1
|
El Hafi B, Jean-Pierre F, O'Toole GA. Pseudomonas aeruginosa supports the survival of Prevotella melaninogenica in a cystic fibrosis lung polymicrobial community through metabolic cross-feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619475. [PMID: 39484496 PMCID: PMC11527032 DOI: 10.1101/2024.10.21.619475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cystic fibrosis (CF) is a multi-organ genetic disorder that affects more than 100,000 individuals worldwide. Chronic respiratory infections are among the hallmark complications associated with CF lung disease, and these infections are often due to polymicrobial communities that colonize the airways of persons with CF (pwCF). Such infections are a significant cause of morbidity and mortality, with studies indicating that pwCF who are co-infected with more than one organism experience more frequent pulmonary exacerbations, leading to a faster decline in lung function. Previous work established an in vitro CF-relevant polymicrobial community model composed of P. aeruginosa , S. aureus , S. sanguinis , and P. melaninogenica . P. melaninogenica cannot survive in monoculture in this model. In this study, we leverage this model to investigate the interactions between P. aeruginosa and P. melaninogenica , allowing us to understand the mechanisms by which the two microbes interact to support the growth of P. melaninogenica specifically in the context of the polymicrobial community. We demonstrate a cross-feeding mechanism whereby P. melaninogenica metabolizes mucin into short-chain fatty acids that are in turn utilized by P. aeruginosa and converted into metabolites (succinate, acetate) that are cross-fed to P. melaninogenica , supporting the survival of this anaerobe in the CF lung-relevant model. Importance Polymicrobial interactions impact disease outcomes in pwCF who suffer from chronic respiratory infections. Previous work established a CF-relevant polymicrobial community model that allows experimental probing of these microbial interactions to achieve a better understanding of the factors that govern the mechanisms by which CF lung microbes influence each other. In this study, we investigate the interaction between P. aeruginosa and P. melaninogenica , which are two highly prevalent and abundant CF lung microbes. We uncover a cross-feeding mechanism that requires the metabolism of mucin by P. melaninogenica to generate short-chain fatty acids that are cross-fed to P. aeruginosa , and into metabolized into metabolites which are then cross-fed back to P. melaninogenica to support the growth of this anaerobe.
Collapse
|
2
|
Peoples LM, Isanta-Navarro J, Bras B, Hand BK, Rosenzweig F, Elser JJ, Church MJ. Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate. mSystems 2024; 9:e0077024. [PMID: 38980051 PMCID: PMC11334502 DOI: 10.1128/msystems.00770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h-1, but these pools were more similar across treatments at a faster rate of 0.48 h-1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCE All organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organism Pseudomonas putida KT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Brian K. Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James J. Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
3
|
Banerjee D, Yunus IS, Wang X, Kim J, Srinivasan A, Menchavez R, Chen Y, Gin JW, Petzold CJ, Martin HG, Magnuson JK, Adams PD, Simmons BA, Mukhopadhyay A, Kim J, Lee TS. Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida. Metab Eng 2024; 82:157-170. [PMID: 38369052 DOI: 10.1016/j.ymben.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.
Collapse
Affiliation(s)
- Deepanwita Banerjee
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ian S Yunus
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xi Wang
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinho Kim
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aparajitha Srinivasan
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Russel Menchavez
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hector Garcia Martin
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jon K Magnuson
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Adams
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joonhoon Kim
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Lv F, Zhan Y, Lu W, Ke X, Shao Y, Ma Y, Zheng J, Yang Z, Jiang S, Shang L, Ma Y, Cheng L, Elmerich C, Yan Y, Lin M. Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri. iScience 2022; 25:105663. [PMID: 36505936 PMCID: PMC9730152 DOI: 10.1016/j.isci.2022.105663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria of the genus Pseudomonas consume preferred carbon substrates in nearly reverse order to that of enterobacteria, and this process is controlled by RNA-binding translational repressors and regulatory ncRNA antagonists. However, their roles in microbe-plant interactions and the underlying mechanisms remain uncertain. Here we show that root-associated diazotrophic Pseudomonas stutzeri A1501 preferentially catabolizes succinate, followed by the less favorable substrate citrate, and ultimately glucose. Furthermore, the Hfq/Crc/CrcZY regulatory system orchestrates this preference and contributes to optimal nitrogenase activity and efficient root colonization. Hfq has a central role in this regulatory network through different mechanisms of action, including repressing the translation of substrate-specific catabolic genes, activating the nitrogenase gene nifH posttranscriptionally, and exerting a positive effect on the transcription of an exopolysaccharide gene cluster. Our results illustrate an Hfq-mediated mechanism linking carbon metabolism to nitrogen fixation and root colonization, which may confer rhizobacteria competitive advantages in rhizosphere environments.
