1
|
Fabri LV, Azzopardi KI, Osowicki J, Frost HR, Smeesters PR, Steer AC. An emm-type specific qPCR to track bacterial load during experimental human Streptococcus pyogenes pharyngitis. BMC Infect Dis 2021; 21:463. [PMID: 34020607 PMCID: PMC8138111 DOI: 10.1186/s12879-021-06173-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/12/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Streptococcus pyogenes causes a profound global burden of morbidity and mortality across its diverse clinical spectrum. To support a new controlled human infection ('challenge') model seeking to accelerate S. pyogenes vaccine development, we aimed to develop an accurate and reliable molecular method for quantifying bacterial load from pharyngeal swabs collected during experimental human pharyngitis. METHODS Combined sequential RNA + DNA extraction from throat swabs was compared to traditional separate RNA-only and DNA-only extractions. An emm-type specific qPCR was developed to detect the emm75 challenge strain. Results from the qPCR were compared to culture, using throat swab samples collected in a human challenge study. RESULTS The qPCR was 100% specific for the emm75 challenge strain when tested against a panel of S. pyogenes emm-types and other respiratory pathogens. Combined RNA + DNA extraction had similar yield to traditional separate extractions. The combined extraction method and emm75 qPCR had 98.8% sensitivity compared to culture for throat swabs collected from challenge study participants. CONCLUSIONS We have developed a reliable molecular method for measuring S. pyogenes bacterial load from throat swabs collected in a controlled human infection model of S. pyogenes pharyngitis. TRIAL REGISTRATION NCT03361163 on 4th December 2017.
Collapse
Affiliation(s)
- Loraine V Fabri
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Université Libre de Bruxelles, Brussels, Belgium
| | - Kristy I Azzopardi
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.
| | - Hannah R Frost
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Pierre R Smeesters
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
González-Díaz A, Machado MP, Càmara J, Yuste J, Varon E, Domenech M, Del Grosso M, Marimón JM, Cercenado E, Larrosa N, Quesada MD, Fontanals D, El-Mniai A, Cubero M, Carriço JA, Martí S, Ramirez M, Ardanuy C. Two multi-fragment recombination events resulted in the β-lactam-resistant serotype 11A-ST6521 related to Spain9V-ST156 pneumococcal clone spreading in south-western Europe, 2008 to 2016. ACTA ACUST UNITED AC 2020; 25. [PMID: 32347199 PMCID: PMC7189650 DOI: 10.2807/1560-7917.es.2020.25.16.1900457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BackgroundThe successful pneumococcal clone Spain9V-ST156 (PMEN3) is usually associated with vaccine serotypes 9V and 14.AimOur objective was to analyse the increase of a serotype 11A variant of PMEN3 as cause of invasive pneumococcal disease (IPD) in Spain and its spread in south-western Europe.MethodsWe conducted a prospective multicentre study of adult IPD in Spain (2008-16). Furthermore, a subset of 61 penicillin-resistant serotype 11A isolates from France, Italy, Portugal and Spain were subjected to whole genome sequencing (WGS) and compared with 238 genomes from the European Nucleotide Archive (ENA).ResultsAlthough the incidence of serotype 11A in IPD was stable, a clonal shift was detected from CC62 (penicillin-susceptible) to CC156 (penicillin-resistant). By WGS, three major 11A-CC156 lineages were identified, linked to ST156 (n = 5 isolates; France, Italy and Portugal), ST166 (n = 4 isolates; France and Portugal) and ST838/6521 (n = 52 isolates; France, Portugal and Spain). Acquisition of the 11A capsule allowed to escape vaccine effect. AP200 (11A-ST62) was the donor for ST156 and ST838/6521 but not for ST166. In-depth analysis of ST838/6521 lineage showed two multi-fragment recombination events including four and seven fragments from an 11A-ST62 and an NT-ST344 representative, respectively.ConclusionThe increase in penicillin-resistant serotype 11A IPD in Spain was linked to the spread of a vaccine escape PMEN3 recombinant clone. Several recombination events were observed in PMEN3 acquiring an 11A capsule. The most successful 11A-PMEN3 lineage spreading in south-western Europe appeared after two multi-fragment recombination events with representatives of two major pneumococcal clones (11A-ST62 and NT-ST344).
Collapse
Affiliation(s)
- Aida González-Díaz
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| | - Miguel P Machado
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Jordi Càmara
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| | - José Yuste
- Pneumococcal Reference Laboratory, Centro Nacional de Referencia, ISCIII, Madrid, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Emmanuelle Varon
- National Reference Centre for Pneumococci, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Miriam Domenech
- Pneumococcal Reference Laboratory, Centro Nacional de Referencia, ISCIII, Madrid, Spain
| | - María Del Grosso
- Infection Diseases Department, Istituto Superiore di Sanità, Rome, Italy
| | - José María Marimón
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Microbiology Department, San Sebastian, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Emilia Cercenado
- Clinical Microbiology and Infectious Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Nieves Larrosa
- Microbiology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - María Dolores Quesada
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Hospital Universitari Germans Trias i Pujol, UAB, Badalona, Spain
| | - Dionisia Fontanals
- Microbiology Department, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Assiya El-Mniai
- National Reference Centre for Pneumococci, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Meritxell Cubero
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| | - João A Carriço
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Sara Martí
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| | - Mario Ramirez
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Carmen Ardanuy
- Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| |
Collapse
|
3
|
Garriss G, Henriques-Normark B. Lysogeny in Streptococcus pneumoniae. Microorganisms 2020; 8:E1546. [PMID: 33036379 PMCID: PMC7600539 DOI: 10.3390/microorganisms8101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are major contributors to the evolution, pathogenesis and overall biology of their host bacteria. During their life cycle, temperate bacteriophages form stable associations with their host by integrating into the chromosome, a process called lysogeny. Isolates of the human pathogen Streptococcus pneumoniae are frequently lysogenic, and genomic studies have allowed the classification of these phages into distinct phylogenetic groups. Here, we review the recent advances in the characterization of temperate pneumococcal phages, with a focus on their genetic features and chromosomal integration loci. We also discuss the contribution of phages, and specific phage-encoded features, to colonization and virulence. Finally, we discuss interesting research perspectives in this field.
