1
|
Li N, Li J, Chen Y, Shen Y, Wei D, Wang W. Mechanism of Zn 2+ regulation of cellulase production in Trichoderma reesei Rut-C30. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:73. [PMID: 37118821 PMCID: PMC10148476 DOI: 10.1186/s13068-023-02323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Trichoderma reesei Rut-C30 is a hypercellulolytic mutant strain that degrades abundant sources of lignocellulosic plant biomass, yielding renewable biofuels. Although Zn2+ is an activator of enzymes in almost all organisms, its effects on cellulase activity in T. reesei have yet to be reported. RESULTS Although high concentrations of Zn2+ severely suppressed the extension of T. reesei mycelia, the application of 1-4 mM Zn2+ enhanced cellulase and xylanase production in the high-yielding cellulase-producing Rut-C30 strain of T. reesei. Expression of the major cellulase, xylanase, and two essential transcription activator genes (xyr1 and ace3) increased in response to Zn2+ stimulation. Transcriptome analysis revealed that the mRNA levels of plc-e encoding phospholipase C, which is involved in the calcium signaling pathway, were enhanced by Zn2+ application. The disruption of plc-e abolished the cellulase-positive influence of Zn2+ in the early phase of induction, indicating that plc-e is involved in Zn2+-induced cellulase production. Furthermore, treatment with LaCl3 (a plasma membrane Ca2+ channel blocker) and deletion of crz1 (calcineurin-responsive zinc finger transcription factor 1) indicated that calcium signaling is partially involved in this process. Moreover, we identified the zinc-responsive transcription factor zafA, the transcriptional levels of which declined in response to Zn2+ stress. Deletion of zafA indicates that this factor plays a prominent role in mediating the Zn2+-induced excessive production of cellulase. CONCLUSIONS For the first time, we have demonstrated that Zn2+ is toxic to T. reesei, although promotes a marked increase in cellulase production. This positive influence of Zn2+ is facilitated by the plc-e gene and zafA transcription factor. These findings provide insights into the role of Zn2+ in T. reesei and the mechanisms underlying signal transduction in cellulase synthesis.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Jing Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Dongzhi Wei
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China.
| |
Collapse
|
2
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Schmoll M, Hinterdobler W. Tools for adapting to a complex habitat: G-protein coupled receptors in Trichoderma. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:65-97. [PMID: 36357080 DOI: 10.1016/bs.pmbts.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sensing the environment and interpretation of the received signals are crucial competences of living organisms in order to properly adapt to their habitat, succeed in competition and to reproduce. G-protein coupled receptors (GPCRs) are members of a large family of sensors for extracellular signals and represent the starting point of complex signaling cascades regulating a plethora of intracellular physiological processes and output pathways in fungi. In Trichoderma spp. current research involves a wide range of topics from enzyme production, light response and secondary metabolism to sexual and asexual development as well as biocontrol, all of which require delicate balancing of resources in response to the environmental challenges or biotechnological needs at hand, which are crucially impacted by the surroundings of the fungi and their intercellular signaling cascades triggering a precisely tailored response. In this review we summarize recent findings on sensing by GPCRs in Trichoderma, including the function of pheromone receptors, glucose sensing by CSG1 and CSG2, regulation of secondary metabolism by GPR8 and impacts on mycoparasitism by GPR1. Additionally, we provide an overview on structural determinants, posttranslational modifications and interactions for regulation, activation and signal termination of GPCRs in order to inspire future in depth analyses of their function and to understand previous regulatory outcomes of natural and biotechnological processes modulated or enabled by GPCRs.
Collapse
Affiliation(s)
- Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
4
|
cAMP Signalling Pathway in Biocontrol Fungi. Curr Issues Mol Biol 2022; 44:2622-2634. [PMID: 35735620 PMCID: PMC9221721 DOI: 10.3390/cimb44060179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/07/2023] Open
Abstract
Biocontrol is a complex process, in which a variety of physiological and biochemical characteristics are altered. The cAMP signalling pathway is an important signal transduction pathway in biocontrol fungi and consists of several key components. The G-protein system contains G-protein coupled receptors (GPCRs), heterotrimeric G-proteins, adenylate cyclase (AC), cAMP-dependent protein kinase (PKA), and downstream transcription factors (TFs). The cAMP signalling pathway can regulate fungal growth, development, differentiation, sporulation, morphology, secondary metabolite production, environmental stress tolerance, and the biocontrol of pathogens. However, few reviews of the cAMP signalling pathway in comprehensive biocontrol processes have been reported. This work reviews and discusses the functions and applications of genes encoding each component in the cAMP signalling pathway from biocontrol fungi, including the G-protein system components, AC, PKA, and TFs, in biocontrol behaviour. Finally, future suggestions are provided for constructing a complete cAMP signalling pathway in biocontrol fungi containing all the components and downstream effectors involved in biocontrol behavior. This review provides useful information for the understanding the biocontrol mechanism of biocontrol fungi by utilising the cAMP signalling pathway.
