1
|
Gladyshchuk O, Yoshida M, Togashi K, Sugimoto H, Suzuki K. Identification of the Csr global regulatory system mediated by small RNA decay in Aeromonas salmonicida. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38233172 DOI: 10.2323/jgam.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2024]
Abstract
We investigated the presence and functionality of the carbon storage regulator (Csr) system in Aeromonas salmonicida SWSY-1.411. CsrA, an RNA-binding protein, shared 89% amino acid sequence identity with Escherichia coli CsrA. CsrB/C sRNAs exhibited a typical stem-loop structure, with more GGA motifs, which bind CsrA, than E. coli. CsrD had limited sequence identity with E. coli CsrD; however, it contained the conserved GGDEF and EAL domains. Functional analysis in E. coli demonstrated that the Csr system of A. salmonicida influences glycogen biosynthesis, biofilm formation, motility, and stability of both CsrB and CsrC sRNAs. These findings suggest that in A. salmonicida, the Csr system affects phenotypes like its E. coli counterpart. In A. salmonicida, defects in csr homologs affected biofilm formation, motility, and chitinase production. However, glycogen accumulation and protease production were unaffected. The expression of flagellar-related genes and chitinase genes was suppressed in the csrA-deficient A. salmonicida. Northern blot analysis indicated the stabilization of CsrB and CsrC in the csrD-deficient A. salmonicida. Similar to that in E. coli, the Csr system in A. salmonicida comprises the RNA-binding protein CsrA, the sRNAs CsrB and CsrC, and the sRNA decay factor CsrD. This study underscores the conservation and functionality of the Csr system and raises questions about its regulatory targets and mechanisms in A. salmonicida.
Collapse
Affiliation(s)
| | - Masaki Yoshida
- Graduate School of Science and Technology, Niigata University
| | - Koume Togashi
- Department of Agriculture, Faculty of Agriculture, Niigata University
| | - Hayuki Sugimoto
- Graduate School of Science and Technology, Niigata University
- Department of Agriculture, Faculty of Agriculture, Niigata University
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University
- Department of Agriculture, Faculty of Agriculture, Niigata University
| |
Collapse
|
2
|
Man L, Soh PXY, McEnearney TE, Cain JA, Dale AL, Cordwell SJ. Multi-Omics of Campylobacter jejuni Growth in Chicken Exudate Reveals Molecular Remodelling Associated with Altered Virulence and Survival Phenotypes. Microorganisms 2024; 12:860. [PMID: 38792690 PMCID: PMC11123243 DOI: 10.3390/microorganisms12050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Campylobacter jejuni is the leading cause of foodborne human gastroenteritis in the developed world. Infections are largely acquired from poultry produced for human consumption and poor food handling is thus a major risk factor. Chicken exudate (CE) is a liquid produced from defrosted commercial chicken products that facilitates C. jejuni growth. We examined the response of C. jejuni to growth in CE using a multi-omics approach. Changes in the C. jejuni proteome were assessed by label-based liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We quantified 1328 and 1304 proteins, respectively, in experiments comparing 5% CE in Mueller-Hinton (MH) medium and 100% CE with MH-only controls. These proteins represent 81.8% and 80.3% of the predicted C. jejuni NCTC11168 proteome. Growth in CE induced profound remodelling of the proteome. These changes were typically conserved between 5% and 100% CE, with a greater magnitude of change observed in 100% CE. We confirmed that CE induced C. jejuni biofilm formation, as well as increasing motility and resistance against oxidative stress, consistent with changes to proteins representing those functions. Assessment of the C. jejuni metabolome showed CE also led to increased intracellular abundances of serine, proline, and lactate that were correlated with the elevated abundances of their respective transporters. Analysis of carbon source uptake showed prolonged culture supernatant retention of proline and succinate in CE-supplemented medium. Metabolomics data provided preliminary evidence for the uptake of chicken-meat-associated dipeptides. C. jejuni exposed to CE showed increased resistance to several antibiotics, including polymyxin B, consistent with changes to tripartite efflux system proteins and those involved in the synthesis of lipid A. The C. jejuni CE proteome was also characterised by very large increases in proteins associated with iron acquisition, while a decrease in proteins containing iron-sulphur clusters was also observed. Our data suggest CE is both oxygen- and iron-limiting and provide evidence of factors required for phenotypic remodelling to enable C. jejuni survival on poultry products.