Collapse
Affiliation(s)
- Fanyang Lv
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua Zhan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Lu
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Ke
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Shao
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiyuan Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Zheng
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhimin Yang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Jiang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liguo Shang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | | | - Yongliang Yan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Corresponding author
| | - Min Lin
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China,Corresponding author
| |
Collapse
|
5
|
Sivakumar R, Gunasekaran P, Rajendhran J. Inactivation of CbrAB two-component system hampers root colonization in rhizospheric strain of Pseudomonas aeruginosa PGPR2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194763. [PMID: 34530138 DOI: 10.1016/j.bbagrm.2021.194763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCS) are one of the signal transduction mechanisms, which sense physiological/biological restraints and respond to changing environmental conditions by regulating the gene expression. Previously, by employing a forward genetic screen (INSeq), we identified that cbrA gene is essential for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. Here, we report the functional characterization of cbrAB TCS in PGPR2 during root colonization. We constructed insertion mutants in cbrA and its cognate response regulator cbrB. Genetic characterization revealed drastic down-regultion of sRNA crcZ gene in both mutant strains which play a critical role in carbon catabolite repression (CCR). The mutant strains displayed 10-fold decreased root colonization efficiency when compared to the wild-type strain. On the other hand, mutant strains formed higher biofilm on the abiotic surface, and the expression of pelB and pslA genes involved in biofilm matrix formation was up-regulated. In contrast, the expression of algD, responsible for alginate production, and its associated sigma factor algU was significantly down-regulated in mutant strains. We further analyzed the transcript levels of rsmA, controlled by the algU sigma factor, and found that the expression of rsmA was hampered in both mutants. The ability of mutant strains to swim and swarm was significantly hindered. Also, the expression of genes associated with type III secretion system (T3SS) was dysregulated in mutant strains. Taken together, regulation of gene expression by CbrAB TCS is intricate, and we confirm its role beyond carbon and nitrogen assimilation.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
6
|
Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis. Life (Basel) 2021; 11:life11080853. [PMID: 34440597 PMCID: PMC8401924 DOI: 10.3390/life11080853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
The large production of non-degradable petrol-based plastics has become a major global issue due to its environmental pollution. Biopolymers produced by microorganisms such as polyhydroxyalkanoates (PHAs) are gaining potential as a sustainable alternative, but the high cost associated with their industrial production has been a limiting factor. Post-transcriptional regulation is a key step to control gene expression in changing environments and has been reported to play a major role in numerous cellular processes. However, limited reports are available concerning the regulation of PHA accumulation in bacteria, and many essential regulatory factors still need to be identified. Here, we review studies where the synthesis of PHA has been reported to be regulated at the post-transcriptional level, and we analyze the RNA-mediated networks involved. Finally, we discuss the forthcoming research on riboregulation, synthetic, and metabolic engineering which could lead to improved strategies for PHAs synthesis in industrial production, thereby reducing the costs currently associated with this procedure.
Collapse
|
7
|
Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production. World J Microbiol Biotechnol 2020; 36:49. [PMID: 32157439 DOI: 10.1007/s11274-020-02824-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/29/2020] [Indexed: 12/25/2022]
Abstract
Glycerol is a by-product of biodiesel, and it has a great application prospect to be transformed to synthesize high value-added compounds. Pseudomonas chlororaphis GP72 isolated from the green pepper rhizosphere is a plant growth promoting rhizobacteria that can utilize amount of glycerol to synthesize phenazine-1-carboxylic acid (PCA). PCA has been commercially registered as "Shenqinmycin" in China due to its characteristics of preventing pepper blight and rice sheath blight. The aim of this study was to engineer glycerol utilization pathway in P. chlororaphis GP72. First, the two genes glpF and glpK from the glycerol metabolism pathway were overexpressed in GP72ANO separately. Then, the two genes were co-expressed in GP72ANO, improving PCA production from 729.4 mg/L to 993.4 mg/L at 36 h. Moreover, the shunt pathway was blocked to enhance glycerol utilization, resulting in 1493.3 mg/L PCA production. Additionally, we confirmed the inhibition of glpR on glycerol metabolism pathway in P. chlororaphis GP72. This study provides a good example for improving the utilization of glycerol to synthesize high value-added compounds in Pseudomonas.