Collapse
Affiliation(s)
- Geneviève Garriss
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Bioclinicum, 171 76 Stockholm, Sweden
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
4
|
Methylation Warfare: Interaction of Pneumococcal Bacteriophages with Their Host. J Bacteriol 2019; 201:JB.00370-19. [PMID: 31285240 PMCID: PMC6755750 DOI: 10.1128/jb.00370-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection. Virus-host interactions are regulated by complex coevolutionary dynamics. In Streptococcus pneumoniae, phase-variable type I restriction-modification (R-M) systems are part of the core genome. We hypothesized that the ability of the R-M systems to switch between six target DNA specificities also has a key role in preventing the spread of bacteriophages. Using the streptococcal temperate bacteriophage SpSL1, we show that the variants of both the SpnIII and SpnIV R-M systems are able to restrict invading bacteriophage with an efficiency approximately proportional to the number of target sites in the bacteriophage genome. In addition to restriction of lytic replication, SpnIII also led to abortive infection in the majority of host cells. During lytic infection, transcriptional analysis found evidence of phage-host interaction through the strong upregulation of the nrdR nucleotide biosynthesis regulon. During lysogeny, the phage had less of an effect on host gene regulation. This research demonstrates a novel combined bacteriophage restriction and abortive infection mechanism, highlighting the importance that the phase-variable type I R-M systems have in the multifunctional defense against bacteriophage infection in the respiratory pathogen S. pneumoniae. IMPORTANCE With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection.
Collapse
|
5
|
Kwun MJ, Oggioni MR, De Ste Croix M, Bentley SD, Croucher NJ. Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition. Nucleic Acids Res 2019; 46:11438-11453. [PMID: 30321375 PMCID: PMC6265443 DOI: 10.1093/nar/gky906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Phase-variation of Type I restriction-modification systems can rapidly alter the sequence motifs they target, diversifying both the epigenetic patterns and endonuclease activity within clonally descended populations. Here, we characterize the Streptococcus pneumoniae SpnIV phase-variable Type I RMS, encoded by the translocating variable restriction (tvr) locus, to identify its target motifs, mechanism and regulation of phase variation, and effects on exchange of sequence through transformation. The specificity-determining hsdS genes were shuffled through a recombinase-mediated excision-reintegration mechanism involving circular intermediate molecules, guided by two types of direct repeat. The rate of rearrangements was limited by an attenuator and toxin-antitoxin system homologs that inhibited recombinase gene transcription. Target motifs for both the SpnIV, and multiple Type II, MTases were identified through methylation-sensitive sequencing of a panel of recombinase-null mutants. This demonstrated the species-wide diversity observed at the tvr locus can likely specify nine different methylation patterns. This will reduce sequence exchange in this diverse species, as the native form of the SpnIV RMS was demonstrated to inhibit the acquisition of genomic islands by transformation. Hence the tvr locus can drive variation in genome methylation both within and between strains, and limits the genomic plasticity of S. pneumoniae.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Marco R Oggioni
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| |
Collapse
|
6
|
Santoro F, Iannelli F, Pozzi G. Genomics and Genetics of Streptococcus pneumoniae. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0025-2018. [PMID: 31111814 PMCID: PMC11315030 DOI: 10.1128/microbiolspec.gpp3-0025-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/20/2022] Open
Abstract
Ninety years after the discovery of pneumococcal Transformation, and 74 years after the work of Avery and colleagues that identified DNA as the genetic material, Streptococcus pneumoniae is still one of the most important model organism to understand Bacterial Genetics and Genomics. In this Chapter special emphasis has been given to Genomics and to Mobile Genetic Elements (the Mobilome) which greatly contribute to the dynamic variation of pneumococcal genomes by horizontal gene transfer. Other topics include molecular mechanisms of Genetic Transformation, Restriction/Modification Systems, Mismatch DNA Repair, and techniques for construction of genetically engineered pneumococcal strains.
