1
|
Kuil T, Nurminen CMK, van Maris AJA. Pyrophosphate as allosteric regulator of ATP-phosphofructokinase in Clostridium thermocellum and other bacteria with ATP- and PP i-phosphofructokinases. Arch Biochem Biophys 2023; 743:109676. [PMID: 37380119 DOI: 10.1016/j.abb.2023.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
The phosphofructokinase (Pfk) reaction represents one of the key regulatory points in glycolysis. While most organisms encode for Pfks that use ATP as phosphoryl donor, some organisms also encode for PPi-dependent Pfks. Despite this central role, the biochemical characteristics as well as the physiological role of both Pfks is often not known. Clostridium thermocellum is an example of a microorganism that encodes for both Pfks, however, only PPi-Pfk activity has been detected in cell-free extracts and little is known about the regulation and function of both enzymes. In this study, the ATP- and PPi-Pfk of C. thermocellum were purified and biochemically characterized. No allosteric regulators were found for PPi-Pfk amongst common effectors. With fructose-6-P, PPi, fructose-1,6-bisP, and Pi PPi-Pfk showed high specificity (KM < 0.62 mM) and maximum activity (Vmax > 156 U mg-1). In contrast, ATP-Pfk showed much lower affinity (K0.5 of 9.26 mM) and maximum activity (14.5 U mg-1) with fructose-6-P. In addition to ATP, also GTP, UTP and ITP could be used as phosphoryl donors. The catalytic efficiency with GTP was 7-fold higher than with ATP, suggesting that GTP is the preferred substrate. The enzyme was activated by NH4+, and pronounced inhibition was observed with GDP, FBP, PEP, and especially with PPi (Ki of 0.007 mM). Characterization of purified ATP-Pfks originating from eleven different bacteria, encoding for only ATP-Pfk or for both ATP- and PPi-Pfk, identified that PPi inhibition of ATP-Pfks could be a common phenomenon for organisms with a PPi-dependent glycolysis.
Collapse
Affiliation(s)
- Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Carolus M K Nurminen
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
2
|
Romero-Rodríguez A, Ruiz-Villafán B, Martínez-de la Peña CF, Sánchez S. Targeting the Impossible: A Review of New Strategies against Endospores. Antibiotics (Basel) 2023; 12:antibiotics12020248. [PMID: 36830159 PMCID: PMC9951900 DOI: 10.3390/antibiotics12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Endospore-forming bacteria are ubiquitous, and their endospores can be present in food, in domestic animals, and on contaminated surfaces. Many spore-forming bacteria have been used in biotechnological applications, while others are human pathogens responsible for a wide range of critical clinical infections. Due to their resistant properties, it is challenging to eliminate spores and avoid the reactivation of latent spores that may lead to active infections. Furthermore, endospores play an essential role in the survival, transmission, and pathogenesis of some harmful strains that put human and animal health at risk. Thus, different methods have been applied for their eradication. Nevertheless, natural products are still a significant source for discovering and developing new antibiotics. Moreover, targeting the spore for clinical pathogens such as Clostridioides difficile is essential to disease prevention and therapeutics. These strategies could directly aim at the structural components of the spore or their germination process. This work summarizes the current advances in upcoming strategies and the development of natural products against endospores. This review also intends to highlight future perspectives in research and applications.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| | - Beatriz Ruiz-Villafán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Claudia Fabiola Martínez-de la Peña
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Lazenby JJ, Li ES, Whitchurch CB. Cell wall deficiency - an alternate bacterial lifestyle? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35925044 DOI: 10.1099/mic.0.001218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Historically, many species of bacteria have been reported to produce viable, cell wall deficient (CWD) variants. A variety of terms have been used to refer to CWD bacteria and a plethora of methods described in which to induce, cultivate and propagate them. In this review, we will examine the long history of scientific research on CWD bacteria examining the methods by which CWD bacteria are generated; the requirements for survival in a CWD state; the replicative processes within a CWD state; and the reversion of CWD bacteria into a walled state, or lack thereof. In doing so, we will present evidence that not all CWD variants are alike and that, at least in some cases, CWD variants arise through an adaptive lifestyle switch that enables them to live and thrive without a cell wall, often to avoid antimicrobial activity. Finally, the implications of CWD bacteria in recurring infections, tolerance to antibiotic therapy and antimicrobial resistance will be examined to illustrate the importance of greater understanding of the CWD bacteria in human health and disease.
