1
|
Owliaee I, Khaledian M, Shojaeian A, Madanchi H, Yarani R, Boroujeni AK, Shoushtari M. Antimicrobial Peptides Against Arboviruses: Mechanisms, Challenges, and Future Directions. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10430-0. [PMID: 39776036 DOI: 10.1007/s12602-024-10430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This review delves into the potential of antimicrobial peptides (AMPs) as promising candidates for combating arboviruses, focusing on their mechanisms of antiviral activity, challenges, and future directions. AMPs have shown promise in preventing arbovirus attachment to host cells, inducing interferon production, and targeting multiple viral stages, illustrating their multifaceted impact on arbovirus infections. Structural elucidation of AMP-viral complexes is explored to deepen the understanding of molecular determinants governing viral neutralization, paving the way for structure-guided design. Furthermore, this review highlights the potential of AMP-based combination therapies to create synergistic effects that enhance overall treatment outcomes while minimizing the likelihood of resistance development. Challenges such as susceptibility to proteases, toxicity, and scalable production are discussed alongside strategies to address these limitations. Additionally, the expanding applications of AMPs as vaccine adjuvants and antiviral delivery systems are emphasized, underscoring their versatility beyond direct antiviral functions.
Collapse
Affiliation(s)
- Iman Owliaee
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Mehran Khaledian
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99442, Iran
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shoushtari
- Department of Virology, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
2
|
Chauhan N, Gaur K, Asuru T, Guchhait P. Dengue virus: pathogenesis and potential for small molecule inhibitors. Biosci Rep 2024; 44:BSR20240134. [PMID: 39051974 PMCID: PMC11327219 DOI: 10.1042/bsr20240134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Dengue, caused by dengue virus (DENV), is now endemic in nearly 100 countries and infection incidence is reported in another 30 countries. Yearly an estimated 400 million cases and 2200 deaths are reported. Effective vaccines against DENV are limited and there has been significant focus on the development of effective antiviral against the disease. The World Health Organization has initiated research programs to prioritize the development and optimization of antiviral agents against several viruses including Flaviviridae. A significant effort has been taken by the researchers to develop effective antivirals against DENV. Several potential small-molecule inhibitors like efavirenz, tipranavir and dasabuvir have been tested against envelope and non-structural proteins of DENV, and are in clinical trials around the world. We recently developed one small molecule, namely 7D, targeting the host PF4-CXCR3 axis. 7D inhibited all 4 serotypes of DENV in vitro and specifically DENV2 infection in two different mice models. Although the development of dengue vaccines remains a high priority, antibody cross reactivity among the serotypes and resulting antibody-dependent enhancement (ADE) of infection are major concerns that have limited the development of effective vaccine against DENV. Therefore, there has been a significant emphasis on the development of antiviral drugs against dengue. This review article describes the rescue effects of some of the small molecule inhibitors to viral/host factors associated with DENV pathogenesis.
Collapse
Affiliation(s)
- Navya Chauhan
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
3
|
Vilas Boas LCP, Buccini DF, Berlanda RLA, Santos BDPO, Maximiano MR, Lião LM, Gonçalves S, Santos NC, Franco OL. Antiviral Activities of Mastoparan-L-Derived Peptides against Human Alphaherpesvirus 1. Viruses 2024; 16:948. [PMID: 38932240 PMCID: PMC11209138 DOI: 10.3390/v16060948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Human alphaherpesvirus 1 (HSV-1) is a significantly widespread viral pathogen causing recurrent infections that are currently incurable despite available treatment protocols. Studies have highlighted the potential of antimicrobial peptides sourced from Vespula lewisii venom, particularly those belonging to the mastoparan family, as effective against HSV-1. This study aimed to demonstrate the antiviral properties of mastoparans, including mastoparan-L [I5, R8], mastoparan-MO, and [I5, R8] mastoparan, against HSV-1. Initially, Vero cell viability was assessed in the presence of these peptides, followed by the determination of antiviral activity, mechanism of action, and dose-response curves through plaque assays. Structural analyses via circular dichroism and nuclear magnetic resonance were conducted, along with evaluating membrane fluidity changes induced by [I5, R8] mastoparan using fluorescence-labeled lipid vesicles. Cytotoxic assays revealed high cell viability (>80%) at concentrations of 200 µg/mL for mastoparan-L and mastoparan-MO and 50 µg/mL for [I5, R8] mastoparan. Mastoparan-MO and [I5, R8] mastoparan exhibited over 80% HSV-1 inhibition, with up to 99% viral replication inhibition, particularly in the early infection stages. Structural analysis indicated an α-helical structure for [I5, R8] mastoparan, suggesting effective viral particle disruption before cell attachment. Mastoparans present promising prospects for HSV-1 infection control, although further investigation into their mechanisms is warranted.
Collapse
Affiliation(s)
- Liana Costa Pereira Vilas Boas
- Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, DF, Brazil
- Centro de Análises Bioquímicas e Proteômicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-760, DF, Brazil
| | - Danieli Fernanda Buccini
- Centro de Análises Bioquímicas e Proteômicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-760, DF, Brazil
- Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
| | - Rhayfa Lorrayne Araújo Berlanda
- Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, DF, Brazil
- Centro de Análises Bioquímicas e Proteômicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-760, DF, Brazil
| | - Bruno de Paula Oliveira Santos
- Laboratório de Ressonância Magnética Nuclear, Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
| | - Mariana Rocha Maximiano
- Centro de Análises Bioquímicas e Proteômicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-760, DF, Brazil
- Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
| | - Luciano Morais Lião
- Laboratório de Ressonância Magnética Nuclear, Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal (N.C.S.)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal (N.C.S.)
| | - Octávio Luiz Franco
- Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, DF, Brazil
- Centro de Análises Bioquímicas e Proteômicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-760, DF, Brazil
- Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
| |
Collapse
|
4
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
5
|
Urmi UL, Vijay AK, Kuppusamy R, Islam S, Willcox MDP. A Review of the Antiviral Activity of Cationic Antimicrobial Peptides. Peptides 2023; 166:171024. [PMID: 37172781 PMCID: PMC10170872 DOI: 10.1016/j.peptides.2023.171024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Viral epidemics are occurring frequently, and the COVID-19 viral pandemic has resulted in at least 6.5 million deaths worldwide. Although antiviral therapeutics are available, these may not have sufficient effect. The emergence of resistant or novel viruses requires new therapies. Cationic antimicrobial peptides are agents of the innate immune system that may offer a promising solution to viral infections. These peptides are gaining attention as possible therapies for viral infections or for use as prophylactic agents to prevent viral spread. This narrative review examines antiviral peptides, their structural features, and mechanism of activity. A total of 156 cationic antiviral peptides were examined for information of their mechanism of action against both enveloped and non-enveloped viruses. Antiviral peptides can be isolated from various natural sources or can be generated synthetically. The latter tend to be more specific and effective and can be made to have a broad spectrum of activity with minimal side effects. Their unique properties of being positively charges and amphipathic enable their main mode of action which is to target and disrupt viral lipid envelopes, thereby inhibiting viral entry and replication. This review offers a comprehensive summary of the current understanding of antiviral peptides, which could potentially aid in the design and creation of novel antiviral medications.