Collapse
Affiliation(s)
- Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Shelyakin PV, Bochkareva OO, Karan AA, Gelfand MS. Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow. BMC Evol Biol 2019; 19:83. [PMID: 30917781 PMCID: PMC6437910 DOI: 10.1186/s12862-019-1403-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae. Results Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions. The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity. Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism. Conclusions Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines. Electronic supplementary material The online version of this article (10.1186/s12862-019-1403-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavel V Shelyakin
- Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina str. 3, Moscow, 119991, Russia. .,Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., Moscow, 127051, Russia. .,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Olga O Bochkareva
- Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., Moscow, 127051, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna A Karan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail S Gelfand
- Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., Moscow, 127051, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| |
Collapse
|
8
|
Ramisetty BCM, Sudhakari PA. Bacterial 'Grounded' Prophages: Hotspots for Genetic Renovation and Innovation. Front Genet 2019; 10:65. [PMID: 30809245 PMCID: PMC6379469 DOI: 10.3389/fgene.2019.00065] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 01/07/2023] Open
Abstract
Bacterial genomes are highly plastic allowing the generation of variants through mutations and acquisition of genetic information. The fittest variants are then selected by the econiche thereby allowing the bacterial adaptation and colonization of the habitat. Larger genomes, however, may impose metabolic burden and hence bacterial genomes are optimized by the loss of frivolous genetic information. The activity of temperate bacteriophages has acute consequences on the bacterial population as well as the bacterial genome through lytic and lysogenic cycles. Lysogeny is a selective advantage as the prophage provides immunity to the lysogen against secondary phage attack. Since the non-lysogens are eliminated by the lytic phages, lysogens multiply and colonize the habitat. Nevertheless, all lysogens have an imminent risk of lytic cycle activation and cell lysis. However, a mutation in the attachment sites or in the genes that encode the specific recombinase responsible for prophage excision could result in 'grounding' of the prophage. Since the lysogens with grounded prophage are immune to respective phage infection as well as dodge the induction of lytic cycle, we hypothesize that the selection of these mutant lysogens is favored relative to their normal lysogenic counterparts. These grounded prophages offer several advantages to the bacterial genome evolution through propensity for genetic variations including inversions, deletions, and insertions via horizontal gene transfer. We propose that the grounded prophages expedite bacterial genome evolution by acting as 'genetic buffer zones' thereby increasing the frequency as well as the diversity of variations on which natural selection favors the beneficial variants. The grounded prophages are also hotspots for horizontal gene transfer wherein several ecologically significant genes such as those involved in stress tolerance, antimicrobial resistance, and novel metabolic pathways, are integrated. Moreover, the high frequency of genetic changes within prophages also allows proportionate probability for the de novo genesis of genetic information. Through sequence analyses of well-characterized E. coli prophages we exemplify various roles of grounded prophages in E. coli ecology and evolution. Therefore, the temperate prophages are one of the most significant drivers of bacterial genome evolution and sites of biogenesis of genetic information.
Collapse
Affiliation(s)
- Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
9
|
Intensive targeting of regulatory competence genes by transposable elements in streptococci. Mol Genet Genomics 2018; 294:531-548. [DOI: 10.1007/s00438-018-1507-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
|
10
|
Azarian T, Mitchell PK, Georgieva M, Thompson CM, Ghouila A, Pollard AJ, von Gottberg A, du Plessis M, Antonio M, Kwambana-Adams BA, Clarke SC, Everett D, Cornick J, Sadowy E, Hryniewicz W, Skoczynska A, Moïsi JC, McGee L, Beall B, Metcalf BJ, Breiman RF, Ho PL, Reid R, O’Brien KL, Gladstone RA, Bentley SD, Hanage WP. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog 2018; 14:e1007438. [PMID: 30475919 PMCID: PMC6283594 DOI: 10.1371/journal.ppat.1007438] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/06/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3-31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939-1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development.
Collapse
Affiliation(s)
- Taj Azarian
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Patrick K. Mitchell
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Maria Georgieva
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Claudette M. Thompson
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Amel Ghouila
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford; NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Churchill Hospital, Oxford, United Kingdom
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Martin Antonio
- Medical Research Council Unit The Gambia, Fajara, The Gambia
| | | | - Stuart C. Clarke
- Faculty of Medicine and Institute for Life Sciences and Global Health Research Institute, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| | - Dean Everett
- Queens Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Cornick
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland
| | | | | | - Jennifer C. Moïsi
- Pfizer Vaccines, Medical Development, Scientific and Clinical Affairs, Paris, France
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Benjamin J. Metcalf
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Robert F. Breiman
- Global Health Institute, Emory University, Atlanta, Georgia, United States of America
| | - PL Ho
- Department of Microbiology, Queen Mary Hospital University of Hong Kong, Hong Kong, People’s Republic of China
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katherine L. O’Brien
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rebecca A. Gladstone
- Wellcome Trust, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Wellcome Trust, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Campbell F, Strang C, Ferguson N, Cori A, Jombart T. When are pathogen genome sequences informative of transmission events? PLoS Pathog 2018; 14:e1006885. [PMID: 29420641 PMCID: PMC5821398 DOI: 10.1371/journal.ppat.1006885] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/21/2018] [Accepted: 01/18/2018] [Indexed: 01/19/2023] Open
Abstract
Recent years have seen the development of numerous methodologies for reconstructing transmission trees in infectious disease outbreaks from densely sampled whole genome sequence data. However, a fundamental and as of yet poorly addressed limitation of such approaches is the requirement for genetic diversity to arise on epidemiological timescales. Specifically, the position of infected individuals in a transmission tree can only be resolved by genetic data if mutations have accumulated between the sampled pathogen genomes. To quantify and compare the useful genetic diversity expected from genetic data in different pathogen outbreaks, we introduce here the concept of ‘transmission divergence’, defined as the number of mutations separating whole genome sequences sampled from transmission pairs. Using parameter values obtained by literature review, we simulate outbreak scenarios alongside sequence evolution using two models described in the literature to describe transmission divergence of ten major outbreak-causing pathogens. We find that while mean values vary significantly between the pathogens considered, their transmission divergence is generally very low, with many outbreaks characterised by large numbers of genetically identical transmission pairs. We describe the impact of transmission divergence on our ability to reconstruct outbreaks using two outbreak reconstruction tools, the R packages outbreaker and phybreak, and demonstrate that, in agreement with previous observations, genetic sequence data of rapidly evolving pathogens such as RNA viruses can provide valuable information on individual transmission events. Conversely, sequence data of pathogens with lower mean transmission divergence, including Streptococcus pneumoniae, Shigella sonnei and Clostridium difficile, provide little to no information about individual transmission events. Our results highlight the informational limitations of genetic sequence data in certain outbreak scenarios, and demonstrate the need to expand the toolkit of outbreak reconstruction tools to integrate other types of epidemiological data. The increasing availability of genetic sequence data has sparked an interest in using pathogen whole genome sequences to reconstruct the history of individual transmission events in an infectious disease outbreak. However, such methodologies rely on pathogen genomes mutating rapidly enough to discriminate between infected individuals, an assumption that remains to be investigated. To determine pathogen outbreaks for which genetic data is expected to be informative of transmission events, we introduce here the concept of ‘transmission divergence’, defined as the number of mutations separating pathogen genome sequences sampled from transmission pairs. We characterise transmission divergence of ten major outbreak causing pathogens using simulations and find significant variation between diseases, with viral outbreaks generally exhibiting higher transmission divergence than bacterial ones. We reconstruct these outbreaks using the R-packages outbreaker and phybreak and find that genetic sequence data, though useful for rapidly evolving pathogens, provides little to no information about outbreaks with low transmission divergence, such as Streptococcus pneumoniae and Shigella sonnei. Our results demonstrate the need to incorporate other sources of outbreak data, such as contact tracing data and spatial location data, into outbreak reconstruction tools.