Collapse
|
5
|
Chen Y, Fan X, Zhao X, Shen Y, Xu X, Wei L, Wang W, Wei D. cAMP activates calcium signalling via phospholipase C to regulate cellulase production in the filamentous fungus Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:62. [PMID: 33685506 PMCID: PMC7941909 DOI: 10.1186/s13068-021-01914-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/21/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei is one of the best producers of cellulase and has been widely studied for the production of cellulosic ethanol and bio-based products. We previously reported that Mn2+ and N,N-dimethylformamide (DMF) can stimulate cellulase overexpression via Ca2+ bursts and calcium signalling in T. reesei under cellulase-inducing conditions. To further understand the regulatory networks involved in cellulase overexpression in T. reesei, we characterised the Mn2+/DMF-induced calcium signalling pathway involved in the stimulation of cellulase overexpression. RESULTS We found that Mn2+/DMF stimulation significantly increased the intracellular levels of cAMP in an adenylate cyclase (ACY1)-dependent manner. Deletion of acy1 confirmed that cAMP is crucial for the Mn2+/DMF-stimulated cellulase overexpression in T. reesei. We further revealed that cAMP elevation induces a cytosolic Ca2+ burst, thereby initiating the Ca2+ signal transduction pathway in T. reesei, and that cAMP signalling causes the Ca2+ signalling pathway to regulate cellulase production in T. reesei. Furthermore, using a phospholipase C encoding gene plc-e deletion strain, we showed that the plc-e gene is vital for cellulase overexpression in response to stimulation by both Mn2+ and DMF, and that cAMP induces a Ca2+ burst through PLC-E. CONCLUSIONS The findings of this study reveal the presence of a signal transduction pathway in which Mn2+/DMF stimulation produces cAMP. Increase in the levels of cAMP activates the calcium signalling pathway via phospholipase C to regulate cellulase overexpression under cellulase-inducing conditions. These findings provide insights into the molecular mechanism of the cAMP-PLC-calcium signalling pathway underlying cellulase expression in T. reesei and highlight the potential applications of signal transduction in the regulation of gene expression in fungi.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| | - Xingjia Fan
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaling Shen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| | - Xiangyang Xu
- Zaozhuang Jie Nuo Enzyme Co. Ltd., Shandong, China
| | - Liujing Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| |
Collapse
|
6
|
Hinterdobler W, Beier S, Monroy AA, Berger H, Dattenböck C, Schmoll M. The G-protein Coupled Receptor GPR8 Regulates Secondary Metabolism in Trichoderma reesei. Front Bioeng Biotechnol 2020; 8:558996. [PMID: 33251193 PMCID: PMC7676458 DOI: 10.3389/fbioe.2020.558996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Changing environmental conditions are of utmost importance for regulation of secondary metabolism in fungi. Different environmental cues including the carbon source, light and the presence of a mating partner can lead to altered production of compounds. Thereby, the heterotrimeric G-protein pathway is of major importance for sensing and adjustment of gene regulation. Regulation of secondary metabolism is crucial in the biotechnological workhorse Trichoderma reesei for knowledge-based adjustment in industrial fermentations, but also with respect to the potential use as a host for heterologous compound production. We investigated the function of the class VII G-protein coupled receptor (GPCR) gene gpr8 that is localized in the vicinity of the SOR cluster, which is responsible for biosynthesis of sorbicillinoids. GPR8 positively impacts regulation of the genes in this cluster in darkness. Accordingly, abundance of trichodimerol and dihydrotrichotetronine as well as other secondary metabolites is decreased in the deletion mutant. Transcriptome analysis moreover showed the major role of GPR8 being exerted in darkness with a considerable influence on regulation of secondary metabolism. Genes regulated in Δgpr8 overlap with those regulated directly or indirectly by the transcription factor YPR2, especially concerning genes related to secondary metabolism. The predicted FAD/FMN containing dehydrogenase gene sor7, one of the positive targets of the cascade triggered by GPR8, has a positive effect on secondary metabolite production, but also cellulase gene expression. Hence SOR7 has some overlapping, but also additional functions compared to GPR8. The G-protein coupled receptor GPR8 exerts a light dependent impact on secondary metabolism, which is in part mediated by the transcription factor YPR2 and the function of SOR7. Hence, T. reesei may apply GPR8 to adjust production of secondary metabolites and hence chemical communication to signals from the environment.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Sabrina Beier
