1
|
Mathieu-Denoncourt A, Duperthuy M. The VxrAB two-component system is important for the polymyxin B-dependent activation of the type VI secretion system in Vibrio cholerae O1 strain A1552. Can J Microbiol 2023; 69:393-406. [PMID: 37343290 DOI: 10.1139/cjm-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The type VI secretion system (T6SS) is used by bacteria for virulence, resistance to grazing, and competition with other bacteria. We previously demonstrated that the role of the T6SS in interbacterial competition and in resistance to grazing is enhanced in Vibrio cholerae in the presence of subinhibitory concentrations of polymyxin B. Here, we performed a global quantitative proteomic analysis and a targeted transcriptomic analysis of the T6SS-known regulators in V. cholerae grown with and without polymyxin B. The proteome of V. cholerae is greatly modified by polymyxin B with more than 39% of the identified cellular proteins displaying a difference in their abundance, including T6SS-related proteins. We identified a regulator whose abundance and expression are increased in the presence of polymyxin B, vxrB, the response regulator of the two-component system VxrAB (VCA0565-66). In vxrAB, vxrA and vxrB deficient mutants, the expression of both hcp copies (VC1415 and VCA0017), although globally reduced, was not modified by polymyxin B. These hcp genes encode an identical protein Hcp, which is the major component of the T6SS syringe. Thus, the upregulation of the T6SS in the presence of polymyxin B appears to be, at least in part, due to the two-component system VxrAB.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Marylise Duperthuy
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Liu M, Zhao MY, Wang H, Wang ZH, Wang Z, Liu Y, Li YP, Dong T, Fu Y. Pesticin-Like Effector VgrG3 cp Targeting Peptidoglycan Delivered by the Type VI Secretion System Contributes to Vibrio cholerae Interbacterial Competition. Microbiol Spectr 2023; 11:e0426722. [PMID: 36625646 PMCID: PMC9927483 DOI: 10.1128/spectrum.04267-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Vibrio cholerae can utilize a type VI secretion system (T6SS) to increase its intra- and interspecies competition. However, much still remains to be understood about the underlying mechanism of this intraspecies competition. In this study, we isolated an environmental V. cholerae strain E1 that lacked the typical virulence factors toxin-coregulated pilus and cholera toxin and that encoded a functional T6SS. We identified an evolved VgrG3 variant with a predicted C-terminal pesticin-like domain in V. cholerae E1, designated VgrG3cp. Using heterologous expression, protein secretion, and peptidoglycan-degrading assays, we demonstrated that VgrG3cp is a T6SS-dependent effector harboring cell wall muramidase activity and that its toxicity can be neutralized by cognate immunity protein TsiV3cp. Site-directed mutagenesis proved that the aspartic acid residue at position 867 is crucial for VgrG3cp-mediated antibacterial activity. Bioinformatic analysis showed that genes encoding VgrG3cp-like homologs are distributed in Vibrio species, are linked with T6SS structural genes and auxiliary genes, and the vgrG3cp-tsiV3cp gene pair of V. cholerae probably evolved from Vibrio anguillarum and Vibrio fluvialis via homologous recombination. Through a time-lapse microscopy assay, we directly determined that cells accumulating VgrG3cp disrupted bacterial division, while the cells continued to increase in size until the loss of membrane potential and cell wall breakage and finally burst. The results of the competitive killing assay showed that VgrG3cp contributes to V. cholerae interspecies competition. Collectively, our study revealed a novel T6SS E-I pair representing a new T6SS toxin family which allows V. cholerae to gain dominance within polymicrobial communities by T6SS. IMPORTANCE The type VI secretion system used by a broad range of Gram-negative bacteria delivers toxic proteins to target adjacent eukaryotic and prokaryotic cells. Diversification of effector proteins determines the complex bacterium-bacterium interactions and impacts the health of hosts and environmental ecosystems in which bacteria reside. This work uncovered an evolved valine-glycine repeat protein G3, carrying a C-terminal pesticin-like domain (VgrG3cp), which has been suggested to harbor cell wall hydrolase activity and is able to affect cell division and the integrity of cell wall structure. Pesticin-like homologs constitute a family of T6SS-associated effectors targeting bacterial peptidoglycan which are distributed in Vibrio species, and genetic loci of them are linked with T6SS structural genes and auxiliary genes. T6SS-delivered VgrG3cp mediated broad-spectrum antibacterial activity for several microorganisms tested, indicating that VgrG3cp-mediated antimicrobial activity is capable of conferring bacteria a competitive advantage over competitors in the same niches.