Collapse
Affiliation(s)
- Finlay Campbell
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (FC); (TJ); (AC)
| | - Camilla Strang
- Centre for Preventive Medicine, Department of Epidemiology and Disease Surveillance, Animal Health Trust, Suffolk, United Kingdom
| | - Neil Ferguson
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Anne Cori
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (FC); (TJ); (AC)
| | - Thibaut Jombart
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (FC); (TJ); (AC)
| |
Collapse
|
12
|
Zhao Y, Sun C, Zhao D, Zhang Y, You Y, Jia X, Yang J, Wang L, Wang J, Fu H, Kang Y, Chen F, Yu J, Wu J, Xiao J. PGAP-X: extension on pan-genome analysis pipeline. BMC Genomics 2018; 19:36. [PMID: 29363431 PMCID: PMC5780747 DOI: 10.1186/s12864-017-4337-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Since PGAP (pan-genome analysis pipeline) was published in 2012, it has been widely employed in bacterial genomics research. Though PGAP has integrated several modules for pan-genomics analysis, how to properly and effectively interpret and visualize the results data is still a challenge. Result To well present bacterial genomic characteristics, a novel cross-platform software was developed, named PGAP-X. Four kinds of data analysis modules were developed and integrated: whole genome sequences alignment, orthologous genes clustering, pan-genome profile analysis, and genetic variants analysis. The results from these analyses can be directly visualized in PGAP-X. The modules for data visualization in PGAP-X include: comparison of genome structure, gene distribution by conservation, pan-genome profile curve and variation on genic and genomic region. Meanwhile, result data produced by other programs with similar function can be imported to be further analyzed and visualized in PGAP-X. To test the performance of PGAP-X, we comprehensively analyzed 14 Streptococcus pneumonia strains and 14 Chlamydia trachomatis. The results show that, S. pneumonia strains have higher diversity on genome structure and gene contents than C. trachomatis strains. In addition, S. pneumonia strains might have suffered many evolutionary events, such genomic rearrangements, frequent horizontal gene transfer, homologous recombination, and other evolutionary process. Conclusion Briefly, PGAP-X directly presents the characteristics of bacterial genomic diversity with different visualization methods, which could help us to intuitively understand dynamics and evolution in bacterial genomes. The source code and the pre-complied executable programs are freely available from http://pgapx.ybzhao.com. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4337-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongbing Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chen Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dongyu Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yadong Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang You
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinmiao Jia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Junhui Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lingping Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jinyue Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Haohuan Fu
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,Beijing Institute of Genomics, Chinese Academy of Sciences, NO. 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,Big Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Beijing Institute of Genomics, Chinese Academy of Sciences, NO. 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
13
|
Molecular characterization of non-vaccine Streptococcus pneumoniae serotypes 11A, 15 B/C and 23A recovered from invasive isolates in Colombia. BIOMEDICA 2017; 37:390-396. [DOI: 10.7705/biomedica.v37i3.3223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 11/30/2016] [Indexed: 11/21/2022]
Abstract
Introducción. En Colombia se recolectaron 192 aislamientos invasivos de Streptococcus pneumoniae de los serotipos 11A, 15B/C y 23A (no incluidos en las vacunas conjugadas) entre 1994 y 2014, como parte de las actividades del Sistema de Redes de Vigilancia de los Agentes Responsables de Neumonías y Meningitis Bacterianas (SIREVA II).Objetivo. Determinar las características moleculares de aislamientos invasivos de los serotipos 11A, 15B/C y 23A de S. pneumoniae recolectados en Colombia entre 1994 y 2014. Materiales y métodos. La caracterización molecular de los aislamientos se hizo mediante electroforesis en gel de campo pulsado (Pulse-Field Gel Electrophoresis, PFGE) y por tipificación de secuencias multilocus (Multilocus Sequence Typing, MLST).Resultados. El serotipo 11A mostró un grupo clonal representado por el ST62, en tanto que el serotipo 15B/C se distribuyó en tres grupos asociados con los clones Netherlands15B-37 ST199 (28,75 %), ST8495 (18,75 %) y SLV (variante en un solo locus) de ST193 (21,25 %). Los aislamientos con serotipo 23A se agruparon en tres grupos clonales; 70,21 % de ellos estaban estrechamente relacionados con el ST42, 17,02 % con el Colombia23F-ST338, y 6,38 % con el Netherlands15B-37 ST199.Conclusión. Los clones Colombia23F-ST338 y Netherlands15B-ST199 encontrados en este estudio abarcaron más serotipos de los reportados previamente por otros autores, incluido el serotipo 23A. Estos análisis revelan la importancia de la conmutación (switching) capsular en la expansión de clones exitosos entre los serotipos no vacunales como causa de enfermedad invasiva neumocócica.