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Alberto Alonso Monroy
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Christoph Dattenböck
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Monika Schmoll
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
7
|
Shang J, Shang Y, Tang G, Wang C. Identification of a key G-protein coupled receptor in mediating appressorium formation and fungal virulence against insects. SCIENCE CHINA-LIFE SCIENCES 2020; 64:466-477. [PMID: 32712834 DOI: 10.1007/s11427-020-1763-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Fungal G-protein coupled receptors (GPCRs) play essential roles in sensing environmental cues including host signals. The study of GPCR in mediating fungus-insect interactions is still limited. Here we report the evolution of GPCR genes encoded in the entomopathogenic Metarhizium species and found the expansion of Pth11-like GPCRs in the generalist species with a wide host range. By deletion of ten candidate genes MrGpr1-MrGpr10 selected from the six obtained subfamilies in the generalist M. robertsii, we found that each of them played a varied level of roles in mediating appressorium formation. In particular, deletion of MrGpr8 resulted in the failure of appressorium formation on different substrates and the loss of virulence during topical infection of insects but not during injection assays when compared with the wild-type (WT) strain. Further analysis revealed that disruption of MrGpr8 substantially impaired the nucleus translocation of the mitogen-activated protein kinase (MAPK) Mero-Fus3 but not the MAPK Mero-Slt2 during appressorium formation. We also found that the defect of AMrGpr8 could not be rescued with the addition of cyclic AMP for appressorium formation. Relative to the WT, differential expression of the selected genes have also been detected in AMrGpr8. The results of this study may benefit the understanding of fungus-interactions mediated by GPCRs.
Collapse
Affiliation(s)
- Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfang Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
8
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
9
|
Lin Y, Ruan H, Akutse KS, Lai B, Lin Y, Hou Y, Zhong F. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit Botrytis cinerea via Binding to G-Protein Coupled Receptors and Transmitting with cAMP-Signal Pathway of the Fungus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13706-13717. [PMID: 31693347 DOI: 10.1021/acs.jafc.9b05778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tomato storage conditions are difficult largely due to Botrytis cinerea infection which causes gray mold disease. However, the effects of the volatile organic compounds (VOCs) emitted by postharvest tomatoes on this fungus remain unclear. We analyzed the effects of tomato-emitted VOCs on B. cinerea pathogenicity, germination, and hyphal growth with bioassay, predicted the causative active compounds by principle component analysis, identified G-protein-coupled receptors (GPCRs) which captured chemical signals in the B. cinerea genome by stimulating molecular docking, tested the binding affinities of these receptors for the active compounds by fluorescence binding competition assay, and identified an associated signaling pathway by RNA interfere. The VOCs emitted by postharvest tomatoes inhibited B. cinerea; ethylene and benzaldehyde were the active compounds causing this effect. One of the identified GPCRs in B. cinerea, BcGPR3, bound tightly to both active compounds. Two genes associated with the cAMP signaling pathway (BcRcn1 and BcCnA) were downregulated in wild-type B. cinerea exposed to the active compounds, as well as in the ΔBcgpr3 B. cinerea mutant. Exposure to postharvest tomato VOCs reduces B. cinerea pathogenicity due to ethylene and benzaldehyde volatiles. The BcGPR3 protein is inactivated by the active compounds, and thus fails to transmit signals to the cAMP pathway, thereby inhibiting B. cinerea.