Collapse
Affiliation(s)
- Ming Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meng-Yu Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Heng Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ying Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yin-Peng Li
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Li J, Wu Z, Hou Y, Zhang YA, Zhou Y. Fur functions as an activator of T6SS-mediated bacterial dominance and virulence in Aeromonas hydrophila. Front Microbiol 2023; 13:1099611. [PMID: 36845974 PMCID: PMC9944043 DOI: 10.3389/fmicb.2022.1099611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Aeromonas hydrophila, a ubiquitous bacterium in aquatic habitats with broad host ranges, has earned the nickname of a 'Jack-of-all-trades'. However, there is still a limited understanding of the mechanism of how this bacterium fit the competition with other species in dynamic surroundings. The type VI secretion system (T6SS) is macromolecular machinery found in Gram-negative bacteria's cell envelope that is responsible for bacterial killing and/or pathogenicity toward different host cells. In this study, the depression of A. hydrophila T6SS under iron-limiting conditions was detected. The ferric uptake regulator (Fur) was then found to act as an activator of T6SS by directly binding to the Fur box region in vipA promoter in the T6SS gene cluster. The transcription of vipA was repressed in Δfur. Moreover, the inactivation of Fur resulted in considerable defects in the interbacterial competition activity and pathogenicity of A. hydrophila in vitro and in vivo. These findings provide the first direct evidence that Fur positively regulates the expression and functional activity of T6SS in Gram-negative bacteria and will help to understand the fascinating mechanism of competitive advantage for A. hydrophila in different ecological niches.
Collapse
Affiliation(s)
- Jihong Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuting Hou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Hubei Hongshan Laboratory, Wuhan, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,*Correspondence: Yong-An Zhang,
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China,Yang Zhou,
| |
Collapse
|
4
|
Gao C, Garren M, Penn K, Fernandez VI, Seymour JR, Thompson JR, Raina JB, Stocker R. Coral mucus rapidly induces chemokinesis and genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral pathogen. THE ISME JOURNAL 2021; 15:3668-3682. [PMID: 34168314 PMCID: PMC8630044 DOI: 10.1038/s41396-021-01024-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Elevated seawater temperatures have contributed to the rise of coral disease mediated by bacterial pathogens, such as the globally distributed Vibrio coralliilyticus, which utilizes coral mucus as a chemical cue to locate stressed corals. However, the physiological events in the pathogens that follow their entry into the coral host environment remain unknown. Here, we present simultaneous measurements of the behavioral and transcriptional responses of V. coralliilyticus BAA-450 incubated in coral mucus. Video microscopy revealed a strong and rapid chemokinetic behavioral response by the pathogen, characterized by a two-fold increase in average swimming speed within 6 min of coral mucus exposure. RNA sequencing showed that this bacterial behavior was accompanied by an equally rapid differential expression of 53% of the genes in the V. coralliilyticus genome. Specifically, transcript abundance 10 min after mucus exposure showed upregulation of genes involved in quorum sensing, biofilm formation, and nutrient metabolism, and downregulation of flagella synthesis and chemotaxis genes. After 60 min, we observed upregulation of genes associated with virulence, including zinc metalloproteases responsible for causing coral tissue damage and algal symbiont photoinactivation, and secretion systems that may export toxins. Together, our results suggest that V. coralliilyticus employs a suite of behavioral and transcriptional responses to rapidly shift into a distinct infection mode within minutes of exposure to the coral microenvironment.