Collapse
Affiliation(s)
- Umme Laila Urmi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Salequl Islam
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; Department of Microbiology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Lee MF, Wu YS, Poh CL. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses 2023; 15:v15030705. [PMID: 36992414 PMCID: PMC10056858 DOI: 10.3390/v15030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
Collapse
|
7
|
Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res 2023; 324:199018. [PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
Collapse
|
8
|
de Moraes LFRN, Silva PSE, Pereira TCPL, Almeida Rodrigues TA, Farias Frihling BE, da Costa RA, Torquato HFV, Lima CS, Paredes-Gamero EJ, Migliolo L. First generation of multifunctional peptides derived from latarcin-3a from Lachesana tarabaevi spider toxin. Front Microbiol 2022; 13:965621. [PMID: 36212827 PMCID: PMC9532841 DOI: 10.3389/fmicb.2022.965621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The need for discovering new compounds that can act selectively on pathogens is becoming increasingly evident, given the number of deaths worldwide due to bacterial infections or tumor cells. New multifunctional biotechnological tools are being sought, including compounds present in spider venoms, which have high biotechnological potential. The present work aims to perform the rational design and functional evaluation of synthetic peptides derived from Lachesana tarabaevi spider toxin, known as latarcin-3a. The antimicrobial activity was tested against Gram-positive and -negative bacteria, with minimum inhibitory concentrations (MIC) between 4 and 128 μg.ml−1. Anti-biofilm tests were then performed to obtain MICs, where the peptides demonstrated activity from 4 to 128 μg.ml−1. In vitro cell cytotoxicity assays were carried out from tumor cell lines, lineages C1498, Kasumi-1, K-562, Jurkat, MOLT4, and Raji. Erythrocyte integrity was evaluated in the presence of synthetic peptides analog, which did not promote hemolysis at 128 μg.ml−1. The peptide that showed the best antibacterial activity was Lt-MAP3 and the best antitumor was Lt-MAP2. In conclusion, rational design of multifunctional antimicrobial peptides may be promising alternative tools in the treatment of emerging diseases such as bacterial infections and tumor cells.
Collapse
Affiliation(s)
- Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
| | - Patrícia Souza e Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | | | | | - Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
| | - Rosiane Andrade da Costa
- Programa de Pós-Graduação em Ciências Genômica e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | - Cauê Santos Lima
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Edgar Julian Paredes-Gamero
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- *Correspondence: Ludovico Migliolo,
| |
Collapse
|
9
|
Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol 2022; 167:1763-1772. [PMID: 35723756 DOI: 10.1007/s00705-022-05494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Arthropod-borne viruses (arboviruses), such as Zika virus (ZIKV), chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and West Nile virus (WNV), are pathogens of global importance. Therefore, there has been an increasing need for new drugs for the treatment of these viral infections. In this context, antimicrobial peptides (AMPs) obtained from animal venoms stand out as promising compounds because they exhibit strong antiviral activity against emerging arboviral pathogens. Thus, we systematically searched and critically analyzed in vitro and in vivo studies that evaluated the anti-arbovirus effect of peptide derivatives from toxins produced by vertebrates and invertebrates. Thirteen studies that evaluated the antiviral action of 10 peptides against arboviruses were included in this review. The peptides were derived from the venom of scorpions, spiders, wasps, snakes, sea snails, and frogs and were tested against DENV, ZIKV, YFV, WNV, and CHIKV. Despite the high structural variety of the peptides included in this study, their antiviral activity appears to be associated with the presence of positive charges, an excess of basic amino acids (mainly lysine), and a high isoelectric point (above 8). These peptides use different antiviral mechanisms, the most common of which is the inhibition of viral replication, release, entry, or fusion. Moreover, peptides with virucidal and cytoprotective (pre-treatment) effects were also identified. In conclusion, animal-venom-derived peptides stand out as a promising alternative in the search and development of prototype antivirals against arboviruses.