Collapse
Affiliation(s)
- Lok Man
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pamela X. Y. Soh
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tess E. McEnearney
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel A. Cain
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ashleigh L. Dale
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart J. Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Zheng J, Zuo G, Zhou Z, Shi Z, Guo H, Sun Z, Feng Y. Indole inhibited the expression of csrA gene in Escherichia coli. J GEN APPL MICROBIOL 2024; 69:239-248. [PMID: 37423745 DOI: 10.2323/jgam.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/11/2023]
Abstract
Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology
- School of Life Science, Langfang Normal University
| | - Guocai Zuo
- School of Life Science, Langfang Normal University
| | - Zhiguo Zhou
- School of Life Science, Langfang Normal University
| | - Zhenxia Shi
- School of Life Science, Langfang Normal University
| | - Huiying Guo
- School of Life Science, Langfang Normal University
| | - Zemin Sun
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
4
|
Xu J, Qin L, Xu X, Shen H, Yang X. Bacillus paralicheniformis RP01 Enhances the Expression of Growth-Related Genes in Cotton and Promotes Plant Growth by Altering Microbiota inside and outside the Root. Int J Mol Sci 2023; 24:ijms24087227. [PMID: 37108389 PMCID: PMC10138817 DOI: 10.3390/ijms24087227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) can promote plant growth in various ways, allowing PGPB to replace chemical fertilizers to avoid environmental pollution. PGPB is also used for bioremediation and in plant pathogen control. The isolation and evaluation of PGPB are essential not only for practical applications, but also for basic research. Currently, the known PGPB strains are limited, and their functions are not fully understood. Therefore, the growth-promoting mechanism needs to be further explored and improved. The Bacillus paralicheniformis RP01 strain with beneficial growth-promoting activity was screened from the root surface of Brassica chinensis using a phosphate-solubilizing medium. RP01 inoculation significantly increased plant root length and brassinosteroid content and upregulated the expression of growth-related genes. Simultaneously, it increased the number of beneficial bacteria that promoted plant growth and reduced the number of detrimental bacteria. The genome annotation findings also revealed that RP01 possesses a variety of growth-promoting mechanisms and a tremendous growth-promoting potential. This study isolated a highly potential PGPB and elucidated its possible direct and indirect growth-promoting mechanisms. Our study results will help enrich the PGPB library and provide a reference for plant-microbe interactions.
Collapse
Affiliation(s)
- Jinzhi Xu
- College of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Lijun Qin
- College of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610052, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610052, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610052, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610052, China
| |
Collapse
|
5
|
CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the hmsT mRNA. mBio 2021; 12:e0135821. [PMID: 34340543 PMCID: PMC8406273 DOI: 10.1128/mbio.01358-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Plague-causing Yersinia pestis is transmitted through regurgitation when it forms a biofilm-mediated blockage in the foregut of its flea vector. This biofilm is composed of an extracellular polysaccharide substance (EPS) produced when cyclic-di-GMP (c-di-GMP) levels are elevated. The Y. pestis diguanylate cyclase enzymes HmsD and HmsT synthesize c-di-GMP. HmsD is required for biofilm blockage formation but contributes minimally to in vitro biofilms. HmsT, however, is necessary for in vitro biofilms and contributes to intermediate rates of biofilm blockage. C-di-GMP synthesis is regulated at the transcriptional and posttranscriptional levels. In this, the global RNA chaperone, Hfq, posttranscriptionally represses hmsT mRNA translation. How c-di-GMP levels and biofilm blockage formation is modulated by nutritional stimuli encountered in the flea gut is unknown. Here, the RNA-binding regulator protein CsrA, which controls c-di-GMP-mediated biofilm formation and central carbon metabolism responses in many Gammaproteobacteria, was assessed for its role in Y. pestis biofilm formation. We determined that CsrA was required for markedly greater c-di-GMP and EPS levels when Y. pestis was cultivated on alternative sugars implicated in flea biofilm blockage metabolism. Our assays, composed of mobility shifts, quantification of mRNA translation, stability, and abundance, and epistasis analyses of a csrA hfq double mutant strain substantiated that CsrA represses hfq mRNA translation, thereby alleviating Hfq-dependent repression of hmsT mRNA translation. Additionally, a csrA mutant exhibited intermediately reduced biofilm blockage rates, resembling an hmsT mutant. Hence, we reveal CsrA-mediated control of c-di-GMP synthesis in Y. pestis as a tiered, posttranscriptional regulatory process that enhances biofilm blockage-mediated transmission from fleas.