Collapse
Affiliation(s)
- Cherry Gao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Melissa Garren
- Working Ocean Strategies LLC, Carmel, CA, USA
- Department of Applied Environmental Science, California State University Monterey Bay, Seaside, CA, USA
| | - Kevin Penn
- Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Justin R Seymour
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janelle R Thompson
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Mathieu-Denoncourt A, Duperthuy M. Secretome analysis reveals a role of subinhibitory concentrations of polymyxin B in the survival of Vibrio cholerae mediated by the type VI secretion system. Environ Microbiol 2021; 24:1133-1149. [PMID: 34490971 DOI: 10.1111/1462-2920.15762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobials are commonly used in prevention of infections including in aquaculture, agriculture and medicine. Subinhibitory concentrations of antimicrobial peptides can modulate resistance, virulence and persistence effectors in Gram-negative pathogens. In this study, we investigated the effect of subinhibitory concentrations of polymyxin B (PmB) on the secretome of Vibrio cholerae, a natural inhabitant of aquatic environments and the pathogen responsible for the cholera disease. Our proteomic approach revealed that the abundance of many extracellular proteins is affected by PmB and some of them are detected only either in the presence or in the absence of PmB. The type VI secretion system (T6SS) secreted hemolysin-coregulated protein (Hcp) displayed an increased abundance in the presence of PmB. Hcp is also more abundant in the bacterial cells in the presence of PmB and hcp expression is upregulated upon PmB supplementation. No effect of the T6SS on antimicrobial resistance was observed. Conversely, PmB increases the T6SS-dependent cytotoxicity of V. cholerae towards the amoeba Dictyostelium discoideum and its ability to compete with Escherichia coli.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Marylise Duperthuy
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
6
|
Crisan CV, Chandrashekar H, Everly C, Steinbach G, Hill SE, Yunker PJ, Lieberman RR, Hammer BK. A New Contact Killing Toxin Permeabilizes Cells and Belongs to a Broadly Distributed Protein Family. mSphere 2021; 6:e0031821. [PMID: 34287011 PMCID: PMC8386463 DOI: 10.1128/msphere.00318-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Vibrio cholerae is an aquatic Gram-negative bacterium that causes severe diarrheal cholera disease when ingested by humans. To eliminate competitor cells in both the external environment and inside hosts, V. cholerae uses the type VI secretion system (T6SS). The T6SS is a macromolecular contact-dependent weapon employed by many Gram-negative bacteria to deliver cytotoxic proteins into adjacent cells. In addition to canonical T6SS gene clusters encoded by all sequenced V. cholerae isolates, strain BGT49 encodes another locus, which we named auxiliary (Aux) cluster 4. The Aux 4 cluster is located on a mobile genetic element and can be used by killer cells to eliminate both V. cholerae and Escherichia coli cells in a T6SS-dependent manner. A putative toxin encoded in the cluster, which we name TpeV (type VI permeabilizing effector Vibrio), shares no homology to known proteins and does not contain motifs or domains indicative of function. Ectopic expression of TpeV in the periplasm of E. coli permeabilizes cells and disrupts the membrane potential. Using confocal microscopy, we confirm that susceptible target cells become permeabilized when competed with killer cells harboring the Aux 4 cluster. We also determine that tpiV, the gene located immediately downstream of tpeV, encodes an immunity protein that neutralizes the toxicity of TpeV. Finally, we show that TpeV homologs are broadly distributed across important human, animal, and plant pathogens and are localized in proximity to other T6SS genes. Our results suggest that TpeV is a toxin that belongs to a large family of T6SS proteins. IMPORTANCE Bacteria live in polymicrobial communities where competition for resources and space is essential for survival. Proteobacteria use the T6SS to eliminate neighboring cells and cause disease. However, the mechanisms by which many T6SS toxins kill or inhibit susceptible target cells are poorly understood. The sequence of the TpeV toxin that we describe here is unlike any previously described protein. We demonstrate that it has antimicrobial activity by permeabilizing cells, eliminating membrane potentials, and causing severe cytotoxicity. TpeV homologs are found near known T6SS genes in human, animal, and plant bacterial pathogens, indicating that the toxin is a representative member of a broadly distributed protein family. We propose that TpeV-like toxins contribute to the fitness of many bacteria. Finally, since antibiotic resistance is a critical global health threat, the discovery of new antimicrobial mechanisms could lead to the development of new treatments against resistant strains.
