1
|
Gana J, Gcebe N, Pierneef RE, Chen Y, Moerane R, Adesiyun AA. Genomic Characterization of Listeria innocua Isolates Recovered from Cattle Farms, Beef Abattoirs, and Retail Outlets in Gauteng Province, South Africa. Pathogens 2023; 12:1062. [PMID: 37624022 PMCID: PMC10457781 DOI: 10.3390/pathogens12081062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Whole-genome sequencing (WGS) was used for the genomic characterization of one hundred and ten strains of Listeria innocua (L. innocua) isolated from twenty-three cattle farms, eight beef abattoirs, and forty-eight retail outlets in Gauteng province, South Africa. In silico multilocus sequence typing (MLST) was used to identify the isolates' sequence types (STs). BLAST-based analyses were used to identify antimicrobial and virulence genes. The study also linked the detection of the genes to the origin (industries and types of samples) of the L. innocua isolates. The study detected 14 STs, 13 resistance genes, and 23 virulence genes. Of the 14 STs detected, ST637 (26.4%), ST448 (20%), 537 (13.6%), and 1085 (12.7%) were predominant, and the frequency varied significantly (p < 0.05). All 110 isolates of L. innocua were carriers of one or more antimicrobial resistance genes, with resistance genes lin (100%), fosX (100%), and tet(M) (30%) being the most frequently detected (p < 0.05). Of the 23 virulence genes recognized, 13 (clpC, clpE, clpP, hbp1, svpA, hbp2, iap/cwhA, lap, lpeA, lplA1, lspA, oatA, pdgA, and prsA2) were found in all 110 isolates of L. innocua. Overall, diversity and significant differences were detected in the frequencies of STs, resistance, and virulence genes according to the origins (source and sample type) of the L. innocua isolates. This, being the first genomic characterization of L. innocua recovered from the three levels/industries (farm, abattoir, and retail) of the beef production system in South Africa, provides data on the organism's distribution and potential food safety implications.
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
- Agricultural Education, Federal College of Education, Kontagora 923101, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa;
| | - Rian Ewald Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa;
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5001 Campus Dr. Room 4E-007/Mailstop HFS-710, College Park, MD 20740, USA;
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
| | - Abiodun Adewale Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| |
Collapse
|
2
|
Identification of Listeria species and Multilocus Variable-Number Tandem Repeat Analysis (MLVA) Typing of Listeria innocua and Listeria monocytogenes Isolates from Cattle Farms and Beef and Beef-Based Products from Retail Outlets in Mpumalanga and North West Provinces, South Africa. Pathogens 2023; 12:pathogens12010147. [PMID: 36678495 PMCID: PMC9862459 DOI: 10.3390/pathogens12010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
In this study, Listeria isolates (214) were characterized as follows: L. innocua (77.10%), L. monocytogenes (11.21%), L. welshimeri (5.61%), L. grayi (1.40%), L. seeligeri (0.93%), and L. species (3.73%) that were not identified at the species level, from beef and beef based products from retail and farms in Mpumalanga and North West provinces of South Africa. MLVA was further used to type Listeria innocua isolates (165) and Listeria monocytogenes isolates (24). The L. monocytogenes isolates were also serogrouped using PCR. The MLVA protocol for L. monocytogenes typing included six tandem repeat primer sets, and the MLVA protocol for L. innocua included the use of three tandem repeats primer sets. The L. monocytogenes serogroups were determined as follows: 4b-4d-4e (IVb) (37.50%), 1/2a-3a (IIa) (29.16%), 1/2b-3b (IIb) (12.50%), 1/2c-3c (IIc) (8.33%), and IVb-1 (4.16%). MLVA could cluster isolates belonging to each specie, L. monocytogenes, and L. innocua isolates, into MLVA-related strains. There were 34 and 10 MLVA types obtained from the MLVA typing of L. innocua and L. monocytogenes, respectively. MLVA clustered the L. monocytogenes isolates irrespective of sample category, serogroups, and geographical origin. Similarly, the L. innocua isolates clustered irrespective of meat category and geographical origin. MLVA was able to cluster isolates based on MLVA relatedness. The clustering of isolates from farms and retailers indicates transmission of Listeria spp. MLVA is an affordable, simple, and discriminatory method that can be used routinely to type L. monocytogenes and L. innocua isolates.