Collapse
|
14
|
Pneumococcus with the "6E" cps Locus Produces Serotype 6B Capsular Polysaccharide. J Clin Microbiol 2016; 54:967-71. [PMID: 26818670 DOI: 10.1128/jcm.03194-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/15/2016] [Indexed: 11/20/2022] Open
Abstract
Genetic studies of serogroup 6 isolates ofStreptococcus pneumoniaeidentified putative serotype 6E. Although its capsular polysaccharide structure has not been elucidated, putative serotype 6E is described in an increasing number of studies as a potentially new serotype. We show here that SPEC6B, which is widely used as a target strain for serotype 6B opsonophagocytosis assays, has the genetic features of the putative serotype 6E but produces capsular polysaccharide identical to 6B capsular polysaccharide as determined by one-dimensional (1D) and 2D nuclear magnetic resonance (NMR). Thus, putative serotype 6E is a mere genetic variant of serotype 6B. Also, SPEC6B is appropriate as a target strain for serotype 6B opsonophagocytosis assays. This example illustrates the difficulties of assigning new bacterial serotypes based on genetic findings alone.
Collapse
|
15
|
Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun 2014; 5:5471. [PMID: 25407023 PMCID: PMC4263131 DOI: 10.1038/ncomms6471] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022] Open
Abstract
Bacterial populations often consist of multiple co-circulating lineages. Determining how such population structures arise requires understanding what drives bacterial diversification. Using 616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are typically characterized by combinations of infrequently transferred stable genomic islands: those moving primarily through transformation, along with integrative and conjugative elements and phage-related chromosomal islands. The only lineage containing extensive unique sequence corresponds to a set of atypical unencapsulated isolates that may represent a distinct species. However, prophage content is highly variable even within lineages, suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-phage mechanisms to prevent these viruses sweeping through populations. Correspondingly, two loci encoding Type I restriction-modification systems able to change their specificity over short timescales through intragenomic recombination are ubiquitous across the collection. Hence short-term pneumococcal variation is characterized by movement of phage and intragenomic rearrangements, with the slower transfer of stable loci distinguishing lineages. Populations of the pathogenic bacterium Streptococcus pneumoniae consist of distinct co-circulating lineages. Here, the authors show lineages are characterized by particular combinations of stable genomic islands, whereas prophage and restriction-modification systems vary over short timescales.
Collapse
Affiliation(s)
- Nicholas J Croucher
- 1] Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA [2] Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College, London W2 1PG, UK
| | - Paul G Coupland
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Abbie E Stevenson
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Alanna Callendrello
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Stephen D Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - William P Hanage
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720-60. [DOI: 10.1111/1574-6976.12058] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
17
|
Camilli R, Spencer BL, Moschioni M, Pinto V, Berti F, Nahm MH, Pantosti A. Identification of Streptococcus pneumoniae serotype 11E, serovariant 11Av and mixed populations by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and flow cytometric serotyping assay (FCSA). PLoS One 2014; 9:e100722. [PMID: 24967818 PMCID: PMC4072641 DOI: 10.1371/journal.pone.0100722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background Recent studies have identified Streptococcus pneumoniae serotype 11E and serovariant 11Av among isolates previously typed as 11A by classical serotyping methods. Serotype 11E and serovariant 11Av differ from serotype 11A by having totally or partially inactive wcjE, a gene in cps locus coding for an O-acetyl transferase. Serotype 11E is rare among carriage isolates but common among invasive isolates suggesting that it survives better during invasion. Aim of this work was to investigate the epidemiology of serotype 11A in a pneumococcal collection using a new serotyping approach based on High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) spectroscopy to distinguish serotypes 11A and 11E. Methods A collection of 48 (34 invasive and 14 carriage) S. pneumoniae isolates from Italy, previously identified as serotype 11A by the Quellung reaction, were investigated by wcjE sequencing, HR-MAS NMR spectroscopy and the reference flow cytometric serotyping assay (FCSA) based on monoclonal antibodies. Results HR-MAS NMR spectra from serotypes 11A and 11E showed different NMR peaks indicating that HR-MAS NMR could be used to distinguish these serotypes, although HR-MAS NMR could not distinguish serotype 11Av from serotype 11E unambiguously. Thirty-eight isolates were confirmed to be serotype 11A, 8 isolates with a mutated wcjE were serotype 11E, 1 isolate belonged to serovariant 11Av, and 1 isolate was a mixed population 11A/11Av. All 11E isolates were identified among invasive isolates. Conclusions We proved that HR-MAS NMR can be of potential use for pneumococcal serotyping. The detection of serotype 11E among invasive isolates in our collection, supports previous epidemiological studies suggesting that mutations in wcjE can represent a mechanism promoting pneumococcal survival during invasion. The discovery of a spectrum of immunochemical diversity within established serotypes should stimulate efforts to develop new serotyping approaches.
Collapse
Affiliation(s)
- Romina Camilli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Brady L. Spencer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | | | | | - Moon H. Nahm
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Annalisa Pantosti
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
18
|
Fondi M, Orlandini V, Corti G, Severgnini M, Galardini M, Pietrelli A, Fuligni F, Iacono M, Rizzi E, De Bellis G, Fani R. Enly: Improving Draft Genomes through Reads Recycling. J Genomics 2014; 2:89-93. [PMID: 25031660 PMCID: PMC4091449 DOI: 10.7150/jgen.7298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The reconstruction of the complete genome sequence of an organism is an important point for comparative, functional and evolutionary genomics. Nevertheless, overcoming the problems encountered while completing the sequence of an entire genome can still be demanding in terms of time and resources. We have developed Enly, a simple tool based on the iterative mapping of sequence reads at contig edges, capable to extend the genomic contigs deriving from high-throughput sequencing, especially those deriving by Newbler-like assemblies. Testing it on a set of de novo draft genomes led to the closure of up to 20% of the gaps originally present. Enly is cross-platform and most of the steps of its pipeline are parallelizable, making easy and fast to improve a draft genome resulting from a de novo assembly.