Collapse
Affiliation(s)
- Cristian V. Crisan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Harshini Chandrashekar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine Everly
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gabi Steinbach
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shannon E. Hill
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter J. Yunker
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raquel R. Lieberman
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Qin Z, Yang X, Chen G, Park C, Liu Z. Crosstalks Between Gut Microbiota and Vibrio Cholerae. Front Cell Infect Microbiol 2020; 10:582554. [PMID: 33194819 PMCID: PMC7644805 DOI: 10.3389/fcimb.2020.582554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, could proliferate in aquatic environment and infect humans through contaminated food and water. Enormous microorganisms residing in human gastrointestinal tract establish a special microecological system, which immediately responds to the invasion of V. cholerae, through “colonization resistance” mechanisms, such as antimicrobial peptide production, nutrients competition, and intestinal barrier maintenances. Meanwhile, V. cholerae could quickly sense those signals and modulate the expression of relevant genes to circumvent those stresses during infection, leading to successful colonization on the surface of small intestinal epithelial cells. In this review, we summarized the crosstalks profiles between gut microbiota and V. cholerae in the terms of Type VI Secretion System (T6SS), Quorum Sensing (QS), Reactive Oxygen Species (ROS)/pH stress, and Bioactive metabolites. These mechanisms can also be applied to molecular bacterial pathogenesis of other pathogens in host.
Collapse
Affiliation(s)
- Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chaiwoo Park
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Monjarás Feria J, Valvano MA. An Overview of Anti-Eukaryotic T6SS Effectors. Front Cell Infect Microbiol 2020; 10:584751. [PMID: 33194822 PMCID: PMC7641602 DOI: 10.3389/fcimb.2020.584751] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
The type VI secretion system (T6SS) is a transmembrane multiprotein nanomachine employed by many Gram-negative bacterial species to translocate, in a contact-dependent manner, effector proteins into adjacent prokaryotic or eukaryotic cells. Typically, the T6SS gene cluster encodes at least 13 conserved core components for the apparatus assembly and other less conserved accessory proteins and effectors. It functions as a contractile tail machine comprising a TssB/C sheath and an expelled puncturing device consisting of an Hcp tube topped by a spike complex of VgrG and PAAR proteins. Contraction of the sheath propels the tube out of the bacterial cell into a target cell and leads to the injection of toxic proteins. Different bacteria use the T6SS for specific roles according to the niche and versatility of the organism. Effectors are present both as cargo (by non-covalent interactions with one of the core components) or specialized domains (fused to structural components). Although several anti-prokaryotic effectors T6SSs have been studied, recent studies have led to a substantial increase in the number of characterized anti-eukaryotic effectors. Against eukaryotic cells, the T6SS is involved in modifying and manipulating diverse cellular processes that allows bacteria to colonize, survive and disseminate, including adhesion modification, stimulating internalization, cytoskeletal rearrangements and evasion of host innate immune responses.
Collapse
Affiliation(s)
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Drebes Dörr NC, Blokesch M. Interbacterial competition and anti-predatory behaviour of environmental Vibrio cholerae strains. Environ Microbiol 2020; 22:4485-4504. [PMID: 32885535 PMCID: PMC7702109 DOI: 10.1111/1462-2920.15224] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae isolates responsible for cholera pandemics represent only a small portion of the diverse strains belonging to this species. Indeed, most V. cholerae are encountered in aquatic environments. To better understand the emergence of pandemic lineages, it is crucial to discern what differentiates pandemic strains from their environmental relatives. Here, we studied the interaction of environmental V. cholerae with eukaryotic predators or competing bacteria and tested the contributions of the haemolysin and the type VI secretion system (T6SS) to those interactions. Both of these molecular weapons are constitutively active in environmental isolates but subject to tight regulation in the pandemic clade. We showed that several environmental isolates resist amoebal grazing and that this anti‐grazing defense relies on the strains' T6SS and its actincross‐linking domain (ACD)‐containing tip protein. Strains lacking the ACD were unable to defend themselves against grazing amoebae but maintained high levels of T6SS‐dependent interbacterial killing. We explored the latter phenotype through whole‐genome sequencing of 14 isolates, which unveiled a wide array of novel T6SS effector and (orphan) immunity proteins. By combining these in silico predictions with experimental validations, we showed that highly similar but non‐identical immunity proteins were insufficient to provide cross‐immunity among those wild strains.
