 10.5 and 0 g/L salts. These findings will provide practical implementation of MAB-driven anammox process treating wastewater with different salinities.
Collapse
Affiliation(s)
- Chen Tan
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Weidong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yunna Wei
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Pereira F, Kerkar S, Dias DS, Gobre VV. A halophilic Chromohalobacter species from estuarine coastal waters as a detoxifier of manganese, as well as a novel bio-catalyst for synthesis of n-butyl acetate. Front Microbiol 2023; 14:1159018. [PMID: 37125204 PMCID: PMC10130588 DOI: 10.3389/fmicb.2023.1159018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Anthropogenic pollution due to ferro-manganese ore transport by barges through the Mandovi estuary in Goa, India is a major environmental concern. In this study a manganese (Mn) tolerant, moderately halophilic Chromohalobacter sp. belonging to the family Halomonadaceae was isolated from the sediments of a solar saltern adjacent to this Mandovi estuary. Using techniques of Atomic absorption spectroscopy, Scanning electron microscopy-Energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy and Atomic Force Microscopy, the Chromohalobacter sp. was explored for its ability to tolerate and immobilize Mn in amended and unamended media with 20% natural salt concentration (w/v). In aqueous media supplemented with 0.1 mM Mn, the Chromohalobacter sp. was capable of sequestering up to 76% Mn with an average immobilization rate of 8 mg Mn /g /day. Growth rate kinetic analysis using Gompertz mathematical functions was found to model the experimental data well. The model inferred that the maximum growth rate of Chromohalobacter sp. was at 10% natural salt concentration (w/v). The Chromohalobacter sp. was further found to be multimetal tolerant showing high tolerance to Iron (Fe), Nickel (Ni) and Cobalt (Co), (each at 4 mM), and tolerated Manganese (Mn) up to 6 mM. Morphologically, the Chromohalobacter sp. was a non-spore forming, Gram negative motile rod (0.726 μ× 1.33 μ). The adaptative mechanism of Chromohalobacter sp. to elevated Mn concentrations (1 mM) resulted in the reduction of its cell size to 0.339 μ× 0.997 μ and the synthesis of an extracellular slime, immobilizing Mn from the liquid phase forming Manganese oxide, as confirmed by Scanning Electron Microscopy. The expression of Mnx genes for manganese oxidation further substantiated the finding. This bacterial synthesized manganese oxide also displayed catalytic activity (∼50% conversion) for the esterification of butan-1-ol with CH3COOH to yield n-butyl acetate. This Chromohalobacter sp. being indigenous to marine salterns, has adapted to high concentrations of heavy metals and high salinities and can withstand this extremely stressed environment, and thus holds a tremendous potential as an environmentally friendly "green bioremediator" of Mn from euryhaline environments. The study also adds to the limited knowledge about metal-microbe interactions in extreme environments. Further, since Chromohalobacter sp. exhibits commendable catalytic activity for the synthesis of n-butyl acetate, it would have several potential industrial applications.
Collapse
Affiliation(s)
- Flory Pereira
- Department of Microbiology, P. E. S’s R. S. N. College of Arts and Science, Ponda, India
- *Correspondence: Flory Pereira,
| | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Taleigão, India
| | - Dominic Savio Dias
- Department of Chemistry, P. E. S’s R. S. N. College of Arts and Science, Ponda, India
| | | |
Collapse
|
5
|
Hermann L, Mais CN, Czech L, Smits SHJ, Bange G, Bremer E. The ups and downs of ectoine: structural enzymology of a major microbial stress protectant and versatile nutrient. Biol Chem 2021; 401:1443-1468. [PMID: 32755967 DOI: 10.1515/hsz-2020-0223] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ectoine and its derivative 5-hydroxyectoine are compatible solutes and chemical chaperones widely synthesized by Bacteria and some Archaea as cytoprotectants during osmotic stress and high- or low-growth temperature extremes. The function-preserving attributes of ectoines led to numerous biotechnological and biomedical applications and fostered the development of an industrial scale production process. Synthesis of ectoines requires the expenditure of considerable energetic and biosynthetic resources. Hence, microorganisms have developed ways to exploit ectoines as nutrients when they are no longer needed as stress protectants. Here, we summarize our current knowledge on the phylogenomic distribution of ectoine producing and consuming microorganisms. We emphasize the structural enzymology of the pathways underlying ectoine biosynthesis and consumption, an understanding that has been achieved only recently. The synthesis and degradation pathways critically differ in the isomeric form of the key metabolite N-acetyldiaminobutyric acid (ADABA). γ-ADABA serves as preferred substrate for the ectoine synthase, while the α-ADABA isomer is produced by the ectoine hydrolase as an intermediate in catabolism. It can serve as internal inducer for the genetic control of ectoine catabolic genes via the GabR/MocR-type regulator EnuR. Our review highlights the importance of structural enzymology to inspire the mechanistic understanding of metabolic networks at the biological scale.