Collapse
|
10
|
Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations. BIODESIGN RESEARCH 2022; 2022:9898241. [PMID: 37850133 PMCID: PMC10521750 DOI: 10.34133/2022/9898241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/19/2023] Open
Abstract
Viral diseases have contributed significantly to worldwide morbidity and mortality throughout history. Despite the existence of therapeutic treatments for many viral infections, antiviral resistance and the threat posed by novel viruses highlight the need for an increased number of effective therapeutics. In addition to small molecule drugs and biologics, antimicrobial peptides (AMPs) represent an emerging class of potential antiviral therapeutics. While AMPs have traditionally been regarded in the context of their antibacterial activities, many AMPs are now known to be antiviral. These antiviral peptides (AVPs) have been shown to target and perturb viral membrane envelopes and inhibit various stages of the viral life cycle, from preattachment inhibition through viral release from infected host cells. Rational design of AMPs has also proven effective in identifying highly active and specific peptides and can aid in the discovery of lead peptides with high therapeutic selectivity. In this review, we highlight AVPs with strong antiviral activity largely curated from a publicly available AMP database. We then compile the sequences present in our AVP database to generate structural predictions of generic AVP motifs. Finally, we cover the rational design approaches available for AVPs taking into account approaches currently used for the rational design of AMPs.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jaden D. Shirkey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexis J. Cowan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
12
|
Wang J, Ji M, Yuan B, Luo A, Jiang Z, Zhu T, Liu Y, Kamau PM, Jin L, Lai R. Peptide OPTX-1 From Ornithodoros papillipes Tick Inhibits the pS273R Protease of African Swine Fever Virus. Front Microbiol 2021; 12:778309. [PMID: 34925282 PMCID: PMC8678048 DOI: 10.3389/fmicb.2021.778309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus and causes high mortality in swine. ASFV can be transmitted by biological vectors, including soft ticks in genus Ornithodoros but not hard ticks. However, the underlying mechanisms evolved in the vectorial capacity of soft ticks are not well-understood. Here, we found that a defensin-like peptide toxin OPTX-1 identified from Ornithodoros papillipes inhibits the enzyme activity of the ASFV pS273R protease with a Ki =0.821±0.526μM and shows inhibitory activity on the replication of ASFV. The analogs of OPTX-1 from hard ticks show more inhibitory efficient on pS273R protease. Considering that ticks are blood-sucking animals, we tested the effects of OPTX-1 and its analogs on the coagulation system. At last, top 3D structures represented surface analyses of the binding sites of pS273R with different inhibitors that were obtained by molecular docking based on known structural information. In summary, our study provides evidence that different inhibitory efficiencies between soft tick-derived OPTX-1 and hard tick-derived defensin-like peptides may determine the vector and reservoir competence of ticks.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Mengyao Ji
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bingqian Yuan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhenyuan Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Tengyu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ren Lai
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Tianjin University, Tianjin, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
13
|
Sheikh M, Shilkar D, Sarkar B, Sinha BN, Jayprakash V. A Critical Observation on the Design and Development of Reported Peptide Inhibitors of DENV NS2B-NS3 Protease in the Last Two Decades. Mini Rev Med Chem 2021; 22:1108-1130. [PMID: 34720077 DOI: 10.2174/1389557521666211101154619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Dengue is one of the neglected tropical diseases, which remains a reason for concern as cases seem to rise every year. The failure of the only dengue vaccine, Dengvaxia®, has made the problem more severe and humanity has no immediate respite from this global burden. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing. Also, since it is among the most conserved domains in the viral genome, it could produce a broad scope of opportunities toward antiviral drug discovery in general. This review has made a detailed analysis of each case of the design and development of peptide inhibitors against DENV NS2B-NS3 protease in the last two decades. Also, we have discussed the reasons attributed to their inhibitory activity, and wherever possible, we have highlighted the concerns raised, challenges met, and suggestions to improve the inhibitory activity. Thus, we attempt to take the readers through the designing and development of reported peptide inhibitors and gain insight from these developments, which could further contribute toward strategizing the designing and development of peptide inhibitors of DENV protease with improved properties in the coming future.
Collapse
Affiliation(s)
- Murtuja Sheikh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| | - Venkatesan Jayprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| |
Collapse
|
14
|
Zakaryan H, Chilingaryan G, Arabyan E, Serobian A, Wang G. Natural antimicrobial peptides as a source of new antiviral agents. J Gen Virol 2021; 102. [PMID: 34554085 PMCID: PMC10026734 DOI: 10.1099/jgv.0.001661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current antiviral drugs are limited because of their adverse side effects and increased rate of resistance. In recent decades, much scientific effort has been invested in the discovery of new synthetic and natural compounds with promising antiviral properties. Among this new generation of compounds, antimicrobial peptides with antiviral activity have been described and are attracting attention due to their mechanism of action and biological properties. To understand the potential of antiviral peptides (AVPs), we analyse the antiviral activity of well-known AVP families isolated from different natural sources, discuss their physical-chemical properties, and demonstrate how AVP databases can guide us to design synthetic AVPs with better therapeutic properties. All considerations in this sphere of antiviral therapy clearly demonstrate the remarkable contribution that AVPs may make in conquering old as well as newly emerging viruses that plague humanity.
Collapse
Affiliation(s)
- Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
- Denovo Sciences CJSC, 0033, Yerevan, Armenia
| | - Garri Chilingaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Erik Arabyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | | | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
15
|
Charoenkwan P, Anuwongcharoen N, Nantasenamat C, Hasan MM, Shoombuatong W. In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review. Curr Pharm Des 2021; 27:2180-2188. [PMID: 33138759 DOI: 10.2174/1381612826666201102105827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
In light of the growing resistance toward current antiviral drugs, efforts to discover novel and effective antiviral therapeutic agents remain a pressing scientific effort. Antiviral peptides (AVPs) represent promising therapeutic agents due to their extraordinary advantages in terms of potency, efficacy and pharmacokinetic properties. The growing volume of newly discovered peptide sequences in the post-genomic era requires computational approaches for timely and accurate identification of AVPs. Machine learning (ML) methods such as random forest and support vector machine represent robust learning algorithms that are instrumental in successful peptide-based drug discovery. Therefore, this review summarizes the current state-of-the-art application of ML methods for identifying AVPs directly from the sequence information. We compare the efficiency of these methods in terms of the underlying characteristics of the dataset used along with feature encoding methods, ML algorithms, cross-validation methods and prediction performance. Finally, guidelines for the development of robust AVP models are also discussed. It is anticipated that this review will serve as a useful guide for the design and development of robust AVP and related therapeutic peptide predictors in the future.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
16
|
Ashaolu TJ, Nawaz A, Walayat N, Khalifa I. Potential "biopeptidal" therapeutics for severe respiratory syndrome coronaviruses: a review of antiviral peptides, viral mechanisms, and prospective needs. Appl Microbiol Biotechnol 2021; 105:3457-3470. [PMID: 33876282 PMCID: PMC8054851 DOI: 10.1007/s00253-021-11267-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 01/10/2023]
Abstract
Although great advances have been made on large-scale manufacturing of vaccines and antiviral-based drugs, viruses persist as the major cause of human diseases nowadays. The recent pandemic of coronavirus disease-2019 (COVID-19) mounts a lot of stress on the healthcare sector and the scientific society to search continuously for novel components with antiviral possibility. Herein, we narrated the different tactics of using biopeptides as antiviral molecules that could be used as an interesting alternative to treat COVID-19 patients. The number of peptides with antiviral effects is still low, but such peptides already displayed huge potentials to become pharmaceutically obtainable as antiviral medications. Studies showed that animal venoms, mammals, plant, and artificial sources are the main sources of antiviral peptides, when bioinformatics tools are used. This review spotlights bioactive peptides with antiviral activities against human viruses, especially the coronaviruses such as severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, and severe acute respiratory syndrome coronavirus 2 (SARS-COV-2 or SARS-nCOV19). We also showed the data about well-recognized peptides that are still under investigations, while presenting the most potent ones that may become medications for clinical use.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000 Vietnam
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, People’s Republic of China
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Banha University, 13736, Moshtohor, Cairo, Egypt
| |
Collapse
|
17
|
Ripari N, Sartori AA, da Silva Honorio M, Conte FL, Tasca KI, Santiago KB, Sforcin JM. Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. J Pharm Pharmacol 2021; 73:281-299. [PMID: 33793885 PMCID: PMC7928728 DOI: 10.1093/jpp/rgaa067] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Viral outbreaks are a frequent concern for humans. A great variety of drugs has been used to treat viral diseases, which are not always safe and effective and may induce adverse effects, indicating the need for new antiviral drugs extracted from natural sources. Propolis is a bee-made product exhibiting many biological properties. An overview of viruses, antiviral immunity, propolis safety and its immunomodulatory and antiviral action is reported, as well as perspectives for coronavirus disease 2019 (COVID-19) treatment. PubMed platform was used for data collection, searching for the keywords "propolis", "virus", "antiviral", "antimicrobial" and "coronavirus". KEY FINDINGS Propolis is safe and exerts antiviral and immunomodulatory activity; however, clinical trials should investigate its effects on individuals with viral diseases, in combination or not with antiviral drugs or vaccines. SUMMARY Regarding COVID-19, the effects of propolis should be investigated directly on the virus in vitro or on infected individuals alone or in combination with antiviral drugs, due to its immunomodulatory and anti-inflammatory action. Propolis administration simultaneously with vaccines should be analyzed, due to its adjuvant properties, to enhance the individuals' immune response. The search for therapeutic targets may be useful to find out how propolis can help to control COVID-19.