Collapse
Affiliation(s)
- James J Lazenby
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Erica S Li
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Cynthia B Whitchurch
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TK, UK
| |
Collapse
|
4
|
Ganguly J, Martin-Pascual M, Montiel González D, Bulut A, Vermeulen B, Tjalma I, Vidaki A, van Kranenburg R. Breaking the Restriction Barriers and Applying CRISPRi as a Gene Silencing Tool in Pseudoclostridium thermosuccinogenes. Microorganisms 2022; 10:698. [PMID: 35456750 PMCID: PMC9044749 DOI: 10.3390/microorganisms10040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudoclostridium thermosuccinogenes is a thermophilic bacterium capable of producing succinate from lignocellulosic-derived sugars and has the potential to be exploited as a platform organism. However, exploitation of P. thermosuccinogenes has been limited partly due to the genetic inaccessibility and lack of genome engineering tools. In this study, we established the genetic accessibility for P. thermosuccinogenes DSM 5809. By overcoming restriction barriers, transformation efficiencies of 102 CFU/µg plasmid DNA were achieved. To this end, the plasmid DNA was methylated in vivo when transformed into an engineered E. coli HST04 strain expressing three native methylation systems of the thermophile. This protocol was used to introduce a ThermodCas9-based CRISPRi tool targeting the gene encoding malic enzyme in P. thermosuccinogenes, demonstrating the principle of gene silencing. This resulted in 75% downregulation of its expression and had an impact on the strain's fermentation profile. Although the details of the functioning of the restriction modification systems require further study, in vivo methylation can already be applied to improve transformation efficiency of P. thermosuccinogenes. Making use of the ThermodCas9-based CRISPRi, this is the first example demonstrating that genetic engineering in P. thermosuccinogenes is feasible and establishing the way for metabolic engineering of this bacterium.
Collapse
Affiliation(s)
| | - Maria Martin-Pascual
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (M.M.-P.); (B.V.); (I.T.)
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.M.G.); (A.V.)
| | - Alkan Bulut
- Fontys University of Applied Sciences, 5612 AR Eindhoven, The Netherlands;
| | - Bram Vermeulen
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (M.M.-P.); (B.V.); (I.T.)
| | - Ivo Tjalma
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (M.M.-P.); (B.V.); (I.T.)
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.M.G.); (A.V.)
| | - Richard van Kranenburg
- Corbion, 4206 AC Gorinchem, The Netherlands;
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (M.M.-P.); (B.V.); (I.T.)
| |
Collapse
|
5
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Dauptain K, Schneider A, Noguer M, Fontanille P, Escudie R, Carrere H, Trably E. Impact of microbial inoculum storage on dark fermentative H 2 production. BIORESOURCE TECHNOLOGY 2021; 319:124234. [PMID: 33254457 DOI: 10.1016/j.biortech.2020.124234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Complex organic substrates represent an important and relevant feedstock for producing hydrogen by Dark Fermentation (DF). Usually, an external microbial inoculum originated from various natural environments is added to seed the DF reactors. However, H2 yields are significantly impacted by the inoculum origin and the storage conditions as microbial community composition can fluctuate. This study aims to determine how the type and time of inoculum storage can impact the DF performances. Biochemical Hydrogen Potential tests were carried out using three substrates (glucose, the organic fraction of municipal solid waste, and food waste), inocula of three different origins, different storage conditions (freezing or freeze-drying) and duration. As a result, H2 production from glucose with the differently stored inocula was significantly impacted (positively or negatively) and was inoculum-origin-dependent. For complex substrates, hydrogen yields with the stored inocula were not statistically different from the fresh inocula, offering the possibility to store an inoculum.
Collapse
Affiliation(s)
- K Dauptain
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - A Schneider
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - M Noguer
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - P Fontanille
- Université de Clermont Auvergne, Institut Pascal, TSA 60026, 63178 Aubière, France
| | - R Escudie
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - H Carrere
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - E Trably
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France.