Collapse
Affiliation(s)
- Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
10
|
Crisan CV, Hammer BK. The
Vibrio cholerae
type VI secretion system: toxins, regulators and consequences. Environ Microbiol 2020; 22:4112-4122. [DOI: 10.1111/1462-2920.14976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Cristian V. Crisan
- Center for Microbial Dynamics and Infection Georgia Institute of Technology Atlanta GA USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology Atlanta GA USA
- School of Biological Sciences, Georgia Institute of Technology Atlanta GA USA
| | - Brian K. Hammer
- Center for Microbial Dynamics and Infection Georgia Institute of Technology Atlanta GA USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology Atlanta GA USA
- School of Biological Sciences, Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
11
|
Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters. Genome Biol 2019; 20:163. [PMID: 31405375 PMCID: PMC6691524 DOI: 10.1186/s13059-019-1765-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Like many bacteria, Vibrio cholerae deploys a harpoon-like type VI secretion system (T6SS) to compete against other microbes in environmental and host settings. The T6SS punctures adjacent cells and delivers toxic effector proteins that are harmless to bacteria carrying cognate immunity factors. Only four effector/immunity pairs encoded on one large and three auxiliary gene clusters have been characterized from largely clonal, patient-derived strains of V. cholerae. RESULTS We sequence two dozen V. cholerae strain genomes from diverse sources and develop a novel and adaptable bioinformatics tool based on hidden Markov models. We identify two new T6SS auxiliary gene clusters and describe Aux 5 here. Four Aux 5 loci are present in the host strain, each with an atypical effector/immunity gene organization. Structural prediction of the putative effector indicates it is a lipase, which we name TleV1 (type VI lipase effector Vibrio). Ectopic TleV1 expression induces toxicity in Escherichia coli, which is rescued by co-expression of the TliV1a immunity factor. A clinical V. cholerae reference strain expressing the Aux 5 cluster uses TleV1 to lyse its parental strain upon contact via its T6SS but is unable to kill parental cells expressing the TliV1a immunity factor. CONCLUSION We develop a novel bioinformatics method and identify new T6SS gene clusters in V. cholerae. We also show the TleV1 toxin is delivered in a T6SS manner by V. cholerae and can lyse other bacterial cells. Our web-based tool can be modified to identify additional novel T6SS genomic loci in diverse bacterial species.
Collapse
Affiliation(s)
- Cristian V Crisan
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Aroon T Chande
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Kenneth Williams
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Vishnu Raghuram
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Lavanya Rishishwar
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Gabi Steinbach
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Samit S Watve
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Peter Yunker
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - I King Jordan
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Brian K Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
| |
Collapse
|
12
|
Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. Structure and Activity of the Type VI Secretion System. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0031-2019. [PMID: 31298206 PMCID: PMC10957189 DOI: 10.1128/microbiolspec.psib-0031-2019] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 12/16/2022] Open
Abstract
The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells. The injection apparatus is composed of a baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by the spike complex, is propelled outside of the cell by the contraction of the sheath. The injection system is anchored to the cell envelope and oriented towards the cell exterior by a trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or on the spike complex and can target prokaryotic and/or eukaryotic cells. Here we summarize the structure, assembly, and mechanism of action of the T6SS. We also review the function of effectors and their mode of recruitment and delivery.