Collapse
Affiliation(s)
- Nicolas Ripari
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Arthur Alves Sartori
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Mariana da Silva Honorio
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Fernanda Lopes Conte
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Karen Ingrid Tasca
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Karina Basso Santiago
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - José Maurício Sforcin
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| |
Collapse
|
18
|
Rothan HA, Teoh TC. Cell-Based High-Throughput Screening Protocol for Discovering Antiviral Inhibitors Against SARS-COV-2 Main Protease (3CLpro). Mol Biotechnol 2021; 63:240-248. [PMID: 33464543 PMCID: PMC7814170 DOI: 10.1007/s12033-021-00299-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2021] [Indexed: 01/29/2023]
Abstract
The global public health has been compromised since the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in late December 2019. There are no specific antiviral drugs available to combat SARS-CoV-2 infection. Besides the rapid dissemination of SARS-CoV-2, several variants have been identified with a potential epidemiologic and pathogenic variation. This fact has forced antiviral drug development strategies to stay innovative, including new drug discovery protocols, combining drugs, and establishing new drug classes. Thus, developing novel screening methods and direct-targeting viral enzymes could be an attractive strategy to combat SARS-CoV-2 infection. In this study, we designed, optimized, and validated a cell-based assay protocol for high-throughput screening (HTS) antiviral drug inhibitors against main viral protease (3CLpro). We applied the split-GFP complementation to develop GFP-split-3CLpro HTS system. The system consists of GFP-based reporters that become fluorescent upon cleavage by SARS-CoV-2 protease 3CLpro. We generated a stable GFP-split-3CLpro HTS system valid to screen large drug libraries for inhibitors to SARS-CoV-2 main protease in the bio-safety level 2 laboratory, providing real-time antiviral activity of the tested compounds. Using this assay, we identified a new class of viral protease inhibitors derived from quinazoline compounds that worth further in vitro and in vivo validation.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, USA.
| | - Teow Chong Teoh
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Melo-Braga MN, De Marco Almeida F, Dos Santos DM, de Avelar Júnior JT, Dos Reis PVM, de Lima ME. Antimicrobial Peptides From Lycosidae (Sundevall, 1833) Spiders. Curr Protein Pept Sci 2021; 21:527-541. [PMID: 31951167 DOI: 10.2174/1389203721666200116091911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 01/27/2023]
Abstract
Antimicrobial peptides (AMPs) have been found in all organism taxa and may play an essential role as a host defense system. AMPs are organized in various conformations, such as linear peptides, disulfide bond-linked peptides, backbone-linked peptides and circular peptides. AMPs apparently act primarily on the plasma membrane, although an increasing number of works have shown that they may also target various intracellular sites. Spider venoms are rich sources of biomolecules that show several activities, including modulation or blockage of ion channels, anti-insect, anti-cancer, antihypertensive and antimicrobial activities, among others. In spider venoms from the Lycosidae family there are many linear AMPs with a wide range of activities against several microorganisms. Due to these singular activities, some Lycosidae AMPs have been modified to improve or decrease desirable or undesirable effects, respectively. Such modifications, especially with the aim of increasing their antibiotic activity, have led to the filing of many patent applications. This review explores the abundance of Lycosidae venom AMPs and some of their derivatives, and their use as new drug models.
Collapse
Affiliation(s)
- Marcella Nunes Melo-Braga
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia De Marco Almeida
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joaquim Teixeira de Avelar Júnior
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pablo Victor Mendes Dos Reis
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Santa Casa-Belo Horizonte: Ensino e Pesquisa, Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
21
|
Kuo YT, Liu CH, Li JW, Lin CJ, Jassey A, Wu HN, Perng GC, Yen MH, Lin LT. Identification of the phytobioactive Polygonum cuspidatum as an antiviral source for restricting dengue virus entry. Sci Rep 2020; 10:16378. [PMID: 33009425 PMCID: PMC7532532 DOI: 10.1038/s41598-020-71849-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 11/09/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne pathogen that is becoming a serious global threat, owing to its rising incidence in inter-tropical regions that yield over 50 million annual infections. There are currently no approved antiviral agents for the management of dengue, and recent shortcomings in its immunization called for immediate action to develop effective drugs with prophylactic ability to better manage its infection. In an attempt to discover novel antiviral sources, we identified the medicinal herb Polygonum cuspidatum (PC) as a bioactive botanical material against DENV infectivity. Specifically, the methanolic extract from PC rhizomes (PCME) potently inhibited DENV infection without causing significant cytotoxicity. Further examination on the viral life cycle demonstrated that PCME particularly targeted the initial stages of DENV infection, while pre- and post-infection treatments had no effect. More importantly, the PCME could efficiently inactivate DENV free virus particles and block the viral attachment and entry/fusion events without apparently influencing viral replication, egress, and cell-to-cell spread. The antiviral effect of PCME was also recapitulated in infection analysis using DENV pseudoparticles displaying viral structural proteins that mediate DENV particle entry. Besides, PCME treatment also inhibited direct DENV entry into several cell types relevant to its infection and reduced viral infectivity of other members of the Flaviviridae family, including the hepatitis C virus (HCV) and Zika virus (ZIKV). Due to its potency against DENV entry, we suggest that the phytobioactive extract from PC is an excellent starting point as an antiviral source material for further development of therapeutic strategies in the prophylactic management of DENV infection.