Collapse
Affiliation(s)
- Yongwen Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & College of Horticulture , Fujian Agriculture and Forestry University Fujian , 350013 Fuzhou , Fujian , P. R. China
| | - Hongchun Ruan
- Institute of Plant Protection , Fujian Academy of Agricultural Sciences , 350013 Fuzhou , Fujian , P. R. China
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology , 30772-00100 Nairobi , Kenya
| | - Baochun Lai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & College of Horticulture , Fujian Agriculture and Forestry University Fujian , 350013 Fuzhou , Fujian , P. R. China
| | - Yizhang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & College of Horticulture , Fujian Agriculture and Forestry University Fujian , 350013 Fuzhou , Fujian , P. R. China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & College of Horticulture , Fujian Agriculture and Forestry University Fujian , 350013 Fuzhou , Fujian , P. R. China
| | - Fenglin Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & College of Horticulture , Fujian Agriculture and Forestry University Fujian , 350013 Fuzhou , Fujian , P. R. China
| |
Collapse
|
10
|
Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnol Adv 2019; 37:107392. [PMID: 31034961 DOI: 10.1016/j.biotechadv.2019.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
Abstract
Filamentous fungi respond to hundreds of nutritional, chemical and environmental signals that affect expression of primary metabolism and biosynthesis of secondary metabolites. These signals are sensed at the membrane level by G protein coupled receptors (GPCRs). GPCRs contain usually seven transmembrane domains, an external amino terminal fragment that interacts with the ligand, and an internal carboxy terminal end interacting with the intracellular G protein. There is a great variety of GPCRs in filamentous fungi involved in sensing of sugars, amino acids, cellulose, cell-wall components, sex pheromones, oxylipins, calcium ions and other ligands. Mechanisms of signal transduction at the membrane level by GPCRs are discussed, including the internalization and compartmentalisation of these sensor proteins. We have identified and analysed the GPCRs in the genome of Penicillium chrysogenum and compared them with GPCRs of several other filamentous fungi. We have found 66 GPCRs classified into 14 classes, depending on the ligand recognized by these proteins, including most previously proposed classes of GPCRs. We have found 66 putative GPCRs, representatives of twelve of the fourteen previously proposed classes of GPCRs, depending on the ligand recognized by these proteins. A staggering fortytwo putative members of the new GPCR class XIV, the so-called Pth11 sensors of cellulosic material as reported for Neurospora crassa and some other fungi, were identified. Several GPCRs sensing sex pheromones, known in yeast and in several fungi, were also identified in P. chrysogenum, confirming the recent unravelling of the hidden sexual capacity of this species. Other sensing mechanisms do not involve GPCRs, including the two-component systems (HKRR), the HOG signalling system and the PalH mediated pH transduction sensor. GPCR sensor proteins transmit their signals by interacting with intracellular heterotrimeric G proteins, that are well known in several fungi, including P. chrysogenum. These G proteins are inactive in the GDP containing heterotrimeric state, and become active by nucleotide exchange, allowing the separation of the heterotrimeric protein in active Gα and Gβγ dimer subunits. The conversion of GTP in GDP is mediated by the endogenous GTPase activity of the G proteins. Downstream of the ligand interaction, the activated Gα protein and also the Gβ/Gγ dimer, transduce the signals through at least three different cascades: adenylate cyclase/cAMP, MAPK kinase, and phospholipase C mediated pathways.
Collapse
|
11
|
The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Sci Rep 2018; 8:12064. [PMID: 30104659 PMCID: PMC6089919 DOI: 10.1038/s41598-018-30500-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Mycoparasites, e.g. fungi feeding on other fungi, are prominent within the genus Trichoderma and represent a promising alternative to chemical fungicides for plant disease control. We previously showed that the seven-transmembrane receptor Gpr1 regulates mycelial growth and asexual development and governs mycoparasitism-related processes in Trichoderma atroviride. We now describe the identification of genes being targeted by Gpr1 under mycoparasitic conditions. The identified gene set includes a candidate, sfp2, encoding a protein of the fungal-specific Sur7 superfamily, whose upregulation in T. atroviride upon interaction with a fungal prey is dependent on Gpr1. Sur7 family proteins are typical residents of membrane microdomains such as the membrane compartment of Can1 (MCC)/eisosome in yeast. We found that GFP-labeled Gpr1 and Sfp2 proteins show partly overlapping localization patterns in T. atroviride hyphae, which may point to shared functions and potential interaction during signal perception and endocytosis. Deletion of sfp2 caused heavily altered colony morphology, defects in polarized growth, cell wall integrity and endocytosis, and significantly reduced mycoparasitic activity, whereas sfp2 overexpression enhanced full overgrowth and killing of the prey. Transcriptional activation of a chitinase specific for hyphal growth and network formation and strong downregulation of chitin synthase-encoding genes were observed in Δsfp2. Taken together, these findings imply crucial functions of Sfp2 in hyphal morphogenesis of T. atroviride and its interaction with prey fungi.