Collapse
|
8
|
Yung YP, McGill SL, Chen H, Park H, Carlson RP, Hanley L. Reverse diauxie phenotype in Pseudomonas aeruginosa biofilm revealed by exometabolomics and label-free proteomics. NPJ Biofilms Microbiomes 2019; 5:31. [PMID: 31666981 PMCID: PMC6814747 DOI: 10.1038/s41522-019-0104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
Microorganisms enhance fitness by prioritizing catabolism of available carbon sources using a process known as carbon catabolite repression (CCR). Planktonically grown Pseudomonas aeruginosa is known to prioritize the consumption of organic acids including lactic acid over catabolism of glucose using a CCR strategy termed "reverse diauxie." P. aeruginosa is an opportunistic pathogen with well-documented biofilm phenotypes that are distinct from its planktonic phenotypes. Reverse diauxie has been described in planktonic cultures, but it has not been documented explicitly in P. aeruginosa biofilms. Here a combination of exometabolomics and label-free proteomics was used to analyze planktonic and biofilm phenotypes for reverse diauxie. P. aeruginosa biofilm cultures preferentially consumed lactic acid over glucose, and in addition, the cultures catabolized the substrates completely and did not exhibit the acetate secreting "overflow" metabolism that is typical of many model microorganisms. The biofilm phenotype was enabled by changes in protein abundances, including lactate dehydrogenase, fumarate hydratase, GTP cyclohydrolase, L-ornithine N(5)-monooxygenase, and superoxide dismutase. These results are noteworthy because reverse diauxie-mediated catabolism of organic acids necessitates a terminal electron acceptor like O2, which is typically in low supply in biofilms due to diffusion limitation. Label-free proteomics identified dozens of proteins associated with biofilm formation including 16 that have not been previously reported, highlighting both the advantages of the methodology utilized here and the complexity of the proteomic adaptation for P. aeruginosa biofilms. Documenting the reverse diauxic phenotype in P. aeruginosa biofilms is foundational for understanding cellular nutrient and energy fluxes, which ultimately control growth and virulence.
Collapse
Affiliation(s)
- Yeni P. Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - S. Lee McGill
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Hui Chen
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Heejoon Park
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Ross P. Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
9
|
Xie G, Zeng M, You J, Xie Z. Pseudomonas donghuensis HYS virulence towards Caenorhabditis elegans is regulated by the Cbr/Crc system. Sci Rep 2019; 9:8772. [PMID: 31217473 PMCID: PMC6584532 DOI: 10.1038/s41598-019-45145-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas donghuensis HYS is the type strain of a recently identified species, P. donghuensis, which has pathogenic potential with an unclear virulence mechanism. In this study, we used Caenorhabditis elegans as a host to explore the virulence mechanism of P. donghuensis HYS. Based on a correlation between P. donghuensis HYS virulence and its repellence property, we identified 68 potential virulence-related genes, among them the Cbr/Crc system, which regulates the virulence of prokaryotic microorganisms. Slow-killing assays indicated that cbrA, cbrB, or specific sRNA-encoding genes all affected P. donghuensis virulence positively, whereas crc affected it negatively. Transcriptome analyses demonstrated that the Cbr/Crc system played an important role in the pathogenesis of P. donghuensis. In addition, experiments using the worm mutant KU25 pmk-1(km25) showed a correlation between P. donghuensis HYS virulence and the PMK-1/p38 MAPK pathway in C. elegans. In conclusion, our data show that Crc plays a novel role in the Cbr/Crc system, and the P. donghuensis virulence phenotype therefore differs from that of P. aeruginosa. This process also involves C. elegans innate immunity. These findings significantly increase the available information about Cbr/Crc-based virulence mechanisms in the genus Pseudomonas.