Collapse
Affiliation(s)
- Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jin-Wei Li
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alagie Jassey
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Guey Chuen Perng
- Department of Microbiology and Immunology & Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Troost B, Smit JM. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 2020; 43:9-21. [PMID: 32795907 DOI: 10.1016/j.coviro.2020.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023]
Abstract
Despite the high disease burden of dengue virus, there is no approved antiviral treatment or broadly applicable vaccine to treat or prevent dengue virus infection. In the last decade, many antiviral compounds have been identified but only few have been further evaluated in pre-clinical or clinical trials. This review will give an overview of the direct-acting and host-directed antivirals identified to date. Furthermore, important parameters for further development that is, drug properties including efficacy, specificity and stability, pre-clinical animal testing, and combinational drug therapy will be discussed.
Collapse
Affiliation(s)
- Berit Troost
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
23
|
Peptides targeting dengue viral nonstructural protein 1 inhibit dengue virus production. Sci Rep 2020; 10:12933. [PMID: 32737386 PMCID: PMC7395749 DOI: 10.1038/s41598-020-69515-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses manipulate the life cycle in host cells via the use of viral properties and host machineries. Development of antiviral peptides against dengue virus (DENV) infection has previously been concentrated on blocking the actions of viral structural proteins and enzymes in virus entry and viral RNA processing in host cells. In this study, we proposed DENV NS1, which is a multifunctional non-structural protein indispensable for virus production, as a new target for inhibition of DENV infection by specific peptides. We performed biopanning assays using a phage-displayed peptide library and identified 11 different sequences of 12-mer peptides binding to DENV NS1. In silico analyses of peptide-protein interactions revealed 4 peptides most likely to bind to DENV NS1 at specific positions and their association was analysed by surface plasmon resonance. Treatment of Huh7 cells with these 4 peptides conjugated with N-terminal fluorescent tag and C-terminal cell penetrating tag at varying time-of-addition post-DENV infection could inhibit the production of DENV-2 in a time- and dose-dependent manner. The inhibitory effects of the peptides were also observed in other virus serotypes (DENV-1 and DENV-4), but not in DENV-3. These findings indicate the potential application of peptides targeting DENV NS1 as antiviral agents against DENV infection.
Collapse
|
24
|
Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther 2020; 27:149-168. [PMID: 32427225 PMCID: PMC7233194 DOI: 10.1007/s10989-020-10072-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality accentuate the importance for development of new antivirals. The existing antiviral drugs are limited, due to their inadequate response, increased rate of resistance and several adverse side effects. Therefore, one of the newly emerging field “peptide-based therapeutics” against viruses is being explored and seems promising. Over the last few years, a lot of scientific effort has been made for the identification of novel and potential peptide-based therapeutics using various advanced technologies. Consequently, there are more than 60 approved peptide drugs available for sale in the market of United States, Europe, Japan, and some Asian countries. Moreover, the number of peptide drugs undergoing the clinical trials is rising gradually year by year. The peptide-based antiviral therapeutics have been approved for the Human immunodeficiency virus (HIV), Influenza virus and Hepatitis virus (B and C). This review enlightens the various peptide sources and the different approaches that have contributed to the search of potential antiviral peptides. These include computational approaches, natural and biological sources (library based high throughput screening) for the identification of lead peptide molecules against their target. Further the applications of few advanced techniques based on combinatorial chemistry and molecular biology have been illustrated to measure the binding parameters such as affinity and kinetics of the screened interacting partners. The employment of these advanced techniques can contribute to investigate antiviral peptide therapeutics for emerging infections.
Collapse
Affiliation(s)
- Garima Agarwal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
25
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Int J Mol Sci 2019; 20:ijms20225743. [PMID: 31731751 PMCID: PMC6888698 DOI: 10.3390/ijms20225743] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
In spite of the large-scale production and widespread distribution of vaccines and antiviral drugs, viruses remain a prominent human disease. Recently, the discovery of antiviral peptides (AVPs) has become an influential antiviral agent due to their extraordinary advantages. With the avalanche of newly-found peptide sequences in the post-genomic era, there is a great demand to develop a sequence-based predictor for timely identifying AVPs as this information is very useful for both basic research and drug development. In this study, we propose a novel sequence-based meta-predictor with an effective feature representation, called Meta-iAVP, for the accurate prediction of AVPs from given peptide sequences. Herein, the effective feature representation was extracted from a set of prediction scores derived from various machine learning algorithms and types of features. To the best of our knowledge, the model proposed herein represents the first meta-based approach for the prediction of AVPs. An overall accuracy and Matthews correlation coefficient of 95.20% and 0.90, respectively, was achieved from the independent test set on an objective benchmark dataset. Comparative analysis suggested that Meta-iAVP was superior to that of existing methods and therefore represents a useful tool for AVP prediction. Finally, in an effort to facilitate high-throughput prediction of AVPs, the model was deployed as the Meta-iAVP web server and is made freely available online at http://codes.bio/meta-iavp/ where users can submit query peptide sequences for determining the likelihood of whether or not these peptides are AVPs.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
- Correspondence: ; Tel.: +66-2441-4371 (ext. 2715)
| |
Collapse
|
27
|
An Antiviral Peptide from Alopecosa nagpag Spider Targets NS2B-NS3 Protease of Flaviviruses. Toxins (Basel) 2019; 11:toxins11100584. [PMID: 31658707 PMCID: PMC6832551 DOI: 10.3390/toxins11100584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
Flaviviruses are single-stranded RNA viruses predominantly transmitted by the widely distributed Aedes mosquitoes in nature. As important human pathogens, the geographic reach of Flaviviruses and their threats to public health are increasing, but there is currently no approved specific drug for treatment. In recent years, the development of peptide antivirals has gained much attention. Natural host defense peptides which uniquely evolved to protect the hosts have been shown to have antiviral properties. In this study, we firstly collected the venom of the Alopecosa nagpag spider from Shangri-La County, Yunnan Province. A defense peptide named Av-LCTX-An1a (Antiviral-Lycotoxin-An1a) was identified from the spider venom, and its anti-dengue serotype-2 virus (DENV2) activity was verified in vitro. Moreover, a real-time fluorescence-based protease inhibition assay showed that An1a functions as a DENV2 NS2B-NS3 protease inhibitor. Furthermore, we also found that An1a restricts zika virus (ZIKV) infection by inhibiting the ZIKV NS2B-NS3 protease. Together, our findings not only demonstrate that An1a might be a candidate for anti-flavivirus drug but also indicate that spider venom is a potential resource library rich in antiviral precursor molecules.