| |
Collapse
|
7
|
Ganguly J, Tempelaars M, Abee T, van Kranenburg R. Characterization of sporulation dynamics of Pseudoclostridium thermosuccinogenes using flow cytometry. Anaerobe 2020; 63:102208. [PMID: 32387172 DOI: 10.1016/j.anaerobe.2020.102208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/30/2022]
Abstract
Single-cell analysis of microbial population heterogeneity is a fast growing research area in microbiology due to its potential to identify and quantify the impact of subpopulations on microbial performance in, for example, industrial biotechnology, environmental biology, and pathogenesis. Although several tools have been developed, determination of population heterogenity in anaerobic bacteria, especially spore-forming clostridia species has been amply studied. In this study we applied single cell analysis techniques such as flow cytometry (FCM) and fluorescence-assisted cell sorting (FACS) on the spore-forming succinate producer Pseudoclostridium thermosuccinogenes. By combining FCM and FACS with fluorescent staining, we differentiated and enriched all sporulation-related morphologies of P. thermosuccinogenes. To evaluate the presence of metabolically active vegetative cells, a blend of the dyes propidium iodide (PI) and carboxy fluorescein diacetate (cFDA) tested best. Side scatter (SSC-H) in combination with metabolic indicator cFDA dye provided the best separation of sporulation populations. Based on this protocol, we successfully determined culture heterogeneity of P. thermosuccinogenes by discriminating between mature spores, forespores, dark and bright phase endospores, and vegetative cells populations. Henceforth, this methodology can be applied to further study sporulation dynamics and its impact on fermentation performance and product formation by P. thermosuccinogenes.
Collapse
Affiliation(s)
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Wageningen University and Research, 6708 WG, Wageningen, the Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, 6708 WG, Wageningen, the Netherlands
| | - Richard van Kranenburg
- Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, the Netherlands; Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Aikawa S, Thianheng P, Baramee S, Ungkulpasvich U, Tachaapaikoon C, Waeonukul R, Pason P, Ratanakhanokchai K, Kosugi A. Phenotypic characterization and comparative genome analysis of two strains of thermophilic, anaerobic, cellulolytic-xylanolytic bacterium Herbivorax saccincola. Enzyme Microb Technol 2020; 136:109517. [PMID: 32331721 DOI: 10.1016/j.enzmictec.2020.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 11/25/2022]
Abstract
The genome sequences of thermophilic, anaerobic, and cellulolytic-xylanolytic bacterium Herbivorax saccincola strains A7 and GGR1 have recently been determined. Although both strains belong to the same species, A7 is alkaliphilic, non-endospore-forming, and ammonium-assimilating, whereas GGR1 is neutrophilic, endospore-forming, and weak-ammonium-assimilating. To better understand the phenotypic diversity among H. saccincola strains, the genome sequences of A7 and GGR1 were compared. A7 contained three additional genes showing similarity to an alkaline stress-associated ABC-transporter but lacked four endospore formation-associated genes, AUG58543 and AUG58618 (encoding SpoVT), AUG57258 (encoding SpoVS), and AUG58614 (encoding YdhD), all of which were present in GGR1. In addition, A7 contained key ammonia assimilation genes PQQ67145 and PQQ66619, encoding ornithine cyclodeaminase and arginase, respectively, which were absent in GGR1. There was no difference in the number and types of cellulosomal-scaffolding proteins and glycosyl hydrolases between the two strains. However, cellulase and xylanase enzymes from A7 demonstrated greater activity and stability at an alkaline pH compared with those from GGR1, and amino acid substitutions were identified in 11 glycosyl hydrolases from A7. This characterization though comparative genomic analysis provides useful information for understanding the genetic basis of the phenotypic differences between H. saccincola strains isolated from distinct areas and environments.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Phakhinee Thianheng
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sirilak Baramee
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Umbhorn Ungkulpasvich
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
9
|
Beno SM, Orsi RH, Cheng RA, Kent DJ, Kovac J, Duncan DR, Martin NH, Wiedmann M. Genes Associated With Psychrotolerant Bacillus cereus Group Isolates. Front Microbiol 2019; 10:662. [PMID: 30984157 PMCID: PMC6449464 DOI: 10.3389/fmicb.2019.00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/15/2019] [Indexed: 11/28/2022] Open
Abstract