Collapse
Affiliation(s)
- Guanfang Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Man Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Jia You
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|
10
|
Johnson CW, Abraham PE, Linger JG, Khanna P, Hettich RL, Beckham GT. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab Eng Commun 2017; 5:19-25. [PMID: 29188181 PMCID: PMC5699531 DOI: 10.1016/j.meteno.2017.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/28/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023] Open
Abstract
Carbon catabolite repression refers to the preference of microbes to metabolize certain growth substrates over others in response to a variety of regulatory mechanisms. Such preferences are important for the fitness of organisms in their natural environments, but may hinder their performance as domesticated microbial cell factories. In a Pseudomonas putida KT2440 strain engineered to convert lignin-derived aromatic monomers such as p-coumarate and ferulate to muconate, a precursor to bio-based nylon and other chemicals, metabolic intermediates including 4-hydroxybenzoate and vanillate accumulate and subsequently reduce productivity. We hypothesized that these metabolic bottlenecks may be, at least in part, the effect of carbon catabolite repression caused by glucose or acetate, more preferred substrates that must be provided to the strain for supplementary energy and cell growth. Using mass spectrometry-based proteomics, we have identified the 4-hydroxybenzoate hydroxylase, PobA, and the vanillate demethylase, VanAB, as targets of the Catabolite Repression Control (Crc) protein, a global regulator of carbon catabolite repression. By deleting the gene encoding Crc from this strain, the accumulation of 4-hydroxybenzoate and vanillate are reduced and, as a result, muconate production is enhanced. In cultures grown on glucose, the yield of muconate produced from p-coumarate after 36 h was increased nearly 70% with deletion of the gene encoding Crc (94.6 ± 0.6% vs. 56.0 ± 3.0% (mol/mol)) while the yield from ferulate after 72 h was more than doubled (28.3 ± 3.3% vs. 12.0 ± 2.3% (mol/mol)). The effect of eliminating Crc was similar in cultures grown on acetate, with the yield from p-coumarate just slightly higher in the Crc deletion strain after 24 h (47.7 ± 0.6% vs. 40.7 ± 3.6% (mol/mol)) and the yield from ferulate increased more than 60% after 72 h (16.9 ± 1.4% vs. 10.3 ± 0.1% (mol/mol)). These results are an example of the benefit that reducing carbon catabolite repression can have on conversion of complex feedstocks by microbial cell factories, a concept we posit could be broadly considered as a strategy in metabolic engineering for conversion of renewable feedstocks to value-added chemicals. Crc is a global regulator of carbon catabolite repression in pseudomonads. The gene encoding Crc was deleted from muconate a producing P. putida strain. Based on our proteomics data, expression of PobA and VanAB are regulated by Crc. Deleting Crc improved conversion to muconate in the presence of glucose or acetate. This may be a useful strategy toward developing pseudomonad cell factories.
Collapse
Affiliation(s)
- Christopher W Johnson
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jeffrey G Linger
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Payal Khanna
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| |
Collapse
|
11
|
Chakravarthy S, Butcher BG, Liu Y, D'Amico K, Coster M, Filiatrault MJ. Virulence of Pseudomonas syringae pv. tomato DC3000 Is Influenced by the Catabolite Repression Control Protein Crc. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:283-294. [PMID: 28384054 DOI: 10.1094/mpmi-09-16-0196-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacterial pathology, it is largely unexplored in P. syringae. The Crc (catabolite repression control) protein is a putative RNA-binding protein that regulates carbon metabolism as well as a number of other factors in the pseudomonads. Here, we show that deletion of crc increased bacterial swarming motility and biofilm formation. The crc mutant showed reduced growth and symptoms in Arabidopsis and tomato when compared with the wild-type strain. We have evidence that the crc mutant shows delayed hypersensitive response (HR) when infiltrated into Nicotiana benthamiana and tobacco. Interestingly, the crc mutant was more susceptible to hydrogen peroxide, suggesting that, in planta, the mutant may be sensitive to reactive oxygen species generated during pathogen-associated molecular pattern-triggered immunity (PTI). Indeed, HR was further delayed when PTI-induced tissues were challenged with the crc mutant. The crc mutant did not elicit an altered PTI response in plants compared with the wild-type strain. We conclude that Crc plays an important role in growth and survival during infection.
Collapse
Affiliation(s)
- Suma Chakravarthy
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
| | - Bronwyn G Butcher
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
| | - Yingyu Liu
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
| | - Katherine D'Amico
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
- 2 Emerging Pests & Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, U.S.A
| | - Matthew Coster
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
| | - Melanie J Filiatrault
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
- 2 Emerging Pests & Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, U.S.A
| |
Collapse
|
12
|
Hung CS, Zingarelli S, Nadeau LJ, Biffinger JC, Drake CA, Crouch AL, Barlow DE, Russell JN, Crookes-Goodson WJ. Carbon Catabolite Repression and Impranil Polyurethane Degradation in Pseudomonas protegens Strain Pf-5. Appl Environ Microbiol 2016; 82:6080-6090. [PMID: 27496773 PMCID: PMC5068165 DOI: 10.1128/aem.01448-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023] Open
Abstract
Polyester polyurethane (PU) coatings are widely used to help protect underlying structural surfaces but are susceptible to biological degradation. PUs are susceptible to degradation by Pseudomonas species, due in part to the degradative activity of secreted hydrolytic enzymes. Microorganisms often respond to environmental cues by secreting enzymes or secondary metabolites to benefit their survival. This study investigated the impact of exposing several Pseudomonas strains to select carbon sources on the degradation of the colloidal polyester polyurethane Impranil DLN (Impranil). The prototypic Pseudomonas protegens strain Pf-5 exhibited Impranil-degrading activities when grown in sodium citrate but not in glucose-containing medium. Glucose also inhibited the induction of Impranil-degrading activity by citrate-fed Pf-5 in a dose-dependent manner. Biochemical and mutational analyses identified two extracellular lipases present in the Pf-5 culture supernatant (PueA and PueB) that were involved in degradation of Impranil. Deletion of the pueA gene reduced Impranil-clearing activities, while pueB deletion exhibited little effect. Removal of both genes was necessary to stop degradation of the polyurethane. Bioinformatic analysis showed that putative Cbr/Hfq/Crc-mediated regulatory elements were present in the intergenic sequences upstream of both pueA and pueB genes. Our results confirmed that both PueA and PueB extracellular enzymes act in concert to degrade Impranil. Furthermore, our data showed that carbon sources in the growth medium directly affected the levels of Impranil-degrading activity but that carbon source effects varied among Pseudomonas strains. This study uncovered an intricate and complicated regulation of P. protegens PU degradation activity controlled by carbon catabolite repression. IMPORTANCE Polyurethane (PU) coatings are commonly used to protect metals from corrosion. Microbiologically induced PU degradation might pose a substantial problem for the integrity of these coatings. Microorganisms from diverse genera, including pseudomonads, possess the ability to degrade PUs via various means. This work identified two extracellular lipases, PueA and PueB, secreted by P. protegens strain Pf-5, to be responsible for the degradation of a colloidal polyester PU, Impranil. This study also revealed that the expression of the degradative activity by strain Pf-5 is controlled by glucose carbon catabolite repression. Furthermore, this study showed that the Impranil-degrading activity of many other Pseudomonas strains could be influenced by different carbon sources. This work shed light on the carbon source regulation of PU degradation activity among pseudomonads and identified the polyurethane lipases in P. protegens.