Collapse
|
28
|
Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 2019; 76:3525-3542. [PMID: 31101936 PMCID: PMC7079787 DOI: 10.1007/s00018-019-03138-w] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
Abstract
While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.
Collapse
Affiliation(s)
| | - Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Rhayfa Lorrayne Araujo Berlanda
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Natan de Carvalho Neves
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Octávio Luiz Franco
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil.
- S-Inova Biotech, Pós-graduação em Biotecnologia Universidade Católica Dom Bosco, Campo Grande, MS, 79117-900, Brazil.
| |
Collapse
|
29
|
Rothan HA, Abdulrahman AY, Khazali AS, Nor Rashid N, Chong TT, Yusof R. Carnosine exhibits significant antiviral activity against Dengue and Zika virus. J Pept Sci 2019; 25:e3196. [DOI: 10.1002/psc.3196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hussin A. Rothan
- Department of Biology, College of Arts and SciencesGeorgia State University Atlanta GA USA
| | - Ammar Yasir Abdulrahman
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Ahmad Suhail Khazali
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Teoh Teow Chong
- Institute of Biological Sciences, Faculty of ScienceUniversity of Malaya Kuala Lumpur Malaysia
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
30
|
Han Y, Pham HT, Xu H, Quan Y, Mesplède T. Antimalarial drugs and their metabolites are potent Zika virus inhibitors. J Med Virol 2019; 91:1182-1190. [PMID: 30801742 DOI: 10.1002/jmv.25440] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022]
Abstract
Studies aimed at repurposing existing drugs revealed that some antimalarial compounds possess anti-Zika virus (anti-ZIKV) activity. Here, we further tested 14 additional antimalarial drugs and their metabolites or analogs for anti-ZIKV activity using a phenotypic screening approach. We identified four compounds with varying anti-ZIKV activity, including a metabolite of amodiaquine termed desethylamodiaquine (DAQ) and N-desethylchloroquine (DECQ), a metabolite of chloroquine, which both exhibited low micromolar effective concentrations against three different ZIKV strains. Two other compounds termed dihydroartemisinin (DHA) and quinidine (QD) exhibited only partial inhibition of ZIKV replication. Characterization of the inhibitory mechanisms of DAQ and DECQ showed that both drugs target the entry step as well as postentry events of the viral replication cycle. These hits represent attractive starting points for future optimization of new anti-ZIKV drug candidates derived from antimalarial drugs and their analogs.
Collapse
Affiliation(s)
- Yingshan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Hanh T Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,Division of Infectious Diseases, Jewish General Hospital, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
31
|
Euanorasetr J, Intra B, Thunmrongsiri N, Limthongkul J, Ubol S, Anuegoonpipat A, Kurosu T, Ikuta K, Nihira T, Panbangred W. In vitro antiviral activity of spirotetronate compounds against dengue virus serotype 2. J GEN APPL MICROBIOL 2019; 65:197-203. [PMID: 30814437 DOI: 10.2323/jgam.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Spirotetronate compounds are polyketide secondary metabolites with diverse biological functions, such as antibacterial, antitumor and antiviral activities. Three pure spirotetronate compounds (2EPS-A, -B, -C) isolated from Actinomadura strain 2EPS showed inhibitory activity against dengue virus serotype 2 (DENV-2). 2EPS-A, -B and -C demonstrated the LC50 values of 11.6, 27.5 and 12.0 μg/ml, respectively, in a test of cytotoxicity to Vero cells. The least cytotoxic, 2EPS-B, was further analyzed for its impact on viral propagation in a cell-based replication assay. At a concentration of 6.25 μg/ml, it could reduce the DENV-2 infection in Vero cells by about 94% when cells infected with DENV-2 were exposed to 2EPS-B, whereas direct treatment of DENV-2 with 2EPS-B at the same concentration prior to subsequent infection to Vero cell yielded no inhibition. 2EPS-A, -B an -C showed strong DENV-2 NS2B-NS3 protease inhibition in an in vitro assay, with IC50 values of 1.94 ± 0.18, 1.47 ± 0.15 and 2.51 ± 0.21 μg/ml, respectively. Therefore, the spirotetronate compounds appear to prevent viral replication and viral assembly by inhibition of the viral protease.
Collapse
Affiliation(s)
- Jirayut Euanorasetr
- Department of Biotechnology, Faculty of Science, Mahidol University.,Mahidol University-Osaka University: Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University.,Mahidol University-Osaka University: Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University
| | - Nutthanit Thunmrongsiri
- Department of Biotechnology, Faculty of Science, Mahidol University.,Mahidol University-Osaka University: Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University
| | | | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University
| | | | - Takeshi Kurosu
- Department of Virology, Research Institute for Microbial Diseases, Osaka University.,Department of Virology, National Institute of Infectious Diseases
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University
| | - Takuya Nihira
- Mahidol University-Osaka University: Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University
| | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University.,Mahidol University-Osaka University: Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University
| |
Collapse
|
32
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
33
|
Syed H, Tauseef M, Ahmad Z. A connection between antimicrobial properties of venom peptides and microbial ATP synthase. Int J Biol Macromol 2018; 119:23-31. [DOI: 10.1016/j.ijbiomac.2018.07.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
|
34
|
Akef HM. Anticancer, antimicrobial, and analgesic activities of spider venoms. Toxicol Res (Camb) 2018; 7:381-395. [PMID: 30090588 PMCID: PMC6060684 DOI: 10.1039/c8tx00022k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022] Open
Abstract
Spider venoms are complex mixtures composed of a variety of compounds, including salts, small organic molecules, peptides, and proteins. But, the venom of a few species is dangerous to humans. High levels of chemical diversity make spider venoms attractive subjects for chemical prospecting. Many spider venom components show potential activity against a wide range of human diseases. However, the development of novel venom-derived therapeutics requires an understanding of their mechanisms of action. This review will highlight the structures, activities and the possible mechanisms of action of spider venoms and their components against cancer, microbial infections, and pain.