Collapse
Affiliation(s)
- Lucas Hermann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Karl-von Frisch Str. 10, D-35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Laura Czech
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| |
Collapse
|
6
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
7
|
Reshetnikov AS, Rozova ON, Trotsenko YA, But SY, Khmelenina VN, Mustakhimov II. Ectoine degradation pathway in halotolerant methylotrophs. PLoS One 2020; 15:e0232244. [PMID: 32353000 PMCID: PMC7192451 DOI: 10.1371/journal.pone.0232244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/10/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Microorganisms living in saline environments are forced to regulate turgor via the synthesis of organic osmoprotective compounds. Microbial adaptation to fluctuations in external salinity includes degradation of compatible solutes. Here we have examined the biochemical pathway of degradation of the cyclic imino acid ectoine, the major osmoprotector in halotolerant methane-utilizing bacteria. METHODS The BLAST search of the genes involved in ectoine degradation in the halotolerant methanotroph Methylotuvimicrobium alcaliphilum 20Z was performed with the reference sequences of Halomonas elongata. The genes for the key enzymes of the pathway were disrupted by insertion mutagenesis and the cellular metabolites in the methanol extracts of mutant cells were analyzed by HPLC. The doeA gene from Mm. alcaliphilum 20Z was heterologously expressed in Escherichia coli to identify the product of ectoine hydrolysis catalyzed by ectoine hydrolase DoeA. RESULTS We have shown that the halotolerant methanotroph Mm. alcaliphilum 20Z possesses the doeBDAC gene cluster coding for putative ectoine hydrolase (DoeA), Nα-acetyl-L-2,4-diaminobutyrate deacetylase (DoeB), diaminobutyrate transaminase (DoeD) and aspartate-semialdehyde dehydrogenase (DoeC). The deletion of the doeA gene resulted in accumulation of the higher level of ectoine compared to the wild type strain. Nγ-acetyl-L-2,4-diaminobutyrate (Nγ-acetyl-DAB), a substrate for ectoine synthase, was found in the cytoplasm of the wild type strain. Nα-acetyl-L-2,4-diaminobutyrate (Nα-acetyl-DAB), a substrate for the DoeB enzyme, appeared in the cells as a result of exposure of the doeB mutant to low osmotic pressure. The genes for the enzymes involved in ectoine degradation were found in all aerobic methylotrophs capable of ectoine biosynthesis. These results provide the first evidence for the in vivo operation of the ectoine degradation pathway in methanotrophs and thus expand our understanding of the regulation mechanisms of bacterial osmoadaptation. CONCLUSIONS During adaptation to the changes in external osmolarity, halophilic and halotolerant methylotrophs cleave ectoine, thereby entering the carbon and nitrogen of the compatible solute to the central metabolic pathways. The biochemical route of ectoine degradation in the halotolerant methanotroph Mm. alcaliphilum 20Z is similar to that in heterotrophic halophiles. We have shown that ectoine hydrolase DoeA in this methanotroph hydrolyzes ectoine with the formation of the only isomer: Nα-acetyl-DAB. All aerobic methylotrophs capable of ectoine biosynthesis harbor the genetic determinants for ectoine degradation.