Collapse
Affiliation(s)
- Chia-Suei Hung
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA UES, Inc., Dayton, Ohio, USA
| | - Sandra Zingarelli
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA UES, Inc., Dayton, Ohio, USA
| | - Lloyd J Nadeau
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| | | | - Carrie A Drake
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA UES, Inc., Dayton, Ohio, USA
| | - Audra L Crouch
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA UES, Inc., Dayton, Ohio, USA
| | - Daniel E Barlow
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - John N Russell
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Wendy J Crookes-Goodson
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| |
Collapse
|
13
|
La Rosa R, Behrends V, Williams HD, Bundy JG, Rojo F. Influence of the Crc regulator on the hierarchical use of carbon sources from a complete medium inPseudomonas. Environ Microbiol 2016; 18:807-18. [DOI: 10.1111/1462-2920.13126] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Ruggero La Rosa
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC; Darwin 3, Cantoblanco 28049 Madrid Spain
| | - Volker Behrends
- Department of Life Sciences; University of Roehampton; London SW15 4DJ UK
- Department of Surgery and Cancer; Faculty of Medicine; Imperial College London; London SW7 2AZ UK
| | - Huw D. Williams
- Department of Life Sciences; Faculty of Natural Sciences; Imperial College London; London SW7 2AZ UK
| | - Jacob G. Bundy
- Department of Surgery and Cancer; Faculty of Medicine; Imperial College London; London SW7 2AZ UK
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC; Darwin 3, Cantoblanco 28049 Madrid Spain
| |
Collapse
|
14
|
Tatke G, Kumari H, Silva-Herzog E, Ramirez L, Mathee K. Pseudomonas aeruginosa MifS-MifR Two-Component System Is Specific for α-Ketoglutarate Utilization. PLoS One 2015; 10:e0129629. [PMID: 26114434 PMCID: PMC4482717 DOI: 10.1371/journal.pone.0129629] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/10/2015] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, metabolically versatile opportunistic pathogen that elaborates a multitude of virulence factors, and is extraordinarily resistant to a gamut of clinically significant antibiotics. This ability, in part, is mediated by two-component regulatory systems (TCS) that play a crucial role in modulating virulence mechanisms and metabolism. MifS (PA5512) and MifR (PA5511) form one such TCS implicated in biofilm formation. MifS is a sensor kinase whereas MifR belongs to the NtrC superfamily of transcriptional regulators that interact with RpoN (σ54). In this study we demonstrate that the mifS and mifR genes form a two-gene operon. The close proximity of mifSR operon to poxB (PA5514) encoding a ß-lactamase hinted at the role of MifSR TCS in regulating antibiotic resistance. To better understand this TCS, clean in-frame deletions were made in P. aeruginosa PAO1 creating PAO∆mifS, PAO∆mifR and PAO∆mifSR. The loss of mifSR had no effect on the antibiotic resistance profile. Phenotypic microarray (BioLOG) analyses of PAO∆mifS and PAO∆mifR revealed that these mutants were unable to utilize C5-dicarboxylate α-ketoglutarate (α-KG), a key tricarboxylic acid cycle intermediate. This finding was confirmed using growth analyses, and the defect can be rescued by mifR or mifSR expressed in trans. These mifSR mutants were able to utilize all the other TCA cycle intermediates (citrate, succinate, fumarate, oxaloacetate or malate) and sugars (glucose or sucrose) except α-KG as the sole carbon source. We confirmed that the mifSR mutants have functional dehydrogenase complex suggesting a possible defect in α-KG transport. The inability of the mutants to utilize α-KG was rescued by expressing PA5530, encoding C5-dicarboxylate transporter, under a regulatable promoter. In addition, we demonstrate that besides MifSR and PA5530, α-KG utilization requires functional RpoN. These data clearly suggests that P. aeruginosa MifSR TCS is involved in sensing α-KG and regulating its transport and subsequent metabolism.