Collapse
|
3
|
Bellich B, Janež N, Sterniša M, Klančnik A, Ravenscroft N, Rizzo R, Sabotič J, Cescutti P. Characterisation of a new cell wall teichoic acid produced by Listeria innocua ŽM39 and analysis of its biosynthesis genes. Carbohydr Res 2021; 511:108499. [PMID: 35007911 DOI: 10.1016/j.carres.2021.108499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/14/2023]
Abstract
Listeria innocua is genetically closely related to the foodborne human pathogen Listeria monocytogenes. However, as most L. innocua strains are non-pathogenic, it has been proposed as a surrogate organism for determining the efficacy of antimicrobial strategies against L. monocytogenes. Teichoic acids are one of the three major cell wall components of Listeria, along with the peptidoglycan backbone and cell wall-associated proteins. The polymeric teichoic acids make up the majority of cell wall carbohydrates; the type of teichoic acids directly attached to the peptidoglycan are termed wall teichoic acids (WTAs). WTAs play vital physiological roles, are important virulence factors, antigenic determinants, and phage-binding ligands. The structures of the various WTAs of L. monocytogenes are well known, whereas those of L. innocua are not. In the present study, the WTA structure of L. innocua ŽM39 was determined mainly by 1D and 2D NMR spectroscopy and it was found to be the following: [→4)-[α-D-GlcpNAc-(1→3)]-β-D-GlcpNAc-(1→4)-D-Rbo-(1P→]n This structure is new with respect to all currently known Listeria WTAs and it shares structural similarities with type II WTA serovar 6a. In addition, the genome of strain L. innocua ŽM39 was sequenced and the majority of putative WTA synthesis genes were identified.
Collapse
Affiliation(s)
- Barbara Bellich
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Meta Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy.
| |
Collapse
|
4
|
Kaszoni-Rückerl I, Mustedanagic A, Muri-Klinger S, Brugger K, Wagner KH, Wagner M, Stessl B. Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities. Microorganisms 2020; 8:E234. [PMID: 32050536 PMCID: PMC7074772 DOI: 10.3390/microorganisms8020234] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/25/2022] Open
Abstract
: The genus Listeria now comprises up to now 21 recognized species and six subspecies, with L. monocytogenes and L. innocua as the most prevalent sensu stricto associated species. Reports focusing on the challenges in Listeria detection and confirmation are available, especially from food-associated environmental samples. L. innocua is more prevalent in the food processing environment (FPE) than L. monocytogenes and has been shown to have a growth advantage in selective enrichment and agar media. Until now, the adaptive nature of L. innocua in FPEs has not been fully elucidated and potential persistence in the FPE has not been observed. Therefore, the aim of this study is to characterize L. innocua (n = 139) and L. monocytogenes (n = 81) isolated from FPEs and cheese products collected at five dairy processing facilities (A-E) at geno- and phenotypic levels. Biochemical profiling was conducted for all L. monocytogenes and the majority of L. innocua (n = 124) isolates and included a rhamnose positive reaction. L. monocytogenes isolates were most frequently confirmed as PCR-serogroups 1/2a, 3a (95%). Pulsed-field gel electrophoresis (PFGE)-typing, applying the restriction enzymes AscI, revealed 33 distinct Listeria PFGE profiles with a Simpson's Index of Diversity of 0.75. Multi-locus sequence typing (MLST) resulted in 27 STs with seven new L. innocua local STs (ST1595 to ST1601). L. innocua ST1597 and ST603 and L. monocytogenes ST121 and ST14 were the most abundant genotypes in dairy processing facilities A-E over time. Either SSI-1 (ST14) or SSI-2 (ST121, all L. innocua) were present in successfully FPE-adapted strains. We identified housekeeping genes common in Listeria isolates and L. monocytogenes genetic lineage III. Wherever there are long-term contamination events of L. monocytogenes and other Listeria species, subtyping methods are helpful tools to identify niches of high risk.
Collapse
Affiliation(s)
- Irene Kaszoni-Rückerl
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (I.K.-R.); (S.M.-K.); (M.W.)