Collapse
Affiliation(s)
- Aleksander S. Reshetnikov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Olga N. Rozova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Yuri A. Trotsenko
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Sergey Yu. But
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Valentina N. Khmelenina
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Ildar I. Mustakhimov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
8
|
Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG. Comparative Transcriptomics of Cold Growth and Adaptive Features of a Eury- and Steno-Psychrophile. Front Microbiol 2018; 9:1565. [PMID: 30108551 PMCID: PMC6080646 DOI: 10.3389/fmicb.2018.01565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Permafrost subzero environments harbor diverse, active communities of microorganisms. However, our understanding of the subzero growth, metabolisms, and adaptive properties of these microbes remains very limited. We performed transcriptomic analyses on two subzero-growing permafrost isolates with different growth profiles in order to characterize and compare their cold temperature growth and cold-adaptive strategies. The two organisms, Rhodococcus sp. JG3 (-5 to 30°C) and Polaromonas sp. Eur3 1.2.1 (-5 to 22°C), shared several common responses during low temperature growth, including induction of translation and ribosomal processes, upregulation of nutrient transport, increased oxidative and osmotic stress responses, and stimulation of polysaccharide capsule synthesis. Recombination appeared to be an important adaptive strategy for both isolates at low temperatures, likely as a mechanism to increase genetic diversity and the potential for survival in cold systems. While Rhodococcus sp. JG3 favored upregulating iron and amino acid transport, sustaining redox potential, and modulating fatty acid synthesis and composition during growth at -5°C compared to 25°C, Polaromonas sp. Eur3 1.2.1 increased the relative abundance of transcripts involved in primary energy metabolism and the electron transport chain, in addition to signal transduction and peptidoglycan synthesis at 0°C compared to 20°C. The increase in energy metabolism may explain why Polaromonas sp. Eur3 1.2.1 is able to sustain growth rates at 0°C comparable to those at higher temperatures. For Rhodococcus sp. JG3, flexibility in use of carbon sources, iron acquisition, control of membrane fatty acid composition, and modulating redox and co-factor potential may be ways in which this organism is able to sustain growth over a wider range of temperatures. Increasing our understanding of the microbes in these habitats helps us better understand active pathways and metabolisms in extreme environments. Identifying novel, thermolabile, and cold-active enzymes from studies such as this is also of great interest to the biotechnology and food industries.
Collapse
Affiliation(s)
| | - Julien Tremblay
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
9
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
10
|
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 2018. [DOI: 10.1093/femsre/fuy009] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 1, SI-1000 Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
11
|
Schulz A, Hermann L, Freibert SA, Bönig T, Hoffmann T, Riclea R, Dickschat JS, Heider J, Bremer E. Transcriptional regulation of ectoine catabolism in response to multiple metabolic and environmental cues. Environ Microbiol 2017; 19:4599-4619. [PMID: 28892254 DOI: 10.1111/1462-2920.13924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/04/2023]
Abstract
Ectoine and hydroxyectoine are effective microbial osmostress protectants, but can also serve as versatile nutrients for bacteria. We have studied the genetic regulation of ectoine and hydroxyectoine import and catabolism in the marine Roseobacter species Ruegeria pomeroyi and identified three transcriptional regulators involved in these processes: the GabR/MocR-type repressor EnuR, the feast and famine-type regulator AsnC and the two-component system NtrYX. The corresponding genes are widely associated with ectoine and hydroxyectoine uptake and catabolic gene clusters (enuR, asnC), and with microorganisms predicted to consume ectoines (ntrYX). EnuR contains a covalently bound pyridoxal-5'-phosphate as a co-factor and the chemistry underlying the functioning of MocR/GabR-type regulators typically requires a system-specific low molecular mass effector molecule. Through ligand binding studies with purified EnuR, we identified N-(alpha)-L-acetyl-2,4-diaminobutyric acid and L-2,4-diaminobutyric acid as inducers for EnuR that are generated through ectoine catabolism. AsnC/Lrp-type proteins can wrap DNA into nucleosome-like structures, and we found that the asnC gene was essential for use of ectoines as nutrients. Furthermore, we discovered through transposon mutagenesis that the NtrYX two-component system is required for their catabolism. Database searches suggest that our findings have important ramifications for an understanding of the molecular biology of most microbial consumers of ectoines.