Collapse
|
12
|
Xu X, Li G, Li L, Su Z, Chen C. Genome-wide comparative analysis of putative Pth11-related G protein-coupled receptors in fungi belonging to Pezizomycotina. BMC Microbiol 2017; 17:166. [PMID: 28743231 PMCID: PMC5526305 DOI: 10.1186/s12866-017-1076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023] Open
Abstract
Background G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi, where they play important roles in signal transduction. Among them, the Pth11-related GPCRs form a large and divergent protein family, and are only found in fungi in Pezizomycotina. However, the evolutionary process and potential functions of Pth11-related GPCRs remain largely unknown. Results Twenty genomes of fungi in Pezizomycotina covering different nutritional strategies were mined for putative Pth11-related GPCRs. Phytopathogens encode much more putative Pth11-related GPCRs than symbionts, saprophytes, or entomopathogens. Based on the phylogenetic tree, these GPCRs can be divided into nine clades, with each clade containing fungi in different taxonomic orders. Instead of fungi from the same order, those fungi with similar nutritional strategies were inclined to share orthologs of putative Pth11-related GPCRs. Most of the CFEM domain-containing Pth11-related GPCRs, which were only included in two clades, were detected in phytopathogens. Furthermore, many putative Pth11-related GPCR genes of phytopathogens were upregulated during invasive plant infection, but downregulated under biotic stress. The expressions of putative Pth11-related GPCR genes of saprophytes and entomopathogens could be affected by nutrient conditions, especially the carbon source. The gene expressions revealed that Pth11-related GPCRs could respond to biotic/abiotic stress and invasive plant infection with different expression patterns. Conclusion Our results indicated that the Pth11-related GPCRs existed before the diversification of Pezizomycotina and have been gained and/or lost several times during the evolutionary process. Tandem duplications and trophic variations have been important factors in this evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guopeng Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, China
| | - Lu Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenzhu Su
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Abstract
Mycoparasitism is a lifestyle where one fungus establishes parasitic interactions with other fungi. Species of the genus Trichoderma together with Clonostachys rosea are among the most studied fungal mycoparasites. They have wide host ranges comprising several plant pathogens and are used for biological control of plant diseases. Trichoderma as well as C. rosea mycoparasites efficiently overgrow and kill their fungal prey by using infection structures and by applying lytic enzymes and toxic metabolites. Most of our knowledge on the putative signals and signaling pathways involved in prey recognition and activation of the mycoparasitic response is derived from studies with Trichoderma. These fungi rely on G-protein signaling, the cAMP pathway, and mitogen-activated protein kinase cascades during growth and development as well as during mycoparasitism. The signals being recognized by the mycoparasite may include surface molecules and surface properties as well as secondary metabolites and other small molecules released from the prey. Their exact nature, however, remains elusive so far. Recent genomics-based studies of mycoparasitic fungi of the order Hypocreales, i.e., Trichoderma species, C. rosea, Tolypocladium ophioglossoides, and Escovopsis weberi, revealed not only several gene families with a mycoparasitism-related expansion of gene paralogue numbers, but also distinct differences between the different mycoparasites. We use this information to illustrate the biological principles and molecular basis of necrotrophic mycoparasitism and compare the mycoparasitic strategies of Trichoderma as a "model" mycoparasite with the behavior and special features of C. rosea, T. ophioglossoides, and E. weberi.