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Azra Mustedanagic
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation (FFOQSI), Technopark C, 3430 Tulln, Austria;
| | - Sonja Muri-Klinger
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (I.K.-R.); (S.M.-K.); (M.W.)
| | - Katharina Brugger
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Martin Wagner
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (I.K.-R.); (S.M.-K.); (M.W.)
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation (FFOQSI), Technopark C, 3430 Tulln, Austria;
| | - Beatrix Stessl
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (I.K.-R.); (S.M.-K.); (M.W.)
| |
Collapse
|
5
|
Harter E, Wagner EM, Zaiser A, Halecker S, Wagner M, Rychli K. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses. Appl Environ Microbiol 2017; 83:e00827-17. [PMID: 28625982 PMCID: PMC5541211 DOI: 10.1128/aem.00827-17] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481, and two homologous genes of the nonpathogenic species Listeria innocua: lin0464, coding for a putative transcriptional regulator, and lin0465, encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σB Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments.IMPORTANCEListeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation is still unknown. Here, we demonstrate that the genomic islet SSI-2, predominantly present in L. monocytogenes ST121 strains, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Our findings suggest that SSI-2 is part of a diverse set of molecular determinants contributing to niche-specific adaptation and persistence of L. monocytogenes ST121 strains in food processing environments.
Collapse
Affiliation(s)
- Eva Harter
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabrina Halecker
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kathrin Rychli
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
6
|
Fang C, Cao T, Cheng C, Xia Y, Shan Y, Xin Y, Guo N, Li X, Song H, Fang W. Activation of PrfA results in overexpression of virulence factors but does not rescue the pathogenicity of Listeria monocytogenes M7. J Med Microbiol 2015; 64:818-827. [PMID: 26055558 DOI: 10.1099/jmm.0.000101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Listeria monocytogenes encodes a transcriptional activator, PrfA, to positively regulate the expression of virulence factors. Several mutations in PrfA (PrfA*) have been found to contribute to increased regulatory activity. Here, we describe a strain, M7, containing a PrfA*(G145S) that activates expression of virulence factors but with low pathogenicity. To study this contradictory relationship, we exchanged the prfA genes between strains EGDe and M7 (designated EGDe-prfA(M7) and M7-prfA(EGDe)). The phospholipase B (PlcB) and listeriolysin O (LLO) activities were significantly upregulated in the strain EGDe-prfA(M7) (PrfA*). Constitutive activation of PrfA potentiated virulence of the pathogenic strain EGDe, shown as increased adhesion and invasion as well as enhanced cell-to-cell spread in cultured cell lines. However, the strain M7, though PrfA-activated, had significant defects in these virulence-related phenotypes and low pathogenicity in the murine infection model, as compared with EGDe or EGDe-PrfA(M7). To further uncover the possible mechanisms, we analysed abundance and distributions of InlA, InlB, LLO and ActA proteins, all regulated by PrfA, in EGDe, M7 and their prfA mutants. Western blotting showed that the PrfA-regulated genes of constitutively activated PrfA strains were overexpressed in vitro, while different distributions were observed. In contrast to the virulent strain EGDe-prfA(M7), the majority of InlB in M7 was detected in the culture supernatant and not on the bacterial surface. We suppose that the low virulence of strain M7 is due to its defects in infecting host cells, possibly as a result of failed anchorage on the bacterial cells of surface proteins like InlB, a major protein involved in adhesion and invasion of pathogenic L. monocytogenes strains. Further research is warranted to address why InlB detaches from the bacterial cells of this particular strain.