Collapse
Affiliation(s)
- Yassine Cherrak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
- Y.C. and N.F. contributed equally to this review
| | - Nicolas Flaugnatti
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
- Y.C. and N.F. contributed equally to this review
- Present address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Durand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| |
Collapse
|
13
|
Zhang L, Wu Z, Wang X, Tan G, Song J. Insights into the Draft Genome Sequence of the Kiwifruit-Associated Pathogenic Isolate Pseudomonas fluorescens AHK-1. Curr Microbiol 2019; 76:552-557. [PMID: 30824950 DOI: 10.1007/s00284-019-01655-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Pseudomonas fluorescens is a physiologically diverse species of bacteria present in many habitats, which possesses multifunctional traits that provide it with the capability to exhibit biological control activities, promote plant health or cause plant disease. Here, we present the draft genome sequence of the kiwifruit-associated pathogenic isolate AHK-1 of P. fluorescens, which was isolated from the diseased leaves of kiwifruit plants. The genome size of AHK-1 was found to be 7,035,786 bp, with a G + C content of 60.88%. It is predicted to contain a total of 6327 genes, of which 3998 were homologous to genes in the other two sequenced P. fluorescens isolates (SBW25 and GcM5-1A) and 946 were unique to AHK-1 based on comparative genomic analysis. Furthermore, we identified several candidate virulence factors in the genome of AHK-1, including the fliA gene encoding flagellar biosynthetic protein for biosynthesis, and the genes for components of type VI, III, and IV secretion systems. This genomic resource will serve as a reference for better understanding the genetics of pathogenic and non-pathogenic strains, and will help to elucidate the pathogenic mechanisms of P. fluorescens associated with plant disease.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiran Wu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xia Wang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Genjia Tan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jianghua Song
- College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
14
|
Douzi B, Logger L, Spinelli S, Blangy S, Cambillau C, Cascales E. Structure-Function Analysis of the C-Terminal Domain of the Type VI Secretion TssB Tail Sheath Subunit. J Mol Biol 2017; 430:297-309. [PMID: 29223729 DOI: 10.1016/j.jmb.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/26/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
The type VI secretion system (T6SS) is a specialized macromolecular complex dedicated to the delivery of protein effectors into both eukaryotic and bacterial cells. The general mechanism of action of the T6SS is similar to the injection of DNA by contractile bacteriophages. The cytoplasmic portion of the T6SS is evolutionarily, structurally and functionally related to the phage tail complex. It is composed of an inner tube made of stacked Hcp hexameric rings, engulfed within a sheath and built on a baseplate. This sheath undergoes cycles of extension and contraction, and the current model proposes that the sheath contraction propels the inner tube toward the target cell for effector delivery. The sheath comprises two subunits: TssB and TssC that polymerize under an extended conformation. Here, we show that isolated TssB forms trimers, and we report the crystal structure of a C-terminal fragment of TssB. This fragment comprises a long helix followed by a helical hairpin that presents surface-exposed charged residues. Site-directed mutagenesis coupled to functional assay further showed that these charges are required for proper assembly of the sheath. Positioning of these residues in the extended T6SS sheath structure suggests that they may mediate contacts with the baseplate.
Collapse
Affiliation(s)
- Badreddine Douzi
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Laureen Logger
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Stéphanie Blangy
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
15
|
Tian Y, Zhao Y, Shi L, Cui Z, Hu B, Zhao Y. Type VI Secretion Systems of Erwinia amylovora Contribute to Bacterial Competition, Virulence, and Exopolysaccharide Production. PHYTOPATHOLOGY 2017; 107:654-661. [PMID: 28421913 DOI: 10.1094/phyto-11-16-0393-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The type VI secretion system (T6SS) plays a major role in mediating interbacterial competition and might contribute to virulence in plant pathogenic bacteria. However, the role of T6SS in Erwinia amylovora remains unknown. In this study, 33 deletion mutants within three T6SS clusters were generated in E. amylovora strain NCPPB1665. Our results showed that all 33 mutants displayed reduced antibacterial activities against Escherichia coli as compared with that of the wild-type (WT) strain, indicating that Erwinia amylovora T6SS are functional. Of the 33 mutants, 19 exhibited reduced virulence on immature pear fruit as compared with that of the WT strain. Among them, 6, 1, and 12 genes belonged to T6SS-1, T6SS-2, and T6SS-3 clusters, respectively. Interestingly, these 19 mutants also produced less amylovoran or levan or both. These findings suggest that E. amylovora T6SS play a role in bacterial competition and virulence possibly by influencing exopolysaccharide production.