Collapse
Affiliation(s)
- Hassan M Akef
- National Organization for Research and Control of Biologicals (NORCB) , Giza , Egypt . ; ; Tel: +20-2-37480478
| |
Collapse
|
35
|
Abstract
Discovering new therapeutics for human viral diseases is important for combatting emerging infectious viruses and omnipresent circulating viruses as well as those that can become resistant to the drugs we currently have available. The innate host defense peptide (HDP) repertoire present in animals is a wealth of potential antimicrobial agents that could be mined to meet these needs. While much of the body of research regarding HDPs is in the context of bacteria, there is increasing evidence that they can be an effective source for antivirals. Peptides can be identified in a number of ways, including eco-conservation-minded approaches. Those shown to have antiviral properties can be modified to exhibit desired properties as the relationship between structure and function is elucidated and then developed into therapeutics for human use. This review looks at the discovery and therapeutic potential of HDPs for human viral infections.
Collapse
|
36
|
Han Y, Mesplède T, Xu H, Quan Y, Wainberg MA. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities. J Med Virol 2018; 90:796-802. [PMID: 29315671 DOI: 10.1002/jmv.25031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/24/2017] [Indexed: 02/02/2023]
Abstract
Zika virus (ZIKV) outbreak has emerged as a global health threat, particularly in tropical areas, over the past few years. No antiviral therapy or vaccine is available at present. For these reasons, repurposing clinically approved drugs against ZIKV infection may provide rapid and cost-effective global health benefits. Here, we explored this strategy and screened eight FDA-approved drugs for antiviral activity against ZIKV using a cell-based assay. Our results show that the antimalarial drug amodiaquine has anti-ZIKV activity with EC50 at low micromolar concentrations in cell culture. We further characterized amodiaquine antiviral activity against ZIKV and found that it targets early events of the viral replication cycle. Altogether, our results suggest that amodiaquine may be efficacious for the treatment of ZIKV infection.
Collapse
Affiliation(s)
- Yingshan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Faculty of Medicine, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Faculty of Medicine, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Gomes B, Augusto MT, Felício MR, Hollmann A, Franco OL, Gonçalves S, Santos NC. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 2018; 36:415-429. [PMID: 29330093 DOI: 10.1016/j.biotechadv.2018.01.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/13/2017] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
Infectious diseases are one of the main causes of human morbidity and mortality. In the last few decades, pathogenic microorganisms' resistance to conventional drugs has been increasing, and it is now pinpointed as a major worldwide health concern. The need to search for new therapeutic options, as well as improved treatment outcomes, has therefore increased significantly, with biologically active peptides representing a new alternative. A substantial research effort is being dedicated towards their development, especially due to improved biocompatibility and target selectivity. However, the inherent limitations of peptide drugs are restricting their application. In this review, we summarize the current status of peptide drug development, focusing on antiviral and antimicrobial peptide activities, highlighting the design improvements needed, and those already being used, to overcome the drawbacks of the therapeutic application of biologically active peptides.
Collapse
Affiliation(s)
- Bárbara Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Axel Hollmann
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina; Laboratory of Biointerfaces and Biomimetic Systems, CITSE, National University of Santiago del Estero-CONICET, Santiago del Estero, Argentina
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
38
|
Huang YW, Lee CT, Wang TC, Kao YC, Yang CH, Lin YM, Huang KS. The Development of Peptide-based Antimicrobial Agents against Dengue Virus. Curr Protein Pept Sci 2018; 19:998-1010. [PMID: 29852867 PMCID: PMC6446661 DOI: 10.2174/1389203719666180531122724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022]
Abstract
Dengue fever has become an imminent threat to international public health because of global warming and climate change. The World Health Organization proclaimed that more than 50% of the world's population is at risk of dengue virus (DENV) infection. Therefore, developing a clinically approved vaccine and effective therapeutic remedy for treating dengue fever is imperative. Peptide drug development has become a novel pharmaceutical research field. This article reviews various peptidesbased antimicrobial agents targeting three pathways involved in the DENV lifecycle. Specifically, they are peptide vaccines from immunomodulation, peptide drugs that inhibit virus entry, and peptide drugs that interfere with viral replication. Many antiviral peptide studies against DENV have been conducted in animal model trials, and progression to clinical trials for these promising peptide drugs is anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keng-Shiang Huang
- Address correspondence to this author at the School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan;, Tel: +886-988-399-979; E-mail:
| |
Collapse
|
39
|
Leonel CA, Lima WG, dos Santos M, Ferraz AC, Taranto AG, de Magalhães JC, dos Santos LL, Ferreira JMS. Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds. Arch Virol 2017; 163:575-586. [DOI: 10.1007/s00705-017-3641-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
|
40
|
Budagavi DP, Zarin S, Chugh A. Antifungal activity of Latarcin 1 derived cell-penetrating peptides against Fusarium solani. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:250-256. [PMID: 29108892 DOI: 10.1016/j.bbamem.2017.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 11/19/2022]
Abstract
Cell-penetrating peptides and antimicrobial peptides share physicochemical characteristics and mechanisms of interaction with biological membranes, hence, termed as membrane active peptides. The present study aims at evaluating AMP activity of CPPs. LDP-NLS and LDP are Latarcin 1 derived cell-penetrating peptides and in the current study we have evaluated antifungal and cell-penetrating properties of these CPPs in Fusarium solani. We observed that LDP-NLS and LDP exhibited excellent antifungal activity against the fungus. Cellular uptake experiments with LDP-NLS and LDP showed that LDP-NLS acted as a CPP but LDP uptake into fungal spores and hyphae was negligible. CPP and AMP activity of mutated version of LDP-NLS was also evaluated and it was observed that both the activities of the peptide were compromised, signifying the importance of arginines and lysines present in LDP-NLS for initial interaction of membrane active peptides with biological membranes. Dextrans and Propidium Iodide uptake studies revealed that the mode of entry of LDP-NLS into fungal hyphae is through pore formation. Also, both LDP-NLS and LDP showed no cytotoxicity when infiltered into leaf tissues. Overall, our results suggest that LDP-NLS and LDP are selectively cytotoxic to F. solani and can be a potent peptide based antifungal agents.