Collapse
|
14
|
Sabnam N, Roy Barman S. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus. Fungal Genet Biol 2017; 105:37-51. [PMID: 28576657 DOI: 10.1016/j.fgb.2017.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 11/26/2022]
Abstract
We have selected and characterized a unique Conserved Fungal-specific Extra-cellular Membrane-spanning (CFEM) domain containing PTH11 like G-protein coupled receptor (GPCR), which is responsible for Water wettability, Infection, Surface sensing and Hyper-conidiation (WISH). The pathogenicity gene WISH is predicted to encode a novel seven transmembrane protein in the rice blast fungus, Magnaporthe oryzae, one of the deadliest pathogens of rice. We generated knockout mutants through a homologous recombination-based method to understand the function of the gene. These mutants are nonpathogenic due to a defect in sensing hydrophobic surface and appressorium differentiation. The mutant failed to undergo early events of pathogenesis, and appressorium development is diminished on inductive hydrophobic surface and was unable to penetrate susceptible rice leaves. The Δwish mutant did not develop any appressorium, suggesting that WISH protein is required for appressorium morphogenesis and is also involved in host surface recognition. We examined various aspects of pathogenesis and the results indicated involvement of WISH in preventing autolysis of vegetative hyphae, determining surface hydrophobicity and maintenance of cell-wall integrity. WISH gene from M. oryzae strain B157 complemented the Δwish mutant, indicating functional authenticity. Exogenous activation of cellular signaling failed to suppress the defects in Δwish mutants. These findings suggest that WISH GPCR senses diverse extracellular signals to play multiple roles and might have effects on PTH11 and MPG1 genes especially as an upstream effector of appressorium differentiation. It is for the first time that a typical GPCR containing seven transmembrane helices involved in the early events of plant pathogenesis of M. oryzae has been functionally characterized.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | |
Collapse
|
15
|
Bresso E, Togawa R, Hammond-Kosack K, Urban M, Maigret B, Martins NF. GPCRs from fusarium graminearum detection, modeling and virtual screening - the search for new routes to control head blight disease. BMC Bioinformatics 2016; 17:463. [PMID: 28105916 PMCID: PMC5249037 DOI: 10.1186/s12859-016-1342-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGOUND Fusarium graminearum (FG) is one of the major cereal infecting pathogens causing high economic losses worldwide and resulting in adverse effects on human and animal health. Therefore, the development of new fungicides against FG is an important issue to reduce cereal infection and economic impact. In the strategy for developing new fungicides, a critical step is the identification of new targets against which innovative chemicals weapons can be designed. As several G-protein coupled receptors (GPCRs) are implicated in signaling pathways critical for the fungi development and survival, such proteins could be valuable efficient targets to reduce Fusarium growth and therefore to prevent food contamination. RESULTS In this study, GPCRs were predicted in the FG proteome using a manually curated pipeline dedicated to the identification of GPCRs. Based on several successive filters, the most appropriate GPCR candidate target for developing new fungicides was selected. Searching for new compounds blocking this particular target requires the knowledge of its 3D-structure. As no experimental X-Ray structure of the selected protein was available, a 3D model was built by homology modeling. The model quality and stability was checked by 100 ns of molecular dynamics simulations. Two stable conformations representative of the conformational families of the protein were extracted from the 100 ns simulation and were used for an ensemble docking campaign. The model quality and stability was checked by 100 ns of molecular dynamics simulations previously to the virtual screening step. The virtual screening step comprised the exploration of a chemical library with 11,000 compounds that were docked to the GPCR model. Among these compounds, we selected the ten top-ranked nontoxic molecules proposed to be experimentally tested to validate the in silico simulation. CONCLUSIONS This study provides an integrated process merging genomics, structural bioinformatics and drug design for proposing innovative solutions to a world wide threat to grain producers and consumers.
Collapse
Affiliation(s)
- Emmanuel Bresso
- EMBRAPA Genetic Resources and Biotechnology, Brasília, DF 70770-917 Brazil
| | - Roberto Togawa
- EMBRAPA Genetic Resources and Biotechnology, Brasília, DF 70770-917 Brazil
| | - Kim Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Bernard Maigret
- EMBRAPA Genetic Resources and Biotechnology, Brasília, DF 70770-917 Brazil
- CAPSID Team, LORIA, UMR 7503, CNRS, Lorraine University, Vandœuvre-lès-Nancy, 54506 France
| | | |
Collapse
|
16
|
Sun Q, Jiang X, Pang L, Wang L, Li M. Functions of thga1 Gene in Trichoderma harzianum Based on Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8329513. [PMID: 27672660 PMCID: PMC5031823 DOI: 10.1155/2016/8329513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/22/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
Abstract
Trichoderma spp. are important biocontrol filamentous fungi, which are widely used for their adaptability, broad antimicrobial spectrum, and various antagonistic mechanisms. In our previous studies, we cloned thga1 gene encoding GαI protein from Trichoderma harzianum Th-33. Its knockout mutant showed that the growth rate, conidial yield, cAMP level, antagonistic action, and hydrophobicity decreased. Therefore, Illumina RNA-seq technology (RNA-seq) was used to determine transcriptomic differences between the wild-type strain and thga1 mutant. A total of 888 genes were identified as differentially expressed genes (DEGs), including 427 upregulated and 461 downregulated genes. All DEGs were assigned to KEGG pathway databases, and 318 genes were annotated in 184 individual pathways. KEGG analysis revealed that these unigenes were significantly enriched in metabolism and degradation pathways. GO analysis suggested that the majority of DEGs were associated with catalytic activities and metabolism processes that encode carbohydrate-active enzymes, secondary metabolites, secreted proteins, or transcription factors. According to the functional annotation of these DEGs by KOG, the most abundant group was "secondary metabolite biosynthesis, transport, and catabolism." Further studies for functional characterization of candidate genes and pathways reported in this paper are necessary to further define the G protein signaling system in T. harzianum.