Collapse
Affiliation(s)
- Chun Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China., Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China., Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Changyong Cheng
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanbei Road, Lin'an, Zhejiang, 311300, PR China
| | - Ye Xia
- Zhejiang University Institute of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China., Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Ying Shan
- Zhejiang University Institute of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China., Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yongping Xin
- Zhejiang University Institute of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China., Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Ningning Guo
- Zhejiang University Institute of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China., Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China., Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Houhui Song
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanbei Road, Lin'an, Zhejiang, 311300, PR China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China., College of Animal Science and Technology, Zhejiang A&F University, 88 Huanbei Road, Lin'an, Zhejiang, 311300, PR China., Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| |
Collapse
|
7
|
Chen J, Fang C, Zheng T, Zhu N, Bei Y, Fang W. Genomic presence of gadD1 glutamate decarboxylase correlates with the organization of ascB-dapE internalin cluster in Listeria monocytogenes. Foodborne Pathog Dis 2014; 9:175-8. [PMID: 22315955 DOI: 10.1089/fpd.2011.1022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to survive and proliferate in acidic environments is a prerequisite for the infection of Listeria monocytogenes. The glutamate decarboxylase (GAD) system is responsible for acid resistance, and three GAD homologs have been identified in L. monocytogenes: gadD1, gadD2, and gadD3. To examine whether GAD genes are specific to lineage, serovar, or certain subpopulation, we performed a systematic investigation on the prevalence of GAD genes in 164 L. monocytogenes. In contrast to gadD2 and gadD3 conserved in all L. monocytogenes strains, gadD1 was identified in 36.6% (60/164) of L. monocytogenes strains, including all serovar 1/2c and 68.5% (37/54) of serovar 1/2a strains, as well as a small fraction of serovar 1/2b (3.4%, 1/29) and lineage III (13.8%, 4/29) strains. All serovar 4b and lineage IV strains lacked this gene. According to the ascB-dapE structure, L. monocytogenes strains were classified into four subpopulations, carrying inlC2DE, inlGC2DE, inlGHE, or no internalin cluster, respectively. All L. monocytogenes strains with inlGC2DE or inlGHE pattern harbored gadD1, whereas those bearing inlC2DE or no internalin cluster between ascB and dapE lacked gadD1. In addition, other five non-monocytogenes Listeria species lacking ascB-dapE internalin cluster were gadD1-negative. Overall, the presence of gadD1 is not fully dependent on lineages or serovars but correlates with ascB-dapE internalin profiles, suggesting gadD1 might have co-evolved with the ascB-dapE internalin cluster in the primitive L. monocytogenes before divergence of serovars.
Collapse
Affiliation(s)
- Jianshun Chen
- Zhejiang Fisheries Technical Extension Center, Hangzhou, Zhejiang, PR China
| | | | | | | | | | | |
Collapse
|
8
|
Liu D. Molecular approaches to the identification of pathogenic and nonpathogenic listeriae. Microbiol Insights 2013; 6:59-69. [PMID: 24826075 PMCID: PMC3987759 DOI: 10.4137/mbi.s10880] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genus Listeria consists of a closely related group of Gram-positive bacteria that commonly occur in the environment and demonstrate varied pathogenic potential. Of the 10 species identified to date, L. monocytogenes is a facultative intracellular pathogen of both humans and animals, L. ivanovii mainly infects ungulates (eg., sheep and cattle), while other species (L. innocua, L. seeligeri, L. welshimeri, L. grayi, L. marthii, L. rocourtiae, L. fleischmannii and L. weihenstephanensis) are essentially saprophytes. Within the species of L. monocytogenes, several serovars (e.g., 4b, 1/2a, 1/2b and 1/2c) are highly pathogenic and account for a majority of clinical isolations. Due to their close morphological, biological, biochemical and genetic similarities, laboratory identification of pathogenic and nonpathogenic Listeria organisms is technically challenging. With the development and application of various molecular approaches, accurate and rapid discrimination of pathogenic and nonpathogenic Listeria organisms, as well as pathogenic and nonpathogenic L. monocytogenes strains, has become possible.