Collapse
Affiliation(s)
- Annina Schulz
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Lucas Hermann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Sven-Andreas Freibert
- Department of Medicine, Institute for Cytobiology and Cytopathology, Philipps-University Marburg, Robert-Koch Str. 6, D-35032 Marburg, Germany
| | - Tobias Bönig
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Ramona Riclea
- Institute of Organic Chemistry, Technical University Braunschweig, D-38106 Braunschweig, Germany.,Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University Braunschweig, D-38106 Braunschweig, Germany.,Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Johann Heider
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| |
Collapse
|
12
|
Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043. Extremophiles 2017; 21:839-850. [DOI: 10.1007/s00792-017-0946-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/17/2017] [Indexed: 01/18/2023]
|
13
|
Schulz A, Stöveken N, Binzen IM, Hoffmann T, Heider J, Bremer E. Feeding on compatible solutes: A substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environ Microbiol 2016; 19:926-946. [PMID: 27318028 DOI: 10.1111/1462-2920.13414] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/19/2016] [Indexed: 01/19/2023]
Abstract
Ectoine and 5-hydroxyectoine are widely synthesized microbial osmostress protectants. They are also versatile nutrients but their catabolism and the genetic regulation of the corresponding genes are incompletely understood. Using the marine bacterium Ruegeria pomeroyi DSS-3, we investigated the utilization of ectoines and propose a seven steps comprising catabolic route that entails an initial conversion of 5-hydroxyectoine to ectoine, the opening of the ectoine ring, and the subsequent degradation of this intermediate to l-aspartate. The catabolic genes are co-transcribed with three genes encoding a 5-hydroxyectoine/ectoine-specific TRAP transporter. A chromosomal deletion of this entire gene cluster abolishes the utilization of ectoines as carbon and nitrogen sources. The presence of ectoines in the growth medium triggers enhanced expression of the importer and catabolic operon, a process dependent on a substrate-inducible promoter that precedes this gene cluster. EnuR, a member of the MocR/GabR-type transcriptional regulators, controls the activity of this promoter and functions as a repressor. EnuR contains a covalently bound pyridoxal-5'-phosphate, and we suggest that this co-factor is critical for the substrate-mediated induction of the 5-hydroxyectoine/ectoine import and catabolic genes. Bioinformatics showed that ectoine consumers are restricted to the Proteobacteria and that EnuR is likely a central regulator for most ectoine/5-hydroxyectoine catabolic genes.
Collapse
Affiliation(s)
- Annina Schulz
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| | - Nadine Stöveken
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany.,Philipps-University Marburg, LOEWE-Center for Synthetic Microbiology, Hans-Meerwein Str. 6, Marburg, D-35043, Germany
| | - Ina M Binzen
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| | - Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| | - Johann Heider
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany.,Philipps-University Marburg, LOEWE-Center for Synthetic Microbiology, Hans-Meerwein Str. 6, Marburg, D-35043, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany.,Philipps-University Marburg, LOEWE-Center for Synthetic Microbiology, Hans-Meerwein Str. 6, Marburg, D-35043, Germany
| |
Collapse
|
14
|
Chen L, Wu L, Zhu Y, Song Z, Wang J, Zhang W. An orphan two-component response regulator Slr1588 involves salt tolerance by directly regulating synthesis of compatible solutes in photosynthetic Synechocystis sp. PCC 6803. ACTA ACUST UNITED AC 2014; 10:1765-74. [DOI: 10.1039/c4mb00095a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the characterization of a novel orphan response regulator Slr1588 directly involved in the synthesis and transport of compatible solutes against salt stress.
Collapse
Affiliation(s)
- Lei Chen
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Lina Wu
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Ye Zhu
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Zhongdi Song
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| |
Collapse
|
15
|
Palmer SR, Miller JH, Abranches J, Zeng L, Lefebure T, Richards VP, Lemos JA, Stanhope MJ, Burne RA. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One 2013; 8:e61358. [PMID: 23613838 PMCID: PMC3628994 DOI: 10.1371/journal.pone.0061358] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease.