Collapse
Affiliation(s)
- Qing Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiliang Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Pang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus. PLoS One 2016; 11:e0161312. [PMID: 27584150 PMCID: PMC5008803 DOI: 10.1371/journal.pone.0161312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) family represents the largest and most varied collection of membrane embedded proteins that are sensitized by ligand binding and interact with heterotrimeric G proteins. Despite their presumed critical roles in fungal biology, the functions of the GPCR family members in the opportunistic human pathogen Aspergillus fumigatus are largely unknown, as only two (GprC and GprD) of the 15 predicted GPCRs have been studied. Here, we characterize the gprK gene, which is predicted to encode a hybrid GPCR with both 7-transmembrane and regulator of G-protein signaling (RGS) domains. The deletion of gprK causes severely impaired asexual development coupled with reduced expression of key developmental activators. Moreover, ΔgprK results in hyper-activation of germination even in the absence of carbon source, and elevated expression and activity of the protein kinase A PkaC1. Furthermore, proliferation of the ΔgprK mutant is restricted on the medium when pentose is the sole carbon source, suggesting that GprK may function in external carbon source sensing. Notably, the absence of gprK results in reduced tolerance to oxidative stress and significantly lowered mRNA levels of the stress-response associated genes sakA and atfA. Activities of catalases and SODs are severely decreased in the ΔgprK mutant, indicating that GprK may function in proper activation of general stress response. The ΔgprK mutant is also defective in gliotoxin (GT) production and slightly less virulent toward the greater wax moth, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters are down-regulated by ΔgprK. In summary, GprK is necessary for proper development, GT production, and oxidative stress response, and functions in down-regulating the PKA-germination pathway.
Collapse
|
18
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
19
|
|
20
|
Physiological and Molecular Signalling Involved in Disease Management Through Trichoderma: An Effective Biocontrol Paradigm. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27312-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Yue Y, Dou L, Wang X, Xue H, Song Y, Li X. Screening β1AR inhibitors by cell membrane chromatography and offline UPLC/MS method for protecting myocardial ischemia. J Pharm Biomed Anal 2015; 115:339-44. [DOI: 10.1016/j.jpba.2015.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022]
|
22
|
Global Analysis of Predicted G Protein-Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa. G3-GENES GENOMES GENETICS 2015; 5:2729-43. [PMID: 26464358 PMCID: PMC4683645 DOI: 10.1534/g3.115.020974] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G protein−coupled receptors (GPCRs) regulate facets of growth, development, and environmental sensing in eukaryotes, including filamentous fungi. The largest predicted GPCR class in these organisms is the Pth11-related, with members similar to a protein required for disease in the plant pathogen Magnaporthe oryzae. However, the Pth11-related class has not been functionally studied in any filamentous fungal species. Here, we analyze phenotypes in available mutants for 36 GPCR genes, including 20 Pth11-related, in the model filamentous fungus Neurospora crassa. We also investigate patterns of gene expression for all 43 predicted GPCR genes in available datasets. A total of 17 mutants (47%) possessed at least one growth or developmental phenotype. We identified 18 mutants (56%) with chemical sensitivity or nutritional phenotypes (11 uniquely), bringing the total number of mutants with at least one defect to 28 (78%), including 15 mutants (75%) in the Pth11-related class. Gene expression trends for GPCR genes correlated with the phenotypes observed for many mutants and also suggested overlapping functions for several groups of co-transcribed genes. Several members of the Pth11-related class have phenotypes and/or are differentially expressed on cellulose, suggesting a possible role for this gene family in plant cell wall sensing or utilization.
Collapse
|
23
|
Al-Sadi AM, Al-Oweisi FA, Edwards SG, Al-Nadabi H, Al-Fahdi AM. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil. BMC Microbiol 2015; 15:147. [PMID: 26215423 PMCID: PMC4517564 DOI: 10.1186/s12866-015-0483-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. RESULTS A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. CONCLUSION The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T. asperellum, T. ghanense, T. longibrachiatum and T. orientalis.