Collapse
|
6
|
Bogacz M, El Abbar FM, Cox CA, Li J, Fiedler JS, Tran LKH, Tran PMH, Daugherty CL, Blake KH, Wang Z, Azadi P, Thompson SA. Binding of Campylobacter jejuni FliW Adjacent to the CsrA RNA-Binding Pockets Modulates CsrA Regulatory Activity. Front Microbiol 2021; 11:531596. [PMID: 33505360 PMCID: PMC7829508 DOI: 10.3389/fmicb.2020.531596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni CsrA is an mRNA-binding, post-transcriptional regulator that controls many metabolic- and virulence-related characteristics of this important pathogen. In contrast to E. coli CsrA, whose activity is modulated by binding to small non-coding RNAs (sRNAs), C. jejuni CsrA activity is controlled by binding to the CsrA antagonist FliW. In this study, we identified the FliW binding site on CsrA. Deletion of the C-terminus of C. jejuni CsrA, which is extended relative to sRNA-binding CsrA proteins, abrogated FliW binding. Bacterial two-hybrid experiments were used to assess the interaction of FliW with wild-type CsrA and mutants thereof, in which every amino acid was individually mutated. Two CsrA mutations (V51A and N55A) resulted in a significant decrease in FliW binding. The V51A and N55A mutants also showed a decrease in CsrA-FliW complex formation, as assessed by size-exclusion chromatography and surface plasmon resonance. These residues were highly conserved in bacterial species containing CsrA orthologs whose activities are predicted to be regulated by FliW. The location of FliW binding was immediately adjacent to the two RNA-binding sites of the CsrA homodimer, suggesting the model that FliW binding to CsrA modulates its ability to bind to its mRNA targets either by steric hindrance, electrostatic repulsion, or by altering the overall structure of the RNA-binding sites.
Collapse
Affiliation(s)
- Marek Bogacz
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Faiha M El Abbar
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Claudia A Cox
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jiaqi Li
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jarred S Fiedler
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lynn K H Tran
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Paul M H Tran
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - C Luke Daugherty
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kate H Blake
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
El Abbar FM, Li J, Owen HC, Daugherty CL, Fulmer CA, Bogacz M, Thompson SA. RNA Binding by the Campylobacter jejuni Post-transcriptional Regulator CsrA. Front Microbiol 2019; 10:1776. [PMID: 31447808 PMCID: PMC6692469 DOI: 10.3389/fmicb.2019.01776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative rod-shaped bacterium that commensally inhabits the intestinal tracts of livestock and birds, and which also persists in surface waters. C. jejuni is a leading cause of foodborne gastroenteritis, and these infections are sometimes associated with the development of post-infection sequelae such as Guillain-Barré Syndrome. Flagella are considered a primary virulence factor in C. jejuni, as these organelles are required for pathogenicity-related phenotypes including motility, biofilm formation, host cell interactions, and host colonization. The post-transcriptional regulator CsrA regulates the expression of the major flagellin FlaA by binding to flaA mRNA and repressing its translation. Additionally, CsrA has previously been shown to regulate 120–150 proteins involved in diverse cellular processes. The amino acid sequence of C. jejuni CsrA is significantly different from that of Escherichia coli CsrA, and no previous research has defined the amino acids of C. jejuni CsrA that are critical for RNA binding. In this study, we used in vitro SELEX to identify the consensus RNA sequence mAwGGAs to which C. jejuni CsrA binds with high affinity. We performed saturating site-directed mutagenesis on C. jejuni CsrA and assessed the regulatory activity of these mutant proteins, using a reporter system encoding the 5′ untranslated region (5′ UTR) upstream of flaA linked translationally to the C. jejuni astA gene. These assays allowed us to identify 19 amino acids that were involved in RNA binding by CsrA, with many but not all of these amino acids clustered in predicted beta strands that are involved in RNA binding by E. coli CsrA. Decreased flaA mRNA binding by mutant CsrA proteins L2A and A36V was confirmed by electrophoretic mobility shift assays. The majority of the amino acids implicated in RNA binding were conserved among diverse Campylobacter species.