Collapse
Affiliation(s)
- Yanli Tian
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Yuqiang Zhao
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Linye Shi
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Zhongli Cui
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Baishi Hu
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Youfu Zhao
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| |
Collapse
|
16
|
Huang Y, Du P, Zhao M, Liu W, Du Y, Diao B, Li J, Kan B, Liang W. Functional Characterization and Conditional Regulation of the Type VI Secretion System in Vibrio fluvialis. Front Microbiol 2017; 8:528. [PMID: 28424671 PMCID: PMC5371669 DOI: 10.3389/fmicb.2017.00528] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/14/2017] [Indexed: 01/22/2023] Open
Abstract
Vibrio fluvialis is an emerging foodborne pathogen of increasing public health concern. The mechanism(s) that contribute to the bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SSs) are known to contribute to bacterial pathogenicity by exerting toxic effects on host cells or competing bacterial species. In this study, we characterized the genetic organization and prevalence of two T6SS gene clusters (VflT6SS1 and VflT6SS2) in V. fluvialis. VflT6SS2 harbors three “orphan” hcp-vgrG modules and was more prevalent than VflT6SS1 in our isolates. We showed that VflT6SS2 is functionally active under low (25°C) and warm (30°C) temperatures by detecting the secretion of a T6SS substrate, Hcp. This finding suggests that VflT6SS2 may play an important role in the survival of the bacterium in the aquatic environment. The secretion of Hcp is growth phase-dependent and occurs in a narrow range of the growth phase (OD600 from 1.0 to 2.0). Osmolarity also regulates the function of VflT6SS2, as evidenced by our finding that increasing salinity (from 170 to 855 mM of NaCl) and exposure to high osmolarity KCl, sucrose, trehalose, or mannitol (equivalent to 340 mM of NaCl) induced significant secretion of Hcp under growth at 30°C. Furthermore, we found that although VflT6SS2 was inactive at a higher temperature (37°C), it became activated at this temperature if higher salinity conditions were present (from 513 to 855 mM of NaCl), indicating that it may be able to function under certain conditions in the infected host. Finally, we showed that the functional expression of VflT6SS2 is associated with anti-bacterial activity. This activity is Hcp-dependent and requires vasH, a transcriptional regulator of T6SS. In sum, our study demonstrates that VflT6SS2 provides V. fluvialis with an enhanced competitive fitness in the marine environment, and its activity is regulated by environmental signals, such as temperature and osmolarity.
Collapse
Affiliation(s)
- Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical UniversityBeijing, China
| | - Meng Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Wei Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Yu Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| |
Collapse
|
17
|
Against friend and foe: Type 6 effectors in plant-associated bacteria. J Microbiol 2015; 53:201-8. [DOI: 10.1007/s12275-015-5055-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 01/30/2023]
|
18
|
|
19
|
Zhang L, Xu J, Xu J, Zhang H, He L, Feng J. TssB is essential for virulence and required for type VI secretion system in Ralstonia solanacearum. Microb Pathog 2014; 74:1-7. [PMID: 24972114 DOI: 10.1016/j.micpath.2014.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
The type VI secretion system (T6SS) is recently discovered machinery in Gram-negative bacteria for translocation of proteins and also is required for full virulence. TssB is a highly conserved protein among the T6SSs, and indispensable for composition and function of T6S. The plant pathogenic bacterium Ralstonia solanacearum also harbours T6SS gene clusters, and a homologue of TssB, hereafter designated as TssBRS, but up to date its characterization and function remain unclear. In this study, we showed that TssBRS of R. solanacearum was required for secretion of Hcp, the haemolysin coregulated protein and a hallmark of T6S pathway. Deletion of tssBRS in R. solanacearum GMI1000 strain resulted in defect of biofilm formation, and the expression of the flagella operon is decreased, leading to decreased motility. More importantly, tssBRS mutant strain had significantly attenuated its virulence on tomato plants. TssB is essential for virulence and required for type VI secretion system in R. solanacearum.
Collapse
Affiliation(s)
- Liqing Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Jingsheng Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Jin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Liyuan He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
20
|
Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 2014; 8:20-30. [PMID: 24953649 DOI: 10.1016/j.celrep.2014.05.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/16/2014] [Accepted: 05/16/2014] [Indexed: 11/21/2022] Open
Abstract
The bacterial type VI secretion system is a multicomponent molecular machine directed against eukaryotic host cells and competing bacteria. An intracellular contractile tubular structure that bears functional homology with bacteriophage tails is pivotal for ejection of pathogenic effectors. Here, we present the 6 Å cryoelectron microscopy structure of the contracted Vibrio cholerae tubule consisting of the proteins VipA and VipB. We localized VipA and VipB in the protomer and identified structural homology between the C-terminal segment of VipB and the tail-sheath protein of T4 phages. We propose that homologous segments in VipB and T4 phages mediate tubule contraction. We show that in type VI secretion, contraction leads to exposure of the ClpV recognition motif, which is embedded in the type VI-specific four-helix-bundle N-domain of VipB. Disaggregation of the tubules by the AAA+ protein ClpV and recycling of the VipA/B subunits are thereby limited to the contracted state.