Collapse
Affiliation(s)
- Dongyou Liu
- Royal College of Pathologists of Australasia Biosecurity Quality Assurance Programs, NSW, Australia
| |
Collapse
|
9
|
Viswanath P, Murugesan L, Knabel SJ, Verghese B, Chikthimmah N, Laborde LF. Incidence of Listeria monocytogenes and Listeria spp. in a small-scale mushroom production facility. J Food Prot 2013; 76:608-15. [PMID: 23575122 DOI: 10.4315/0362-028x.jfp-12-292] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen of significant concern to the agricultural and food processing industry because of its ability to grow and persist in cool and moist environments and its association with listeriosis, a disease with a very high mortality rate. Although there have been no listeriosis outbreaks attributed to fresh mushrooms in the United States, retail surveys and recalls are evidence that L. monocytogenes contamination of mushrooms (Agaricus bisporus) can occur. The objective of this study was to determine the prevalence of Listeria spp., including L. monocytogenes, in a small-scale mushroom production facility on the campus of the Pennsylvania State University in the United States. Of 184 samples taken from five production zones within the facility, 29 (15.8%) samples were positive for Listeria spp. Among the Listeria spp. isolates, L. innocua was most prevalent (10.3%) followed by L. welshimeri (3.3%), L. monocytogenes (1.6%), and L. grayi (0.5%). L. monocytogenes was recovered only from the phase I raw material composting area. Isolates of L. monocytogenes were confirmed and serotyped by multiplex PCR. The epidemiological relatedness of the three L. monocytogenes isolates to those serotypes or lineages frequently encountered in listeriosis infections was determined by multi-virulence-locus sequence typing using six virulence genes, namely, prfA, inlB, inlC, dal, clpP, and lisR. The phylogenetic positions of the three isolates in the dendrogram prepared with data from other isolates of L. monocytogenes showed that all isolates were grouped with serotype 4a, lineage IIIA. To date, this serotype has rarely been reported in foodborne disease outbreaks.
Collapse
Affiliation(s)
- Prema Viswanath
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Chen J, Cheng C, Lv Y, Fang W. Genetic diversity of internalin genes in theascB-dapElocus amongListeria monocytogeneslineages III and IV strains. J Basic Microbiol 2012; 53:778-84. [DOI: 10.1002/jobm.201200137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/20/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Jianshun Chen
- Zhejiang Fisheries Technical Extension Center, and Zhejiang Aquatic Disease Prevention and Quarantine Center; Hangzhou Zhejiang, P.R. China
| | - Changyong Cheng
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine; Hangzhou Zhejiang, P.R. China
| | - Yonghui Lv
- National Fisheries Technical Extension Center; Beijing P.R. China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine; Hangzhou Zhejiang, P.R. China
| |
Collapse
|
11
|
Zhao H, Chen J, Fang C, Xia Y, Cheng C, Jiang L, Fang W. Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches. J Microbiol 2011; 49:759-67. [PMID: 22068492 DOI: 10.1007/s12275-011-1006-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/19/2011] [Indexed: 11/25/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen of humans and animals. The majority of human listeriosis cases are caused by strains of lineages I and II, while lineage III strains are rare and seldom implicated in human listeriosis. We revealed by 16S rRNA sequencing the special evolutionary status of L. monocytogenes lineage III, which falls between lineages I and II strains of L. monocytogenes and the non-pathogenic species L. innocua and L. marthii in the dendrogram. Thirteen lineage III strains were then characterized by polyphasic approaches. Biochemical reactions demonstrated 8 biotypes, internalin profiling identified 10 internal-in types clustered in 4 groups, and multilocus sequence typing differentiated 12 sequence types. These typing schemes show that lineage III strains represent the most diverse population of L. monocytogenes, and comprise at least four subpopulations IIIA-1, IIIA-2, HIB, and IIIC. The in vitro and in vivo virulence assessments showed that two lineage IIIA-2 strains had reduced pathogenicity, while the other lineage III strains had comparable virulence to lineages I and II. The HIB strains are phylogenetically distinct from other sub-populations, providing additional evidence that this sublineage represents a novel lineage. The two biochemical reactions L-rhamnose and L-lactate alkalinization, and 10 internalins were identified as potential markers for lineage III subpopulations. This study provides new insights into the biodiversity and population structure of lineage III strains, which are important for understanding the evolution of the L. mono-cytogenes-L. innocua clade.