Collapse
Affiliation(s)
- Faiha M El Abbar
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Jiaqi Li
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Harry C Owen
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - C Luke Daugherty
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Claudia A Fulmer
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Marek Bogacz
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| |
Collapse
|
8
|
Li J, Gulbronson CJ, Bogacz M, Hendrixson DR, Thompson SA. FliW controls growth-phase expression of Campylobacter jejuni flagellar and non-flagellar proteins via the post-transcriptional regulator CsrA. MICROBIOLOGY-SGM 2018; 164:1308-1319. [PMID: 30113298 DOI: 10.1099/mic.0.000704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Campylobacter jejuni is an important human pathogen that causes 96 million cases of acute diarrheal disease worldwide each year. We have shown that C. jejuni CsrA is involved in the post-transcriptional regulation of more than 100 proteins, and altered expression of these proteins is presumably involved in the altered virulence-related phenotypes of a csrA mutant. Mutation of fliW results in C. jejuni cells that have greatly truncated flagella, are less motile, less able to form biofilms, and exhibit a reduced ability to colonize chicks. The loss of FliW results in the altered expression of 153 flagellar and non-flagellar proteins, the majority of which are members of the CsrA regulon. The number of proteins dysregulated in the fliW mutant was greater at mid-log phase (120 proteins) than at stationary phase (85 proteins); 52 proteins showed altered expression at both growth phases. Loss of FliW altered the growth-phase- and CsrA-mediated regulation of FlaA flagellin. FliW exerts these effects by binding to both FlaA and to CsrA, as evidenced by pull-down assays, protein-protein cross-linking, and size-exclusion chromatography. Taken together, these results show that CsrA-mediated regulation of both flagellar and non-flagellar proteins is modulated by direct binding of CsrA to the flagellar chaperone FliW. Changing FliW:CsrA stoichiometries at different growth phases allow C. jejuni to couple the expression of flagellar motility to metabolic and virulence characteristics.
Collapse
Affiliation(s)
- Jiaqi Li
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| | - Connor J Gulbronson
- 2Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Bogacz
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| | - David R Hendrixson
- 2Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stuart A Thompson
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Li Y, Wang H, Ren J, Chen L, Zhuge X, Hu L, Li D, Tang F, Dai J. The YfcO fimbriae gene enhances adherence and colonization abilities of avian pathogenic Escherichia coli in vivo and in vitro. Microb Pathog 2016; 100:56-61. [PMID: 27616446 DOI: 10.1016/j.micpath.2016.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022]
Abstract
Chaperone-usher (CU) fimbriae, which are adhesive surface organelles found in many Gram-negative bacteria, mediate tissue tropism through the interaction of fimbrial adhesins with specific receptors expressed on the host cell surface. A CU fimbrial gene yfcO, was identified in avian pathogenic E. coli (APEC) strain DE205B via gene functional analysis. In this study, yfcO was found in 13.41% (11/82) of E. coli strains, including phylogenetic groups A, B1, B2 and D, with the highest percentage in group B2. The expression of yfcO in biofilm forming bacteria was significantly higher (P < 0.05) than that in the planktonic bacteria. A yfcO deletion mutant was constructed, and adherence to DF-1 chicken embryo fibroblast cells was analyzed in vitro. Compared to the wild-type (WT), adherence of the mutant to DF-1 cells was significantly decreased (P < 0.01). The mutant bacterial loads in the heart, brain and liver were significantly lower (P < 0.05) than those of the WT strain. Resistance of the mutant to acidic (acetic, pH 4.0, 20 min) and high osmolarity (2.5 M NaCl, 1 h) stress conditions decreased by 51.28% (P < 0.001) and 80.34% (P < 0.01), respectively. These results suggest that yfcO contributes to APEC virulence through bacterial adherence to host tissues.