Collapse
Affiliation(s)
- Marco Fondi
- 1. Dept. of Evolutionary Biology, Via Madonna del Piano 6, 50143 Sesto Fiorentino,Florence, Italy
| | - Valerio Orlandini
- 1. Dept. of Evolutionary Biology, Via Madonna del Piano 6, 50143 Sesto Fiorentino,Florence, Italy
| | - Giorgio Corti
- 2. Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate (MI), Italy
| | - Marco Severgnini
- 2. Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate (MI), Italy
| | - Marco Galardini
- 1. Dept. of Evolutionary Biology, Via Madonna del Piano 6, 50143 Sesto Fiorentino,Florence, Italy
| | - Alessandro Pietrelli
- 2. Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate (MI), Italy
| | - Fabio Fuligni
- 2. Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate (MI), Italy
| | - Michele Iacono
- 2. Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate (MI), Italy
| | - Ermanno Rizzi
- 2. Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate (MI), Italy
| | - Gianluca De Bellis
- 2. Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate (MI), Italy
| | - Renato Fani
- 1. Dept. of Evolutionary Biology, Via Madonna del Piano 6, 50143 Sesto Fiorentino,Florence, Italy
| |
Collapse
|
19
|
Lee LH, Gu XX, Nahm MH. Towards New Broader Spectrum Pneumococcal Vaccines: The Future of Pneumococcal Disease Prevention. Vaccines (Basel) 2014; 2:112-28. [PMID: 26344470 PMCID: PMC4494192 DOI: 10.3390/vaccines2010112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/18/2014] [Accepted: 02/06/2014] [Indexed: 01/13/2023] Open
Abstract
Seven-valent pneumococcal conjugate vaccine (PCV7) introduction and routine pediatric use has substantially reduced the burden of Streptococcus pneumoniae disease worldwide. However, a significant amount of disease burden, due to serotypes not contained in PCV7, still exists globally. A newly recognized serotype, 6C, was until recently, identified and reported as serotype 6A. This review summarizes the serotype epidemiology of pneumococcal disease pre- and post-introduction of PCV7, available post-marketing surveillance data following the introduction of higher valency pneumococcal vaccines (PCV10, PCV13) and future prospects for the development of new pneumococcal vaccines.
Collapse
Affiliation(s)
- Lucia H Lee
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA.
| | - Xin-Xing Gu
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Moon H Nahm
- Departments of Microbiology and Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
20
|
Kolberg J, Aase A, Naess LM, Aaberge IS, Caugant DA. Human antibody responses to pneumococcal surface protein A and capsular polysaccharides during acute and convalescent stages of invasive disease in adult patients. Pathog Dis 2013; 70:40-50. [DOI: 10.1111/2049-632x.12106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jan Kolberg
- Department of Bacteriology and Immunology; Norwegian Institute of Public Health; Oslo Norway
| | - Audun Aase
- Department of Bacteriology and Immunology; Norwegian Institute of Public Health; Oslo Norway
| | - Lisbeth M. Naess
- Department of Bacteriology and Immunology; Norwegian Institute of Public Health; Oslo Norway
| | - Ingeborg S. Aaberge
- Department of Bacteriology and Immunology; Norwegian Institute of Public Health; Oslo Norway
| | - Dominique A. Caugant
- Department of Bacteriology and Immunology; Norwegian Institute of Public Health; Oslo Norway
| |
Collapse
|
21
|
Oliver MB, Jones C, Larson TR, Calix JJ, Zartler ER, Yother J, Nahm MH. Streptococcus pneumoniae serotype 11D has a bispecific glycosyltransferase and expresses two different capsular polysaccharide repeating units. J Biol Chem 2013; 288:21945-54. [PMID: 23737526 DOI: 10.1074/jbc.m113.488528] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) expresses a capsular polysaccharide (CPS) that protects against host immunity and is synthesized by enzymes in the capsular polysaccharide synthesis (cps) locus. Serogroup 11 has six members (11A to -E) and the CPS structure of all members has been solved, except for serotype 11D. The cps loci of 11A and 11D differ by one codon (N112S) in wcrL, which putatively encodes a glycosyltransferase that adds the fourth sugar of the CPS repeating unit (RU). Gas chromatography and nuclear magnetic resonance analysis revealed that 11A and 11D PSs contain identical CPS RUs that contain αGlc as the fourth sugar. However, ∼25% of 11D CPS RUs contain instead αGlcNAc as the fourth sugar, suggesting that 11D wcrL encodes a bispecific glycosyltransferase. To test the hypothesis that codon 112 of WcrL determines enzyme specificity, and therefore the fourth sugar in the RU, we generated three isogenic pneumococcal strains with 11A cps loci containing wcrL encoding Ser-112 (MBO128) or Ala-112 (MBO130). MBO128 was serologically and biochemically identical to serotype 11D. MBO130 has a unique serologic profile; has as much αGlcNAc as 11F, 11B, and 11C CPS do; and may represent a new serotype. These findings demonstrate how pneumococci alter their CPS structure and their immunologic properties with a minimal genetic change.