Collapse
Affiliation(s)
- Hanxin Zhao
- Zhejiang University Institute of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310029, P. R. China
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen J, Cheng C, Xia Y, Zhao H, Fang C, Shan Y, Wu B, Fang W. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiology (Reading) 2011; 157:3150-3161. [DOI: 10.1099/mic.0.049619-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen causing listeriosis. Acid is one of the stresses that foodborne pathogens encounter most frequently. The ability to survive and proliferate in acidic environments is a prerequisite for infection. However, there is limited knowledge about the molecular basis of adaptation of L. monocytogenes to acid. Arginine deiminase (ADI) and agmatine deiminase (AgDI) systems are implicated in bacterial tolerance to acidic environments. Homologues of ADI and AgDI systems have been found in L. monocytogenes lineages I and II strains. Sequence analysis indicated that lmo0036 encodes a putative carbamoyltransferase containing conserved motifs and residues important for substrate binding. Lmo0036 acted as an ornithine carbamoyltransferase and putrescine carbamoyltransferase, representing the first example, to our knowledge, that catalyses reversible ornithine and putrescine carbamoyltransfer reactions. Catabolic ornithine and putrescine carbamoyltransfer reactions constitute the second step of ADI and AgDI pathways. However, the equilibrium of in vitro carbamoyltransfer reactions was overwhelmingly towards the anabolic direction, suggesting that catabolic carbamoyltransferase was probably the limiting step of the pathways. lmo0036 was induced at the transcriptional level when L. monocytogenes was subjected to low-pH stress. Its expression product in Escherichia coli exhibited higher catabolic carbamoyltransfer activities under acidic conditions. Consistently, absence of this enzyme impaired the growth of Listeria under mild acidic conditions (pH 4.8) and reduced its survival in synthetic human gastric fluid (pH 2.5), and corresponded to a loss in ammonia production, indicating that Lmo0036 was responsible for acid tolerance at both sublethal and lethal pH levels. Furthermore, Lmo0036 played a possible role in Listeria virulence.
Collapse
Affiliation(s)
- Jianshun Chen
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Changyong Cheng
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Ye Xia
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Hanxin Zhao
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Chun Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Ying Shan
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, Zhejiang 310051, PR China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
13
|
Genome sequence of the nonpathogenic Listeria monocytogenes serovar 4a strain M7. J Bacteriol 2011; 193:5019-20. [PMID: 21742872 DOI: 10.1128/jb.05501-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report presents the complete and annotated genome sequence of the naturally nonpathogenic Listeria monocytogenes serovar 4a strain M7, isolated from cow's milk in Zhejiang province, China.
Collapse
|
14
|
Velge P, Roche SM. Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Future Microbiol 2011; 5:1799-821. [PMID: 21155663 DOI: 10.2217/fmb.10.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genus Listeria consists of eight species but only two are pathogenic. Human listeriosis due to Listeria monocytogenes is a foodborne disease. L. monocytogenes is widespread in the environment living as a saprophyte, but is also capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. It is now known that many distinct strains of L. monocytogenes differ in their virulence and epidemic potential. Unfortunately, there is currently no standard definition of virulence levels and no complete comprehensive overview of the evolution of Listeria species and L. monocytogenes strains taking into account the presence of both epidemic and low-virulence strains. This article focuses on the methods and genes allowing us to determine the pathogenic potential of Listeria strains, and the evolution of Listeria virulence. The presence of variable levels of virulence within L. monocytogenes has important consequences on detection of Listeria strains and risk analysis but also on our comprehension of how certain pathogens will behave in a population over evolutionary time.
Collapse
Affiliation(s)
- Philippe Velge
- INRA de tours, UR1282, Infectiologie Animale et Santé Publique, 37380 Nouzilly, France.
| | | |
Collapse
|
15
|
Jiang J, Chen J, Cheng C, Hu H, Bai F, Chen N, Yan G, Fang W. Disruption of InlC2 enhances the internalization of Listeria monocytogenes by epithelial cells. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0681-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Stress survival islet 1 (SSI-1) survey in Listeria monocytogenes reveals an insert common to listeria innocua in sequence type 121 L. monocytogenes strains. Appl Environ Microbiol 2011; 77:2169-73. [PMID: 21239547 DOI: 10.1128/aem.02159-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes strains (n = 117) were screened for the presence of stress survival islet 1 (SSI-1). SSI-1(+) strains (32.5%) belonged mainly to serotypes 1/2c, 3b, and 3c. All sequence type 121 (ST-121) strains included (n = 7) possessed homologues to Listeria innocua genes lin0464 and lin0465 instead of SSI-1.
Collapse
|