Collapse
Affiliation(s)
- Yaxin Li
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haojin Wang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianluan Ren
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Chen
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Hu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dezhi Li
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Tang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Radomska KA, Ordoñez SR, Wösten MMSM, Wagenaar JA, van Putten JPM. Feedback control of Campylobacter jejuni flagellin levels through reciprocal binding of FliW to flagellin and the global regulator CsrA. Mol Microbiol 2016; 102:207-220. [PMID: 27353476 DOI: 10.1111/mmi.13455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 01/05/2023]
Abstract
Bacterial flagella assembly is tightly regulated to ensure a timely and sequential production of the various flagellum constituents. In the pathogen Campylobacter jejuni the hierarchy in flagella biosynthesis is largely determined at the transcriptional level through the activity of the alternative sigma factors sigma54 and sigma28 . Here, we report that C. jejuni flagellin levels are also controlled at the post-transcriptional level via the thus far poorly-characterized flagellar assembly factor FliW. Analysis of flagellin synthesis in C. jejuni 81116 and a ΔfliW knock-out mutant showed reduced flagellin protein levels in the mutant strain while ectopic expression of FliW resulted in enhanced levels. Real-time RT-PCR revealed relatively minor changes in flaA and flaB mRNA levels for the recombinant and parent strain consistent with post-transcriptional regulation. Purified FliW was found to bind to FlaA and FlaB flagellin as well as to the global post-transcriptional regulator CsrA. Inactivation of CsrA resulted in increased levels of flagellin translation. An in vitro translation assay confirmed the regulatory role of CsrA in flagellin biosynthesis. We propose that competitive reciprocal binding of FliW to flagellins and the RNA binding protein CsrA serves as a feedback mechanism to control the number of cytosolic flagellin copies at the protein level.
Collapse
Affiliation(s)
- Katarzyna A Radomska
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Soledad R Ordoñez
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.,Central Veterinary Institute of Wageningen UR, Wageningen, The Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Kim JC, Oh E, Kim J, Jeon B. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front Microbiol 2015; 6:751. [PMID: 26284041 PMCID: PMC4518328 DOI: 10.3389/fmicb.2015.00751] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense.
Collapse
Affiliation(s)
| | | | | | - Byeonghwa Jeon
- School of Public Health, University of Alberta, EdmontonAB, Canada
| |
Collapse
|
12
|
Tan Y, Liu ZY, Liu Z, Zheng HJ, Li FL. Comparative transcriptome analysis between csrA-disruption Clostridium acetobutylicum and its parent strain. MOLECULAR BIOSYSTEMS 2015; 11:1434-42. [DOI: 10.1039/c4mb00600c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
This study represented the first attempt to investigate the global regulation of CsrA through transcriptome analysis in Gram-positive bacteria.
Collapse
Affiliation(s)
- Yang Tan
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Zi-Yong Liu
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Zhen Liu
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics
- Chinese National Human Genome Center at Shanghai
- Shanghai 201203
- China
| | - Fu-Li Li
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| |
Collapse
|
13
|
Kao CY, Sheu BS, Wu JJ. CsrA regulates Helicobacter pylori J99 motility and adhesion by controlling flagella formation. Helicobacter 2014; 19:443-54. [PMID: 25109343 DOI: 10.1111/hel.12148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Motility mediated by the flagella of Helicobacter pylori has been shown to be required for normal colonization and is thought to be important for the bacteria to move toward the gastric mucus in niches adjacent to the epithelium. Barnard et al. showed that CsrA appears to be necessary for full motility and the ability to infect mice, but its mechanism of regulation is still unclear. METHODS Motility and cell adhesion ability were determined in wild-type, csrA mutant, and revertant J99 strains. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. The expression of two major flagellins, flaA/flaB, and the alternative sigma factor rpoN (σ(54)) were determined by real-time quantitative RT-PCR and Western blot. RESULTS The csrA mutant showed loss of motility and lower adhesion ability compared with the wild-type and revertant J99 strains. The csrA mutant was not flagellated. Transcription of flaA and flaB mRNA decreased to only 40% and 16%, respectively, in the csrA mutant compared with the wild-type J99 (p = .006 and <.0001, respectively), and Western blot analysis showed dramatically reduced FlaA/FlaB proteins in a csrA mutant. The disruption of csrA also decreased expression of rpoN to 48% in the csrA mutant, but the degradation rate of rpoN mRNA was not changed. CONCLUSION These results suggest that CsrA regulates H. pylori J99 flagella formation and thereby affects bacterial motility.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
14
|
Martínez LC, Vadyvaloo V. Mechanisms of post-transcriptional gene regulation in bacterial biofilms. Front Cell Infect Microbiol 2014; 4:38. [PMID: 24724055 PMCID: PMC3971182 DOI: 10.3389/fcimb.2014.00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2014] [Accepted: 03/08/2014] [Indexed: 12/19/2022] Open
Abstract
Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.