The Bacillus cereus group comprises 18 different species, including human pathogens as well as psychrotolerant strains that are an important cause of fluid milk spoilage. To enhance our understanding of the genetic markers associated with psychrotolerance (defined here as > 1 log10 increase in cfu/mL after 21 days incubation at 6°C) among dairy-associated B. cereus group isolates, we used genetic (whole genome sequencing) and phenotypic methods [growth in Skim Milk Broth (SMB) and Brain Heart Infusion (BHI) broth] to characterize 23 genetically-distinct representative isolates from a collection of 503 dairy-associated isolates. Quality threshold clustering identified three categories of psychrotolerance: (i) 14 isolates that were not psychrotolerant in BHI or SMB, (ii) 6 isolates that were psychrotolerant in BHI but not in SMB, and (iii) 2 isolates that were psychrotolerant in BHI and SMB. One isolate, which was psychrotolerant in BHI broth but was just below the cut-off of >1 log10 cfu/mL increase in SMB was not assigned to a cluster. A maximum likelihood phylogeny constructed with core genome single nucleotide polymorphisms classified all psychrotolerant isolates (i.e., psychrotolerant in BHI) into clade VI (representing B. mycoides/weihenstephanensis). Analysis of correlations between gene ortholog presence or absence patterns and psychrotolerance identified 206 orthologous gene clusters that were significantly overrepresented among psychrotolerant strains, including two clusters of cold shock proteins, which were identified in 8/9 and 7/9 psychrotolerant isolates. Gene ontology analyses revealed 36 gene ontology terms that were overrepresented in psychrotolerant isolates, including putrescine catabolic processes and putrescine transmembrane transporter activity. Lastly, Hidden Markov Model searches identified three protein family motifs, including cold shock domain proteins and fatty acid hydroxylases that were significantly associated with psychrotolerance in BHI broth. Analyses of CspA sequences revealed a positive association between psychrotolerant strains and a previously identified “psychrotolerant” CspA sequence. Overall, our data highlight genetic and phenotypic differences in psychrotolerance among B. cereus group dairy-associated isolates and show that psychrotolerance is dependent on the growth medium. We also identified a number of gene targets that could be used for specific detection or control of psychrotolerant B. cereus group isolates.
Collapse
Affiliation(s)
- Sarah M Beno
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - David J Kent
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Jasna Kovac
- Department of Food Science, Cornell University, Ithaca, NY, United States.,Department of Food Science, Penn State University, University Park, PA, United States
| | - Diana R Duncan
- Department of Food Science, Wageningen University, Wageningen, Netherlands
| | - Nicole H Martin
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018; 54:547-568. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/11/2025]
|
11
|
Whitham JM, Moon JW, Rodriguez M, Engle NL, Klingeman DM, Rydzak T, Abel MM, Tschaplinski TJ, Guss AM, Brown SD. Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:98. [PMID: 29632556 PMCID: PMC5887222 DOI: 10.1186/s13068-018-1095-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/24/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Clostridium (Ruminiclostridium) thermocellum is a model fermentative anaerobic thermophile being studied and engineered for consolidated bioprocessing of lignocellulosic feedstocks into fuels and chemicals. Engineering efforts have resulted in significant improvements in ethanol yields and titers although further advances are required to make the bacterium industry-ready. For instance, fermentations at lower pH could enable co-culturing with microbes that have lower pH optima, augment productivity, and reduce buffering cost. C. thermocellum is typically grown at neutral pH, and little is known about its pH limits or pH homeostasis mechanisms. To better understand C. thermocellum pH homeostasis we grew strain LL1210 (C. thermocellum DSM1313 Δhpt ΔhydG Δldh Δpfl Δpta-ack), currently the highest ethanol producing strain of C. thermocellum, at different pH values in chemostat culture and applied systems biology tools. RESULTS Clostridium thermocellum LL1210 was found to be growth-limited below pH 6.24 at a dilution rate of 0.1 h-1. F1F0-ATPase gene expression was upregulated while many ATP-utilizing enzymes and pathways were downregulated at pH 6.24. These included most flagella biosynthesis genes, genes for chemotaxis, and other motility-related genes (> 50) as well as sulfate transport and reduction, nitrate transport and nitrogen fixation, and fatty acid biosynthesis genes. Clustering and enrichment of differentially expressed genes at pH values 6.48, pH 6.24 and pH 6.12 (washout conditions) compared to pH 6.98 showed inverse differential expression patterns between the F1F0-ATPase and genes for other ATP-utilizing enzymes. At and below pH 6.24, amino acids including glutamate and valine; long-chain fatty acids, their iso-counterparts and glycerol conjugates; glycolysis intermediates 3-phosphoglycerate, glucose 6-phosphate, and glucose accumulated intracellularly. Glutamate was 267 times more abundant in cells at pH 6.24 compared to pH 6.98, and intercellular concentration reached 1.8 μmol/g pellet at pH 5.80 (stopped flow). CONCLUSIONS Clostridium thermocellum LL1210 can grow under slightly acidic conditions, similar to limits reported for other strains. This foundational study provides a detailed characterization of a relatively acid-intolerant bacterium and provides genetic targets for strain improvement. Future studies should examine adding gene functions used by more acid-tolerant bacteria for improved pH homeostasis at acidic pH values.