Collapse
Affiliation(s)
- Sara R. Palmer
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - James H. Miller
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jacqueline Abranches
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Tristan Lefebure
- Université de Lyon, CNRS, Ecologie des Hydrosystèmes Naturels et Anthropisés; Université Lyon, Villeurbanne, France
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Vincent P. Richards
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - José A. Lemos
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael J. Stanhope
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Tian X, Chen L, Wang J, Qiao J, Zhang W. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteomics 2012; 78:326-45. [PMID: 23079071 DOI: 10.1016/j.jprot.2012.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 01/04/2023]
Abstract
Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress.
Collapse
Affiliation(s)
- Xiaoxu Tian
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
| | | | | | | | | |
Collapse
|
17
|
Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genomics 2012; 13:128. [PMID: 22475007 PMCID: PMC3353171 DOI: 10.1186/1471-2164-13-128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 04/04/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mutans streptococci are a group of gram-positive bacteria including the primary cariogenic dental pathogen Streptococcus mutans and closely related species. Two component systems (TCSs) composed of a signal sensing histidine kinase (HK) and a response regulator (RR) play key roles in pathogenicity, but have not been comparatively studied for these oral bacterial pathogens. RESULTS HKs and RRs of 8 newly sequenced mutans streptococci strains, including S. sobrinus DSM20742, S. ratti DSM20564 and six S. mutans strains, were identified and compared to the TCSs of S. mutans UA159 and NN2025, two previously genome sequenced S. mutans strains. Ortholog analysis revealed 18 TCS clusters (HK-RR pairs), 2 orphan HKs and 2 orphan RRs, of which 8 TCS clusters were common to all 10 strains, 6 were absent in one or more strains, and the other 4 were exclusive to individual strains. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. While TCS complements were comparable within the six S. mutans strains, S. sobrinus DSM20742 lacked TCSs possibly involved in acid tolerance and fructan catabolism, and S. ratti DSM20564 possessed 3 unique TCSs but lacked the quorum-sensing related TCS (ComDE). Selected computational predictions were verified by PCR experiments. CONCLUSIONS Differences in the TCS repertoires of mutans streptococci strains, especially those of S. sobrinus and S. ratti in comparison to S. mutans, imply differences in their response mechanisms for survival in the dynamic oral environment. This genomic level study of TCSs should help in understanding the pathogenicity of these mutans streptococci strains.
Collapse
Affiliation(s)
- Lifu Song
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ectoine and hydroxyectoine as protectants against osmotic and cold stress: uptake through the SigB-controlled betaine-choline- carnitine transporter-type carrier EctT from Virgibacillus pantothenticus. J Bacteriol 2011; 193:4699-708. [PMID: 21764932 DOI: 10.1128/jb.05270-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virgibacillus pantothenticus has been shown to synthesize the compatible solute ectoine in response to high salinity or low growth temperature. We found that exogenously provided ectoine and hydroxyectoine also serve as protectants against these challenges. Transport studies with [(14)C]ectoine revealed that both types of stress induced a high-affinity ectoine uptake activity in V. pantothenticus. By using an Escherichia coli mutant defective in osmoprotectant uptake systems, a functional complementation approach for osmostress resistance in the presence of ectoine was employed to retrieve a gene encoding an ectoine transporter from V. pantothenticus. The cloned gene (ectT) encodes a protein (EctT) that is a member of the BCCT (betaine-choline-carnitine-transporter) family of carriers. Osmoprotection assays demonstrated that the EctT carrier mediates the preferential import of ectoine and hydroxyectoine but also possesses minor uptake activities for the compatible solutes proline and glycine betaine. Northern blot analysis with RNA isolated from V. pantothenticus revealed that a rise in the external osmolality or a reduction in growth temperature strongly increased the transcription of the ectT gene. Primer extension analysis demonstrated that ectT was transcribed under these conditions from a SigB-type promoter. SigB is the master regulator of the general stress regulon of bacilli and provides protection to cells against various challenges, including high salinity and low temperature. Both the synthesis of ectoine and the EctT-mediated uptake of ectoine and hydroxyectoine are triggered by the same environmental cues, high salinity and cold stress, and thereby provide, in a concerted fashion, the protection of V. pantothenticus against these challenges.
Collapse
|