Collapse
Affiliation(s)
- Gorakh Tatke
- Department of Biological Sciences, College of Arts & Sciences, Florida International University, Miami, Florida, United States of America
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Hansi Kumari
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Eugenia Silva-Herzog
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Lourdes Ramirez
- Department of Biological Sciences, College of Arts & Sciences, Florida International University, Miami, Florida, United States of America
| | - Kalai Mathee
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP. RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol 2015; 6:141. [PMID: 25784899 PMCID: PMC4347634 DOI: 10.3389/fmicb.2015.00141] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed toward the role of small RNAs (sRNAs) in bacterial post-transcriptional regulation. However, sRNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins (RBPs) play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RBPs, which include (i) adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii) modulating the accessibility of the ribosome binding site of mRNAs, (iii) recruiting and assisting in the interaction of mRNAs with other molecules and (iv) regulating transcription terminator/antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.
Collapse
Affiliation(s)
- Elke Van Assche
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Sandra Van Puyvelde
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| |
Collapse
|
16
|
Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat Commun 2014; 5:4076. [PMID: 24912567 DOI: 10.1038/ncomms5076] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/08/2014] [Indexed: 01/22/2023] Open
Abstract
Conventional wisdom holds that synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have no detectable effect on phenotype or fitness. However, a growing body of evidence from both comparative and experimental studies suggests otherwise. Synonymous mutations have been shown to impact gene expression, protein folding and fitness, however, direct evidence that they can be positively selected, and so contribute to adaptation, is lacking. Here we report the recovery of two beneficial synonymous single base pair changes that arose spontaneously and independently in an experimentally evolved population of Pseudomonas fluorescens. We show experimentally that these mutations increase fitness by an amount comparable to non-synonymous mutations and that the fitness increases stem from increased gene expression. These results provide unequivocal evidence that synonymous mutations can drive adaptive evolution and suggest that this class of mutation may be underappreciated as a cause of adaptation and evolutionary dynamics.
Collapse
|
17
|
Withers TR, Yin Y, Yu HD. Identification of novel genes associated with alginate production in Pseudomonas aeruginosa using mini-himar1 mariner transposon-mediated mutagenesis. J Vis Exp 2014. [PMID: 24637508 DOI: 10.3791/51346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ(22)). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.
Collapse
Affiliation(s)
- T Ryan Withers
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University
| | - Yeshi Yin
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University
| | - Hongwei D Yu
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University;
| |
Collapse
|
18
|
La Rosa R, de la Peña F, Prieto MA, Rojo F. The Crc protein inhibits the production of polyhydroxyalkanoates inPseudomonas putidaunder balanced carbon/nitrogen growth conditions. Environ Microbiol 2013; 16:278-90. [DOI: 10.1111/1462-2920.12303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ruggero La Rosa
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC; Darwin 3 Cantoblanco 28049 Madrid Spain
| | - Fernando de la Peña
- Departamento de Biología Ambiental; Centro de Investigaciones Biológicas, CSIC; Ramiro de Maeztu 9 28040 Madrid Spain
| | - María Axiliadora Prieto
- Departamento de Biología Ambiental; Centro de Investigaciones Biológicas, CSIC; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC; Darwin 3 Cantoblanco 28049 Madrid Spain
| |
Collapse
|
19
|
Matcher GF, Jiwaji M, de la Mare JA, Dorrington RA. Complex pathways for regulation of pyrimidine metabolism by carbon catabolite repression and quorum sensing in Pseudomonas putida RU-KM3S. Appl Microbiol Biotechnol 2013; 97:5993-6007. [DOI: 10.1007/s00253-013-4862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
|
20
|
Behrends V, Bell TJ, Liebeke M, Cordes-Blauert A, Ashraf SN, Nair C, Zlosnik JEA, Williams HD, Bundy JG. Metabolite profiling to characterize disease-related bacteria: gluconate excretion by Pseudomonas aeruginosa mutants and clinical isolates from cystic fibrosis patients. J Biol Chem 2013; 288:15098-109. [PMID: 23572517 PMCID: PMC3663530 DOI: 10.1074/jbc.m112.442814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metabolic footprinting of supernatants has been proposed as a tool for assigning gene function. We used NMR spectroscopy to measure the exometabolome of 86 single-gene transposon insertion mutant strains (mutants from central carbon metabolism and regulatory mutants) of the opportunistic pathogen Pseudomonas aeruginosa, grown on a medium designed to represent the nutritional content of cystic fibrosis sputum. Functionally related