Collapse
Affiliation(s)
- Jason M. Whitham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Ji-Won Moon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Thomas Rydzak
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
- Present Address: Department of Biological Science, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Malaney M. Abel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
- Present Address: LanzaTech, Inc., Skokie, IL USA
| |
Collapse
|
12
|
Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M, Silverman M, Uzzau S. Metaproteogenomics Reveals Taxonomic and Functional Changes between Cecal and Fecal Microbiota in Mouse. Front Microbiol 2017; 8:391. [PMID: 28352255 PMCID: PMC5348496 DOI: 10.3389/fmicb.2017.00391] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/24/2017] [Indexed: 02/01/2023] Open
Abstract
Previous studies on mouse models report that cecal and fecal microbial communities may differ in the taxonomic structure, but little is known about their respective functional activities. Here, we employed a metaproteogenomic approach, including 16S rRNA gene sequencing, shotgun metagenomics and shotgun metaproteomics, to analyze the microbiota of paired mouse cecal contents (CCs) and feces, with the aim of identifying changes in taxon-specific functions. As a result, Gram-positive anaerobes were observed as considerably higher in CCs, while several key enzymes, involved in oxalate degradation, glutamate/glutamine metabolism, and redox homeostasis, and most actively expressed by Bacteroidetes, were clearly more represented in feces. On the whole, taxon and function abundance appeared to vary consistently with environmental changes expected to occur throughout the transit from the cecum to outside the intestine, especially when considering metaproteomic data. The results of this study indicate that functional and metabolic differences exist between CC and stool samples, paving the way to further metaproteogenomic investigations aimed at elucidating the functional dynamics of the intestinal microbiota.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Valeria Manghina
- Porto Conte Ricerche, Science and Technology Park of SardiniaAlghero, Italy; Department of Biomedical Sciences, University of SassariSassari, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Massimo Deligios
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Michael Silverman
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical SchoolBoston, MA, USA; Division of Infectious Diseases, Department of Pediatrics, Boston Children's HospitalBoston, MA, USA
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of SardiniaAlghero, Italy; Department of Biomedical Sciences, University of SassariSassari, Italy
| |
Collapse
|
13
|
LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313. Appl Environ Microbiol 2017; 83:AEM.02751-16. [PMID: 28003194 DOI: 10.1128/aem.02751-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
Organisms regulate gene expression in response to the environment to coordinate metabolic reactions. Clostridium thermocellum expresses enzymes for both lignocellulose solubilization and its fermentation to produce ethanol. One LacI regulator termed GlyR3 in C. thermocellum ATCC 27405 was previously identified as a repressor of neighboring genes with repression relieved by laminaribiose (a β-1,3 disaccharide). To better understand the three C. thermocellum LacI regulons, deletion mutants were constructed using the genetically tractable DSM1313 strain. DSM1313 lacI genes Clo1313_2023, Clo1313_0089, and Clo1313_0396 encode homologs of GlyR1, GlyR2, and GlyR3 from strain ATCC 27405, respectively. Growth on cellobiose or pretreated switchgrass was unaffected by any of the gene deletions under controlled-pH fermentations. Global gene expression patterns from time course analyses identified glycoside hydrolase genes encoding hemicellulases, including cellulosomal enzymes, that were highly upregulated (5- to 100-fold) in the absence of each LacI regulator, suggesting that these were repressed under wild-type conditions and that relatively few genes were controlled by each regulator under the conditions tested. Clo1313_2022, encoding lichenase enzyme LicB, was derepressed in a ΔglyR1 strain. Higher expression of Clo1313_1398, which encodes the Man5A mannanase, was observed in a ΔglyR2 strain, and α-mannobiose was identified as a probable inducer for GlyR2-regulated genes. For the ΔglyR3 strain, upregulation of the two genes adjacent to glyR3 in the celC-glyR3-licA operon was consistent with earlier studies. Electrophoretic mobility shift assays have confirmed LacI transcription factor binding to specific regions of gene promoters.IMPORTANCE Understanding C. thermocellum gene regulation is of importance for improved fundamental knowledge of this industrially relevant bacterium. Most LacI transcription factors regulate local genomic regions; however, a small number of those genes encode global regulatory proteins with extensive regulons. This study indicates that there are small specific C. thermocellum LacI regulons. The identification of LacI repressor activity for hemicellulase gene expression is a key result of this work and will add to the small body of existing literature on the area of gene regulation in C. thermocellum.