Collapse
Affiliation(s)
- Melissa B Oliver
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Canning C, Sun S, Ji X, Gupta S, Zhou K. Antibacterial and cytotoxic activity of isoprenylated coumarin mammea A/AA isolated from Mammea africana. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:259-262. [PMID: 23466248 DOI: 10.1016/j.jep.2013.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The stem bark of Mammea africana is widely distributed in tropical Africa and commonly used in traditional medicine. This study aims to identify the active compound in Mammea africana and to evaluate its antimicrobial and antiproliferative activity. MATERIALS AND METHODS Methanol extract from the bark of the Mammea africana was separated by liquid-liquid extraction, followed by open column chromatography. A principal antimicrobial compound was purified by high performance liquid chromatography (HPLC) and its structure was elucidated by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The antibacterial activity of the purified compound was determined using the broth microdilution method against 7 common pathogenic bacteria. The compound was also evaluated for cytotoxicity by cell proliferation assay (MTS) using the mouse embryonic fibroblast cell line NIH 3T3 and the non-small cell lung cancer cell line A549. RESULTS The purified active compound was determined to be mammea A/AA and was found to be highly active against Campylobacter jejuni (MIC=0.5 μg/ml), Streptococcus pneumoniae (MIC=0.25 μg/ml), and Clostridium difficile (MIC=0.25 μg/ml). The compound exhibited significant antiproliferative activities against both NIH 3T3 and A549 cell lines. CONCLUSION Mammea A/AA isolated from Mammea africana exerts specific inhibitory activity against Campylobacter jejuni, Streptococcus pneumoniae, and Campylobacter difficile. Mammea A/AA was also found to exhibit significant cytotoxicity against both cancer and normal cell lines.
Collapse
Affiliation(s)
- Corene Canning
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
23
|
Menon BB, Govindarajan B. Identification of an atypical zinc metalloproteinase, ZmpC, from an epidemic conjunctivitis-causing strain of Streptococcus pneumoniae. Microb Pathog 2012; 56:40-6. [PMID: 23168398 DOI: 10.1016/j.micpath.2012.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/08/2012] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae is a pathogen associated with a range of invasive and noninvasive infections. Despite the identification of the majority of virulence factors expressed by S. pneumoniae, knowledge of the strategies used by this bacterium to trigger infections, especially those originating at wet-surfaced epithelia, remains limited. In this regard, we recently reported a mechanism used by a nonencapsulated, epidemic conjunctivitis-causing strain of S. pneumoniae (strain SP168) to gain access into ocular surface epithelial cells. Mechanistically, strain SP168 secretes a zinc metalloproteinase, encoded by a truncated zmpC gene, to cleave off the ectodomain of a vital defense component - the membrane mucin MUC16 - from the apical glycocalyx barrier of ocular surface epithelial cells and, thereby invades underlying epithelial cells. Here, we compare the truncated SP168 ZmpC to its highly conserved archetype from S. pneumoniae serotype 4 (TIGR4), which has been linked to pneumococcal virulence in previous studies. Comparative nucleotide sequence analyses revealed that the zmpC gene corresponding to strain SP168 has two stretches of DNA deleted near its 5' end. A third 3 bp in-frame deletion, resulting in the elimination of an alanine residue, was found towards the middle segment of the SP168 zmpC. Closer examination of the primary structure revealed that the SP168 ZmpC lacks the canonical LPXTG motif - a signature typical of several surface proteins of gram-positive bacteria and of other pneumococcal zinc metalloproteinases. Surprisingly, in vitro assays performed using recombinant forms of ZmpC indicated that the truncated SP168 ZmpC induces more cleavage of the MUC16 ectodomain than its TIGR4 counterpart. This feature may help explain, in part, why S. pneumoniae strain SP168 is better equipped at abrogating the MUC16 glycocalyx barrier en route to causing epidemic conjunctivitis.
Collapse
Affiliation(s)
- Balaraj B Menon
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA.
| | | |
Collapse
|
24
|
Donkor ES, Stabler RA, Hinds J, Adegbola RA, Antonio M, Wren BW. Comparative phylogenomics of Streptococcus pneumoniae isolated from invasive disease and nasopharyngeal carriage from West Africans. BMC Genomics 2012; 13:569. [PMID: 23107513 PMCID: PMC3534514 DOI: 10.1186/1471-2164-13-569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We applied comparative phylogenomics (whole genome comparisons of microbes using DNA microarrays combined with Bayesian-based phylogenies) to investigate S. pneumoniae isolates from West Africa, with the aim of providing insights into the pathogenicity and other features related to the biology of the organism. The strains investigated comprised a well defined collection of 58 invasive and carriage isolates that were sequenced typed and included eight different S. pneumoniae serotypes (1, 3, 5, 6A, 11, 14, 19 F and 23 F) of varying invasive disease potential. RESULTS The core genome of the isolates was estimated to be 38% and was mainly represented by gene functional categories associated with housekeeping functions. Comparison of the gene content of invasive and carriage isolates identified at least eleven potential genes that may be important in virulence including surface proteins, transport proteins, transcription factors and hypothetical proteins. Thirteen accessory regions (ARs) were also identified and did not show any loci association with the eleven virulence genes. Intraclonal diversity (isolates of the same serotype and MLST but expressing different patterns of ARs) was observed among some clones including ST 1233 (serotype 5), ST 3404 (serotype 5) and ST 3321 (serotype 14). A constructed phylogenetic tree of the isolates showed a high level of heterogeneity consistent with the frequent S. pneumoniae recombination. Despite this, a homogeneous clustering of all the serotype 1 strains was observed. CONCLUSIONS Comparative phylogenomics of invasive and carriage S. pneumoniae isolates identified a number of putative virulence determinants that may be important in the progression of S. pneumoniae from the carriage phase to invasive disease. Virulence determinants that contribute to S. pneumoniae pathogenicity are likely to be distributed randomly throughout its genome rather than being clustered in dedicated loci or islands. Compared to other S. pneumoniae serotypes, serotype 1 appears most genetically uniform.