genes had similar metabolic profiles. E.g. for two-component system mutants, the cognate response regulator and sensor kinase genes clustered tightly together. Some strains had metabolic phenotypes (metabotypes) that could be related to the known gene function. E.g. pyruvate dehydrogenase mutants accumulated large amounts of pyruvate in the medium. In other cases, the metabolic phenotypes were not easily interpretable. The rpoN mutant, which lacks the alternative σ factor RpoN (σ54), accumulated high levels of gluconate in the medium. In addition, endometabolome profiling of intracellular metabolites identified a number of systemic metabolic changes. We linked this to indirect regulation of the catabolite repression protein Crc via the non-coding RNA crcZ and found that a crcZ (but not crc) mutant also shared the high-gluconate phenotype. We profiled an additional set of relevant metabolic enzymes and transporters, including Crc targets, and showed that the Crc-regulated edd mutant (gluconate-6-phosphate dehydratase) had similar gluconate levels as the rpoN mutant. Finally, a set of clinical isolates showed patient- and random amplification of polymorphic DNA (RAPD) type-specific differences in gluconate production, which were associated significantly with resistance across four antibiotics (tobramycin, ciprofloxacin, aztreonam, and imipenem), indicating that this has potential clinical relevance.
Collapse
Affiliation(s)
- Volker Behrends
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Follonier S, Escapa IF, Fonseca PM, Henes B, Panke S, Zinn M, Prieto MA. New insights on the reorganization of gene transcription in Pseudomonas putida KT2440 at elevated pressure. Microb Cell Fact 2013; 12:30. [PMID: 23537069 PMCID: PMC3621253 DOI: 10.1186/1475-2859-12-30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background Elevated pressure, elevated oxygen tension (DOT) and elevated carbon dioxide tension (DCT) are readily encountered at the bottom of large industrial bioreactors and during bioprocesses where pressure is applied for enhancing the oxygen transfer. Yet information about their effect on bacteria and on the gene expression thereof is scarce. To shed light on the cellular functions affected by these specific environmental conditions, the transcriptome of Pseudomonas putida KT2440, a bacterium of great relevance for the production of medium-chain-length polyhydroxyalkanoates, was thoroughly investigated using DNA microarrays. Results Very well defined chemostat cultivations were carried out with P. putida to produce high quality RNA samples and ensure that differential gene expression was caused exclusively by changes of pressure, DOT and/or DCT. Cellular stress was detected at 7 bar and elevated DCT in the form of heat shock and oxidative stress-like responses, and indicators of cell envelope perturbations were identified as well. Globally, gene transcription was not considerably altered when DOT was increased from 40 ± 5 to 235 ± 20% at 7 bar and elevated DCT. Nevertheless, differential transcription was observed for a few genes linked to iron-sulfur cluster assembly, terminal oxidases, glutamate metabolism and arginine deiminase pathway, which shows their particular sensitivity to variations of DOT. Conclusions This study provides a comprehensive overview on the changes occurring in the transcriptome of P. putida upon mild variations of pressure, DOT and DCT. Interestingly, whereas the changes of gene transcription were widespread, the cell physiology was hardly affected, which illustrates how efficient reorganization of the gene transcription is for dealing with environmental changes that may otherwise be harmful. Several particularly sensitive cellular functions were identified, which will certainly contribute to the understanding of the mechanisms involved in stress sensing/response and to finding ways of enhancing the stress tolerance of microorganisms.
Collapse
Affiliation(s)
- Stéphanie Follonier
- Swiss Federal Laboratories for Materials Science and Technology, Gallen, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Filiatrault MJ, Stodghill PV, Wilson J, Butcher BG, Chen H, Myers CR, Cartinhour SW. CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000. RNA Biol 2013; 10:245-55. [PMID: 23353577 DOI: 10.4161/rna.23019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Small non-coding RNAs (ncRNAs) are important components of many regulatory pathways in bacteria and play key roles in regulating factors important for virulence. Carbon catabolite repression control is modulated by small RNAs (crcZ or crcZ and crcY) in Pseudomonas aeruginosa and Pseudomonas putida. In this study, we demonstrate that expression of crcZ and crcX (formerly designated psr1 and psr2, respectively) is dependent upon RpoN together with the two-component system CbrAB, and is influenced by the carbon source present in the medium in the model plant pathogen Pseudomonas syringae pv tomato DC3000. The distribution of the members of the Crc ncRNA family was also determined by screening available genomic sequences of the Pseudomonads. Interestingly, variable numbers of the Crc family members exist in Pseudomonas genomes. The ncRNAs are comprised of three main subfamilies, named CrcZ, CrcX and CrcY. Most importantly the CrcX subfamily appears to be unique to all P. syringae strains sequenced to date.