Collapse
Affiliation(s)
- Abdullah M Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
| | | | - Simon G Edwards
- Department of Crop and Environment Sciences, Harper Adams University, Newport, , TF10 8NB, , UK.
| | - Hamed Al-Nadabi
- The Botanic Garden, College of Science, Sultan Qaboos University, Muscat, Oman.
| | | |
Collapse
|
24
|
Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. BMC Genomics 2014; 15:996. [PMID: 25406499 PMCID: PMC4246466 DOI: 10.1186/1471-2164-15-996] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Sugarcane smut can cause losses in cane yield and sugar content that range from 30% to total crop failure. Losses tend to increase with the passage of years. Sporisorium scitamineum is the fungus that causes sugarcane smut. This fungus has the potential to infect all sugarcane species unless a species is resistant to biotrophic fungal pathogens. However, it remains unclear how the fungus breaks through the cell walls of sugarcane and causes the formation of black or gray whip-like structures on the sugarcane plants. Results Here, we report the first high-quality genome sequence of S. scitamineum assembled de novo with a contig N50 of 41 kb, a scaffold N50 of 884 kb and genome size 19.8 Mb, containing an estimated 6,636 genes. This phytopathogen can utilize a wide range of carbon and nitrogen sources. A reduced set of genes encoding plant cell wall hydrolytic enzymes leads to its biotrophic lifestyle, in which damage to the host should be minimized. As a bipolar mating fungus, a and b loci are linked and the mating-type locus segregates as a single locus. The S. scitamineum genome has only 6 G protein-coupled receptors (GPCRs) grouped into five classes, which are responsible for transducing extracellular signals into intracellular responses, however, the genome is without any PTH11-like GPCR. There are 192 virulence associated genes in the genome of S. scitamineum, among which 31 expressed in all the stages, which mainly encode for energy metabolism and redox of short-chain compound related enzymes. Sixty-eight candidates for secreted effector proteins (CSEPs) were found in the genome of S. scitamineum, and 32 of them expressed in the different stages of sugarcane infection, which are probably involved in infection and/or triggering defense responses. There are two non-ribosomal peptide synthetase (NRPS) gene clusters that are involved in the generation of ferrichrome and ferrichrome A, while the terpenes gene cluster is composed of three unknown function genes and seven biosynthesis related genes. Conclusions As a destructive pathogen to sugar industry, the S. scitamineum genome will facilitate future research on the genomic basis and the pathogenic mechanisms of sugarcane smut. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-996) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that relay signals from the external environment inside the cell, allowing an organism to adapt to its surroundings. They are known to detect a vast array of ligands, including sugars, amino acids, pheromone peptides, nitrogen sources, oxylipins, and light. Despite their prevalence in fungal genomes, very little is known about the functions of filamentous fungal GPCRs. Here we present the first full-genome assessment of fungal GPCRs through characterization of null mutants of all 15 GPCRs encoded by the aflatoxin-producing fungus Aspergillus flavus. All strains were assessed for growth, development, ability to produce aflatoxin, and response to carbon sources, nitrogen sources, stress agents, and lipids. Most GPCR mutants were aberrant in one or more response processes, possibly indicative of cross talk in downstream signaling pathways. Interestingly, the biological defects of the mutants did not correspond with assignment to established GPCR classes; this is likely due to the paucity of data for characterized fungal GPCRs. Many of the GPCR transcripts were differentially regulated under various conditions as well. The data presented here provide an extensive overview of the full set of GPCRs encoded by A. flavus and provide a framework for analysis in other fungal species. Aspergillus flavus is an opportunistic pathogen of crops and animals, including humans, and it produces a carcinogenic toxin called aflatoxin. Because of this, A. flavus accounts for food shortages and economic losses in addition to sickness and death. Effective means of combating this pathogen are needed to mitigate its deleterious effects. G protein-coupled receptors (GPCRs) are often used as therapeutic targets due to their signal specificity, and it is estimated that half of all drugs target GPCRs. In fungi such as A. flavus, GPCRs are likely necessary for sensing the changes in the environment, including food sources, developmental signals, stress agents, and signals from other organisms. Therefore, elucidating their functions in A. flavus could identify ideal receptors against which to develop antagonists.
Collapse
|