Collapse
Affiliation(s)
- Eric S Donkor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Department of Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Richard A Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jason Hinds
- Bacterial Microarray Group, St. George’s University of London, London, SW17 0RE, UK
| | | | - Martin Antonio
- Vaccinology Theme, Medical Research Council Unit, The Gambia
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
25
|
Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti C, Oggioni MR. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS One 2012; 7:e33320. [PMID: 22428019 PMCID: PMC3302838 DOI: 10.1371/journal.pone.0033320] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/10/2012] [Indexed: 01/02/2023] Open
Abstract
The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium:solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection.
Collapse
Affiliation(s)
- Alessandro Bidossi
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Laura Mulas
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Francesca Decorosi
- Sezione Microbiologia, Dip. Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Leonarda Colomba
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Susanna Ricci
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Carlo Viti
- Sezione Microbiologia, Dip. Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Marco Rinaldo Oggioni
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
26
|
Calix JJ, Dagan R, Pelton SI, Porat N, Nahm MH. Differential occurrence of Streptococcus pneumoniae serotype 11E between asymptomatic carriage and invasive pneumococcal disease isolates reflects a unique model of pathogen microevolution. Clin Infect Dis 2012; 54:794-9. [PMID: 22267713 DOI: 10.1093/cid/cir953] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a commensal colonizer of the human nasopharynx (NP) that causes disease after evasion of host defenses and dissemination. Pneumococcal strains expressing the newly identified serotype 11E arise from antigenically similar 11A progenitors by genetic inactivation of the O-acetyltransferase gene wcjE. Each 11E strain contains a distinct mutation to wcjE, suggesting that 11E strains are not transmitted among hosts despite their recovery from multiple patients with pneumococcal disease. We investigated whether the presumed lack of transmission of serotype 11E is consistent with its inability to survive in the NP. METHODS More than 400 pneumococcal carriage, middle ear, conjunctiva, and blood isolates, serotyped as 11A by Quellung reaction, were reexamined for reactivity to 11A- and 11E-specific antibodies. We confirmed serotyping of isolates with sequencing of wcjE alleles. RESULTS Serotype 11E strains were statistically more likely to occur among blood (4 of 15), conjunctiva (1 of 14), or middle ear (2 of 21) isolates than among carriage isolates (2 of 355). All 11E isolates contained unique mutations that putatively decrease wcjE expression. CONCLUSIONS The lack of a circulating 11E clone and the increased occurrence of 11E strains among disease isolates supports the idea that serotype 11E independently arises during infection after initial colonization with a serotype 11A progenitor. Factors encountered in the NP likely contribute to relative rarity of 11E among carriage isolates, whereas selective pressures in deeper tissues possibly promote 11E emergence. These findings illustrate a novel model of microevolution that transpires during the span of a single encounter with serotype 11A, highlighting the adaptability of bacterial pathogens within hosts.
Collapse
Affiliation(s)
- Juan J Calix
- Department of Microbiology, Boston University Medical Center, Massachusetts, USA
| | | | | | | | | |
Collapse
|
27
|
Hiller NL, Eutsey RA, Powell E, Earl JP, Janto B, Martin DP, Dawid S, Ahmed A, Longwell MJ, Dahlgren ME, Ezzo S, Tettelin H, Daugherty SC, Mitchell TJ, Hillman TA, Buchinsky FJ, Tomasz A, de Lencastre H, Sá-Leão R, Post JC, Hu FZ, Ehrlich GD. Differences in genotype and virulence among four multidrug-resistant Streptococcus pneumoniae isolates belonging to the PMEN1 clone. PLoS One 2011; 6:e28850. [PMID: 22205975 PMCID: PMC3242761 DOI: 10.1371/journal.pone.0028850] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/16/2011] [Indexed: 11/19/2022] Open
Abstract
We report on the comparative genomics and characterization of the virulence phenotypes of four S. pneumoniae strains that belong to the multidrug resistant clone PMEN1 (Spain23F ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate – PN4595-T23 – was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain – ATCC700669 – was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains – representing a variety of clonal types – the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinants.
Collapse
Affiliation(s)
- N Luisa Hiller
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Development of an automated and multiplexed serotyping assay for Streptococcus pneumoniae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1900-7. [PMID: 21900529 DOI: 10.1128/cvi.05312-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae expresses more than 90 capsule types, and currently available pneumococcal vaccines are designed to provide serotype-specific protection. Consequently, serotyping of pneumococcal isolates is important for determining the serotypes to be included in pneumococcal vaccines and to monitor their efficacy. Yet serotyping of pneumococcal isolates has remained a significant technical challenge. By multiplexing many assays, we have now developed a simple yet comprehensive serotyping assay system that can not only identify all known pneumococcal serotypes but also subdivide nontypeable (NT) isolates into those with or without the conventional capsule locus. We have developed this assay system to require only six key reagents: two are used in one multiplex inhibition-type immunoassay, and four are required in two multiplex PCR-based assays. The assay system is largely automated by a seamless combination of monoclonal antibody-based and PCR-based multiplex assays using the flow cytometric bead array technology from Luminex. The assay system has been validated with a panel of pneumococci expressing all known pneumococcal serotypes and was found to be easily transferable to another laboratory.
Collapse
|