Collapse
Affiliation(s)
- Melanie J Filiatrault
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Direct assessment of metabolite utilization by Pseudomonas aeruginosa during growth on artificial sputum medium. Appl Environ Microbiol 2013; 79:2467-70. [PMID: 23354718 DOI: 10.1128/aem.03609-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We grew Pseudomonas aeruginosa in LB and artificial sputum medium (ASM) (filtered and unfiltered) and quantified metabolite utilization and excretion by nuclear magnetic resonance (NMR) spectroscopy (metabolic footprinting or extracellular metabolomics). Utilization rates were similar between media, but there were differences in excretion-e.g., acetate was produced only in unfiltered ASM.
Collapse
|
24
|
Dong YH, Zhang XF, Zhang LH. The global regulator Crc plays a multifaceted role in modulation of type III secretion system in Pseudomonas aeruginosa. Microbiologyopen 2013; 2:161-72. [PMID: 23292701 PMCID: PMC3584221 DOI: 10.1002/mbo3.54] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 11/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa utilizes type III secretion system (T3SS) to translocate effector proteins into eukaryotic host cells that subvert normal host cell functions to the benefit of the pathogen, and results in serious infections. T3SS in P. aeruginosa is controlled by a complex system of regulatory mechanisms and signaling pathways. In this study, we described that Crc, an RNA-binding protein, exerts a positive impact on T3SS in P. aeruginosa, as evidenced by promoter activity assays of several key T3SS genes, transcriptomics, RT-PCR, and immunoblotting in crc mutant. We further demonstrated that the regulatory function of Crc on the T3SS was mediated through the T3SS master regulator ExsA and linked to the Cbr/Crc signaling system. Expression profiling of the crc mutant revealed a downregulation of flagship T3SS genes as well as 16 other genes known to regulate T3SS gene expression in P. aeruginosa. On the basis of these data, we proposed that Crc may exert multifaceted control on the T3SS through various pathways, which may serve to fine-tune this virulence mechanism in response to environmental changes and nutrient sources.
Collapse
Affiliation(s)
- Yi-Hu Dong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673.
| | | | | |
Collapse
|
25
|
Escapa IF, del Cerro C, García JL, Prieto MA. The role of GlpR repressor inPseudomonas putidaKT2440 growth and PHA production from glycerol. Environ Microbiol 2012; 15:93-110. [DOI: 10.1111/j.1462-2920.2012.02790.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Fonseca P, Moreno R, Rojo F. Pseudomonas putidagrowing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression. Environ Microbiol 2012; 15:24-35. [DOI: 10.1111/j.1462-2920.2012.02708.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Moreno R, Fonseca P, Rojo F. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression. Mol Microbiol 2011; 83:24-40. [PMID: 22053874 DOI: 10.1111/j.1365-2958.2011.07912.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Crc protein is a translational repressor that recognizes a specific target at some mRNAs, controlling catabolite repression and co-ordinating carbon metabolism in pseudomonads. In Pseudomonas aeruginosa, the levels of free Crc protein are controlled by CrcZ, a sRNA that sequesters Crc, acting as an antagonist. We show that, in Pseudomonas putida, the levels of free Crc are controlled by CrcZ and by a novel 368 nt sRNA named CrcY. CrcZ and CrcY, which contain six potential targets for Crc, were able to bind Crc specifically in vitro. The levels of CrcZ and CrcY were low under conditions generating a strong catabolite repression, and increased strongly when catabolite repression was absent. Deletion of either crcZ or crcY had no effect on catabolite repression, but the simultaneous absence of both sRNAs led to constitutive catabolite repression that compromised growth on some carbon sources. Overproduction of CrcZ or CrcY significantly reduced repression. We propose that CrcZ and CrcY act in concert, sequestering and modulating the levels of free Crc according to metabolic conditions. The CbrA/CbrB two-component system activated crcZ transcription, but had little effect on crcY. CrcY was detected in P. putida, Pseudomonas fluorescens and Pseudomonas syringae, but not in P. aeruginosa.
Collapse
Affiliation(s)
- Renata Moreno
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
28
|
Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011; 19:419-26. [PMID: 21664819 DOI: 10.1016/j.tim.2011.04.005] [Citation(s) in RCA: 777] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/12/2011] [Accepted: 04/29/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Elena B M Breidenstein
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|