Collapse
|
14
|
Petrova O, Gorshkov V, Sergeeva I, Daminova A, Ageeva M, Gogolev Y. Alternative scenarios of starvation-induced adaptation in Pectobacterium atrosepticum. Res Microbiol 2016; 167:254-261. [DOI: 10.1016/j.resmic.2016.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/01/2022]
|
15
|
Sander K, Wilson CM, Rodriguez M, Klingeman DM, Rydzak T, Davison BH, Brown SD. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:211. [PMID: 26692898 PMCID: PMC4676874 DOI: 10.1186/s13068-015-0394-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/24/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. Towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential. RESULTS The addition of methyl viologen to C. thermocellum DSM 1313 chemostat cultures caused an increase in ethanol and lactate yields. A lower fermenter redox potential was observed in response to methyl viologen exposure, which correlated with a decrease in cell yield and significant differential expression of 123 genes (log2 > 1.5 or log2 < -1.5, with a 5 % false discovery rate). Expression levels decreased in four main redox-active systems during methyl viologen exposure; the [NiFe] hydrogenase, sulfate transport and metabolism, ammonia assimilation (GS-GOGAT), and porphyrin/siroheme biosynthesis. Genes encoding sulfate transport and reduction and porphyrin/siroheme biosynthesis are co-located immediately downstream of a putative iscR regulatory gene, which may be a cis-regulatory element controlling expression of these genes. Other genes showing differential expression during methyl viologen exposure included transporters and transposases. CONCLUSIONS The differential expression results from this study support a role for C. thermocellum genes for sulfate transport/reduction, glutamate synthase-glutamine synthetase (the GS-GOGAT system), and porphyrin biosynthesis being involved in redox metabolism and homeostasis. This global profiling study provides gene targets for future studies to elucidate the relative contributions of prospective pathways for co-factor pool re-oxidation and C. thermocellum redox homeostasis.
Collapse
Affiliation(s)
- Kyle Sander
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Charlotte M. Wilson
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Miguel Rodriguez
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Dawn M. Klingeman
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Thomas Rydzak
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Brian H. Davison
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Steven D. Brown
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
16
|
Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum. Appl Microbiol Biotechnol 2015; 99:7589-99. [DOI: 10.1007/s00253-015-6610-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 01/31/2023]
|
17
|
Wang DN, Ding WJ, Pan YZ, Tang KL, Wang T, She XL, Wang H. The Helicobacter pylori L-form: formation and isolation in the human bile cultures in vitro and in the gallbladders of patients with biliary diseases. Helicobacter 2015; 20:98-105. [PMID: 25381932 DOI: 10.1111/hel.12181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The Helicobacter pylori is considered the important causative agent causing biliary diseases, but the H. pylori can be isolated from very few gallbladder specimens with diseases. We studied the formation of H. pylori L-forms in bile in vitro and isolated the H. pylori L-forms from gallbladder of patients with biliary diseases. METHODS We inoculated the H. pylori into the human bile to induce the L-form in vitro. The gallbladder specimens were collected from patients with biliary diseases to isolate the bacterial L-forms by the nonhigh osmotic isolation technique, and the H. pylori L-forms in the L-form isolates were identified by the gene assay for the H. pylori-specific genes 16S rRNA and UreA. RESULTS The H. Pylori cannot be isolated from the bile-induced cultures, but the H. pylori L-form can be isolated from the H. pylori-negative bile-induced cultures. The L-form isolates of bile-induced cultures showed a positive reaction of the H. pylori-specific genes by PCR, and the coincidence ratio of the nucleotide sequences between the L-forms and the H. pylori is 99%. The isolation rate of bacteria L-form is 93.2% in the gallbladder specimens with bacteria-negative isolation culture by the nonhigh osmotic isolation technique, and the positive rate of the H. pylori-specific genes in the L-form isolates is 7.1% in the bacterial L-form-positive isolation cultures by the PCR. CONCLUSIONS H. pylori can be rapidly induced into the L-form in the human bile; the L-form, as the latent bacteria, can live in the host gallbladder for a long times, and they made the host became a latent carrier of the H. pylori L-form. The H. pylori L-form can be isolated by the nonhigh osmotic isolation technique, and the variant can be identified by the gene assay for the H. pylori-specific genes 16S rRNA and reA.