Collapse
|
21
|
Screening for inhibition of Vibrio cholerae VipA-VipB interaction identifies small-molecule compounds active against type VI secretion. Antimicrob Agents Chemother 2014; 58:4123-30. [PMID: 24798289 DOI: 10.1128/aac.02819-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The type VI secretion system (T6SS) is the most prevalent bacterial secretion system and an important virulence mechanism utilized by Gram-negative bacteria, either to target eukaryotic cells or to combat other microbes. The components show much variability, but some appear essential for the function, and two homologues, denoted VipA and VipB in Vibrio cholerae, have been identified in all T6SSs described so far. Secretion is dependent on binding of an α-helical region of VipA to VipB, and in the absence of this binding, both components are degraded within minutes and secretion is ceased. The aim of the study was to investigate if this interaction could be blocked, and we hypothesized that such inhibition would lead to abrogation of T6S. A library of 9,600 small-molecule compounds was screened for their ability to block the binding of VipA-VipB in a bacterial two-hybrid system (B2H). After excluding compounds that showed cytotoxicity toward eukaryotic cells, that inhibited growth of Vibrio, or that inhibited an unrelated B2H interaction, 34 compounds were further investigated for effects on the T6SS-dependent secretion of hemolysin-coregulated protein (Hcp) or of phospholipase A1 activity. Two compounds, KS100 and KS200, showed intermediate or strong effects in both assays. Analogues were obtained, and compounds with potent inhibitory effects in the assays and desirable physicochemical properties as predicted by in silico analysis were identified. Since the compounds specifically target a virulence mechanism without affecting bacterial replication, they have the potential to mitigate the virulence with minimal risk for development of resistance.
Collapse
|
22
|
Zhang XY, Brunet YR, Logger L, Douzi B, Cambillau C, Journet L, Cascales E. Dissection of the TssB-TssC interface during type VI secretion sheath complex formation. PLoS One 2013; 8:e81074. [PMID: 24282569 PMCID: PMC3840085 DOI: 10.1371/journal.pone.0081074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
The Type VI secretion system (T6SS) is a versatile machine that delivers toxins into either eukaryotic or bacterial cells. At a molecular level, the T6SS is composed of a membrane complex that anchors a long cytoplasmic tubular structure to the cell envelope. This structure is thought to resemble the tail of contractile bacteriophages. It is composed of the Hcp protein that assembles into hexameric rings stacked onto each other to form a tube similar to the phage tail tube. This tube is proposed to be wrapped by a structure called the sheath, composed of two proteins, TssB and TssC. It has been shown using fluorescence microscopy that the TssB and TssC proteins assemble into a tubular structure that cycles between long and short conformations suggesting that, similarly to the bacteriophage sheath, the T6SS sheath undergoes elongation and contraction events. The TssB and TssC proteins have been shown to interact and a specific α-helix of TssB is required for this interaction. Here, we confirm that the TssB and TssC proteins interact in enteroaggregative E. coli. We further show that this interaction requires the N-terminal region of TssC and the conserved α-helix of TssB. Using site-directed mutagenesis coupled to phenotypic analyses, we demonstrate that an hydrophobic motif located in the N-terminal region of this helix is required for interaction with TssC, sheath assembly and T6SS function.
Collapse
Affiliation(s)
- Xiang Y. Zhang
- Laboratoire d′Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Yannick R. Brunet
- Laboratoire d′Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Laureen Logger
- Laboratoire d′Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Badreddine Douzi
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Laure Journet
- Laboratoire d′Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Eric Cascales
- Laboratoire d′Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
- * E-mail: *
| |
Collapse
|