Collapse
Affiliation(s)
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State UniversityPullman, WA, USA
| |
Collapse
|
15
|
Dufour V, Li J, Flint A, Rosenfeld E, Rivoal K, Georgeault S, Alazzam B, Ermel G, Stintzi A, Bonnaure-Mallet M, Baysse C. Inactivation of the LysR regulator Cj1000 of Campylobacter jejuni affects host colonization and respiration. MICROBIOLOGY-SGM 2013; 159:1165-1178. [PMID: 23558264 DOI: 10.1099/mic.0.062992-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
Transcriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonization. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C. jejuni lacks the homologues of ubiquitous regulators involved in stress response found in many other Gram-negative bacteria. Nonetheless, cj1000 is predicted to encode the sole LysR-type regulator in the C. jejuni genome, and thus may be involved in major adaptation pathways. A cj1000 mutant strain was constructed and found to be attenuated in its ability to colonize 1-day-old chicks. Complementation of the cj1000 mutation restored the colonization ability to wild-type levels. The mutant strain was also outcompeted in a competitive colonization assay of the piglet intestine. Oxygraphy was carried out for what is believed to be the first time with the Oroboros Oxygraph-2k on C. jejuni and revealed a role for Cj1000 in controlling O2 consumption. Furthermore, microarray analysis of the cj1000 mutant revealed both direct and indirect regulatory targets, including genes involved in energy metabolism and oxidative stress defences. These results highlight the importance of Cj1000 regulation in host colonization and in major physiological pathways.
Collapse
Affiliation(s)
| | - Jennifer Li
- Department of Biochemistry, Immunology and Microbiology, Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada
| | - Annika Flint
- Department of Biochemistry, Immunology and Microbiology, Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada
| | | | | | | | | | | | - Alain Stintzi
- Department of Biochemistry, Immunology and Microbiology, Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada
| | | | | |
Collapse
|
16
|
Agaras B, Sobrero P, Valverde C. A CsrA/RsmA translational regulator gene encoded in the replication region of a Sinorhizobium meliloti cryptic plasmid complements Pseudomonas fluorescens rsmA/E mutants. MICROBIOLOGY-SGM 2012; 159:230-242. [PMID: 23175505 DOI: 10.1099/mic.0.061614-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Members of the CsrA/RsmA family are global regulatory proteins that bind to mRNAs, usually at the ribosome-binding site, to control mRNA translation and stability. Their activity is counteracted by small non-coding RNAs (sRNAs), which offer several binding sites to compete with mRNA binding. The csrA/rsmA genes are widespread in prokaryotic chromosomes, although certain phylogenetic groups such as Alphaproteobacteria lack this type of global regulator. Interestingly, a csrA/rsmA-like sequence was identified in the replication region of plasmid pMBA19a from the alphaproteobacterium Sinorhizobium meliloti. This rsmA-like allele (rsmA(Sm)) is 58 % identical to Xanthomonas axonopodis pv. citri chromosomal rsmA and bears an unusual C-terminal extension that may fold into an extra α-helix. Homology-based modelling of RsmA(Sm) suggests that all key mRNA-binding residues are conserved and correctly positioned in the RNA-binding pocket. In fact, a 1.6 kb fragment from pMBA19a encompassing the rsmA(Sm) locus restored rsmA/E-dependent phenotypes of rsmA/E gacS Pseudomonas fluorescens mutants. The functionality of RsmA(Sm) was confirmed by the gain of control over target aprA'-'lacZ and hcnA'-'lacZ translational fusions in the same mutant background. The RsmA(Sm) activity correlated with Western blot detection of the polypeptide. Phenotype and translational fusion data from rsmA/E P. fluorescens mutants expressing RsmX/Y/Z RNAs indicated that RsmA(Sm) is able to bind these antagonistic sRNAs. In agreement with the latter observation, it was also found that the sRNA RsmY was stabilized by RsmA(Sm). Deletion of the C-terminal extra α-helix of RsmA(Sm) affected its cellular concentration, but increased its relative RNA-binding activity. This is believed to be the first report of the presence and characterization of a functional csrA/rsmA homologue in a mobile genetic element.
Collapse
Affiliation(s)
- Betina Agaras
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352 - Bernal B1876BXD - Buenos Aires, Argentina
| | - Patricio Sobrero
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352 - Bernal B1876BXD - Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352 - Bernal B1876BXD - Buenos Aires, Argentina
| |
Collapse
|