Collapse
Affiliation(s)
- Dan N Wang
- Department of Medical Microbiology and Parasitology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang DN, Wu WJ, Wang T, Pan YZ, Tang KL, She XL, Ding WJ, Wang H. Salmonella L-forms: formation in human bile in vitro and isolation culture from patients' gallbladder samples by a non-high osmotic isolation technique. Clin Microbiol Infect 2015; 21:470.e9-16. [PMID: 25703211 DOI: 10.1016/j.cmi.2014.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Bacterial L-forms have always been considered as osmotic-pressure-sensitive cell-wall-deficient bacteria and isolation culture of L-forms must use media with high osmotic pressure. However, isolation culture of stable L-forms formed in humans and animals is very difficult because they have adapted to the physiological osmotic pressure condition of the host. We use a non-high osmotic isolation technique to isolate stable L-forms of Salmonella Typhi and Salmonella Paratyphi A from bile-inducer cultures in vitro and from patients' gallbladder specimens. Multiplex PCR assay for Salmonella-specific genes and nucleotide sequencing are used to identify the Salmonella L-forms in stable L-form isolates. Using this method, we confirmed that Salmonella Paratyphi A and Salmonella Typhi cannot be isolated from bile-inducer cultures cultured for 6 h or 48 h, but the L-forms can be isolated from 1 h to 45 days. In the 524 gallbladder samples, the positive rate for bacterial forms was 19.7% and the positive rate for Salmonella spp. was 0.6% by routine bacteriological methods. The positive rate for bacterial L-forms was 75.4% using non-high osmotic isolation culture. In the L-form isolates, the positive rate of Salmonella invA gene was 3.1%. In these invA-positive L-form isolates, four were positive for the invA and flic-d genes of Salmonella Typhi, and ten were positive for the invA and flic-a genes of Salmonella Paratyphi A.
Collapse
Affiliation(s)
- D N Wang
- Department of Medical Microbiology and Parasitology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W J Wu
- Department of Medical Microbiology, Guiyang Medical University, Guiyang, China; Guiyang City Maternal and Child Health Care Hospital, Guiyang, China
| | - T Wang
- Department of Medical Microbiology, Guiyang Medical University, Guiyang, China.
| | - Y Z Pan
- Department of Surgery, Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - K L Tang
- Department of Surgery, Guizhou Province People's Hospital, Guiyang, China
| | - X L She
- Department of Medical Microbiology, Guiyang Medical University, Guiyang, China
| | - W J Ding
- Department of Medical Microbiology, Guiyang Medical University, Guiyang, China; Guiyang City Maternal and Child Health Care Hospital, Guiyang, China
| | - H Wang
- Department of Medical Microbiology, Guiyang Medical University, Guiyang, China.
| |
Collapse
|
19
|
Cambré A, Zimmermann M, Sauer U, Vivijs B, Cenens W, Michiels CW, Aertsen A, Loessner MJ, Noben JP, Ayala JA, Lavigne R, Briers Y. Metabolite profiling and peptidoglycan analysis of transient cell wall-deficient bacteria in a new Escherichia coli model system. Environ Microbiol 2014; 17:1586-99. [PMID: 25142185 DOI: 10.1111/1462-2920.12594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/11/2014] [Indexed: 12/01/2022]
Abstract
Many bacteria are able to assume a transient cell wall-deficient (or L-form) state under favourable osmotic conditions. Cell wall stress such as exposure to β-lactam antibiotics can enforce the transition to and maintenance of this state. L-forms actively proliferate and can return to the walled state upon removal of the inducing agent. We have adopted Escherichia coli as a model system for the controlled transition to and reversion from the L-form state, and have studied these dynamics with genetics, cell biology and 'omics' technologies. As such, a transposon mutagenesis screen underscored the requirement for the Rcs phosphorelay and colanic acid synthesis, while proteomics show only little differences between rods and L-forms. In contrast, metabolome comparison reveals the high abundance of lysophospholipids and phospholipids with unsaturated or cyclopropanized fatty acids in E. coli L-forms. This increase of membrane lipids associated with increased membrane fluidity may facilitate proliferation through bud formation. Visualization of the residual peptidoglycan with a fluorescently labelled peptidoglycan binding protein indicates de novo cell wall synthesis and a role for septal peptidoglycan synthesis during bud constriction. The DD-carboxypeptidases PBP5 and PBP6 are threefold and fourfold upregulated in L-forms, indicating a specific role for regulation of crosslinking during L-form proliferation.
Collapse
Affiliation(s)
- Alexander Cambré
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, B-3001, Heverlee, Belgium; Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, B-3001, Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Linville JL, Rodriguez M, Brown SD, Mielenz JR, Cox CD. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain. BMC Microbiol 2014; 14:215. [PMID: 25128475 PMCID: PMC4236516 DOI: 10.1186/s12866-014-0215-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms. Conclusion These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.
Collapse
Affiliation(s)
| | | | | | | | - Chris D Cox
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
21
|
Mearls EB, Lynd LR. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum. Anaerobe 2014; 28:109-19. [PMID: 24933585 DOI: 10.1016/j.anaerobe.2014.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 02/03/2023]
Abstract
In this study, we sought to identify genes involved in the onset of spore formation in Clostridium thermocellum via targeted gene deletions, gene over-expression, and transcriptional analysis. We determined that three putative histidine kinases, clo1313_0286, clo1313_2735 and clo1313_1942 were positive regulators of sporulation, while a fourth kinase, clo1313_1973, acted as a negative regulator. Unlike Bacillus or other Clostridium species, the deletion of a single positively regulating kinase was sufficient to abolish sporulation in this organism. Sporulation could be restored in these asporogenous strains via overexpression of any one of the positive regulators, indicating a high level of redundancy between these kinases. In addition to having a sporulation defect, deletion of clo1313_2735 produced L-forms. Thus, this kinase may play an additional role in repressing L-form formation. This work suggests that C. thermocellum enters non-growth states based on the sensory input from multiple histidine kinases. The ability to control the development of non-growth states at the genetic level has the potential to inform strategies for improved strain development, as well as provide valuable insight into C. thermocellum biology.
Collapse
Affiliation(s)
- Elizabeth B Mearls
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
22
|
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2014; 38:393-448. [DOI: 10.1111/1574-6976.12044] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022] Open
|
23
|
Wilson CM, Rodriguez M, Johnson CM, Martin SL, Chu TM, Wolfinger RD, Hauser LJ, Land ML, Klingeman DM, Syed MH, Ragauskas AJ, Tschaplinski TJ, Mielenz JR, Brown SD. Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:179. [PMID: 24295562 PMCID: PMC3880215 DOI: 10.1186/1754-6834-6-179] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms. RESULTS C. thermocellum ATCC 27405 fermentations were conducted with a 5 g/L solid substrate loading of either pretreated switchgrass or Populus. Quantitative saccharification and inductively coupled plasma emission spectroscopy (ICP-ES) for elemental analysis revealed composition differences between biomass substrates, which may have influenced growth and transcriptomic profiles. High quality RNA was prepared for C. thermocellum grown on solid substrates and transcriptome profiles were obtained for two time points during active growth (12 hours and 37 hours postinoculation). A comparison of two transcriptomic analytical techniques, microarray and RNA-seq, was performed and the data analyzed for statistical significance. Large expression differences for cellulosomal genes were not observed. We updated gene predictions for the strain and a small novel gene, Cthe_3383, with a putative AgrD peptide quorum sensing function was among the most highly expressed genes. RNA-seq data also supported different small regulatory RNA predictions over others. The DNA microarray gave a greater number (2,351) of significant genes relative to RNA-seq (280 genes when normalized by the kernel density mean of M component (KDMM) method) in an analysis of variance (ANOVA) testing method with a 5% false discovery rate (FDR). When a 2-fold difference in expression threshold was applied, 73 genes were significantly differentially expressed in common between the two techniques. Sulfate and phosphate uptake/utilization genes, along with genes for a putative efflux pump system were some of the most differentially regulated transcripts when profiles for C. thermocellum grown on either pretreated switchgrass or Populus were compared. CONCLUSIONS Our results suggest that a high degree of agreement in differential gene expression measurements between transcriptomic platforms is possible, but choosing an appropriate normalization regime is essential.
Collapse
Affiliation(s)
- Charlotte M Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Courtney M Johnson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | - Loren J Hauser
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miriam L Land
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mustafa H Syed
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jonathan R Mielenz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|