Collapse
Affiliation(s)
| | - Sheeba Zarin
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
41
|
Su X, Zhou X, Tan Z, Zhou C. Highly efficient antibacterial diblock copolypeptides based on lysine and phenylalanine. Biopolymers 2017; 107. [DOI: 10.1002/bip.23041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaokai Su
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Xinyu Zhou
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Zhengzhong Tan
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Chuncai Zhou
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| |
Collapse
|
42
|
Wang X, Wang G. Insights into Antimicrobial Peptides from Spiders and Scorpions. Protein Pept Lett 2017; 23:707-21. [PMID: 27165405 DOI: 10.2174/0929866523666160511151320] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 12/19/2022]
Abstract
The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider's and 63 scorpion's AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses.
Collapse
Affiliation(s)
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
43
|
da Fonseca NJ, Lima Afonso MQ, Pedersolli NG, de Oliveira LC, Andrade DS, Bleicher L. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains. Biochem Biophys Res Commun 2017; 492:565-571. [PMID: 28087275 DOI: 10.1016/j.bbrc.2017.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed.
Collapse
Affiliation(s)
- Néli José da Fonseca
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Marcelo Querino Lima Afonso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Natan Gonçalves Pedersolli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Carrijo de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Dhiego Souto Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
44
|
Barreto-Santamaría A, Curtidor H, Arévalo-Pinzón G, Herrera C, Suárez D, Pérez WH, Patarroyo ME. A New Synthetic Peptide Having Two Target of Antibacterial Action in E. coli ML35. Front Microbiol 2016; 7:2006. [PMID: 28066341 PMCID: PMC5167725 DOI: 10.3389/fmicb.2016.02006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
The increased resistance of microorganisms to the different antimicrobials available to today has highlighted the need to find new therapeutic agents, including natural and/or synthetic antimicrobial peptides (AMPs). This study has evaluated the antimicrobial activity of synthetic peptide 35409 (RYRRKKKMKKALQYIKLLKE) against Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 15442 and Escherichia coli ML 35 (ATCC 43827). The results have shown that peptide 35409 inhibited the growth of these three bacterial strains, having 16-fold greater activity against E. coli and P. aeruginosa, but requiring less concentration regarding E. coli (22 μM). When analyzing this activity against E. coli compared to time taken, it was found that this peptide inhibited bacterial growth during the first 60 min and reduced CFU/mL 1 log after 120 min had elapsed. This AMP permeabilized the E. coli membrane by interaction with membrane phospholipids, mainly phosphatidylethanolamine, inhibited cell division and induced filamentation, suggesting two different targets of action within a bacterial cell. Cytotoxicity studies revealed that peptide 35409 had low hemolytic activity and was not cytotoxic for two human cell lines. We would thus propose, in the light of these findings, that the peptide 35409 sequence should provide a promising template for designing broad-spectrum AMPs.
Collapse
Affiliation(s)
- Adriana Barreto-Santamaría
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; Faculty of Sciences and Education, Universidad Distrital Francisco José de CaldasBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Hernando Curtidor
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Chonny Herrera
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Diana Suárez
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Walter H Pérez
- Escuela Colombiana de Carreras Industriales Bogotá, Colombia
| | - Manuel E Patarroyo
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; Faculty of Medicine, Universidad Nacional de ColombiaBogotá, Colombia
| |
Collapse
|
45
|
Han YS, Penthala NR, Oliveira M, Mesplède T, Xu H, Quan Y, Crooks PA, Wainberg MA. Identification of resveratrol analogs as potent anti-dengue agents using a cell-based assay. J Med Virol 2016; 89:397-407. [PMID: 27509184 DOI: 10.1002/jmv.24660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 01/19/2023]
Abstract
Dengue virus (DENV) causes a variety of difficult-to-treat diseases that threaten almost half of the world's population. Currently, no effective vaccine or antiviral therapy is available. We have examined a series of synthetic resveratrol analogs to identify potential anti-DENV agents. Here, we demonstrate that two resveratrol analogs, PNR-4-44 and PNR-5-02, possess potent anti-DENV activity with EC50 values in the low nanomolar range. These two resveratrol analogs were shown to mainly target viral RNA translation and viral replication, but PNR-5-02 is also likely to target cellular factors inside host cells. Although the precise molecular mechanism(s) mediating anti-DENV activities have not been elucidated, further structure-guided design might lead to the development of newer improved resveratrol derivatives that might have therapeutic value. J. Med. Virol. 89:397-407, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying-Shan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Sajjanar B, Saxena S, Bisht D, Singh AK, Manjunatha Reddy GB, Singh R, Singh RP, Kumar S. Effect of nicotinic acetylcholine receptor alpha 1 (nAChRα1) peptides on rabies virus infection in neuronal cells. Neuropeptides 2016; 57:59-64. [PMID: 26656837 DOI: 10.1016/j.npep.2015.11.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022]
Abstract
Rabies virus (RABV) is neurotropic and causes acute progressive encephalitis. Herein, we report the interaction of nAChRα1-subunit peptides with RABV and the effect of these peptides on RABV infection in cultured neuronal cells. Peptide sequences derived from torpedo, bovine, human and rats were synthesized and studied for their interactions with RABV using virus capture ELISA and peptide immunofluorescence. The results showed specific binding of the nAChRα1-subunit peptides to the RABV. In the virus adsorption assay, these peptides were found to inhibit the attachment of the RABV to the neuronal cells. The nAChRα1-subunit peptides inhibited the RABV infection and reduced viral gene expression in the cultured neuroblastoma (N2A) cells. Torpedo peptide sequence (T-32) had highest antiviral effect (IC50=14±3.01μM) compared to the other peptides studied. The results of the study indicated that nAChRα1-subunit peptides may act as receptor decoy molecules and inhibit the binding of virus to the native host cell receptors and hence may reduce viral infection.
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - Deepika Bisht
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - Arvind Kumar Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - G B Manjunatha Reddy
- National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, Karnataka, India
| | - Rajendra Singh
- Division of Veterinary Pathology, Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - R P Singh
- Division of Biological Products, Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - Satish Kumar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India.
| |
Collapse
|
47
|
McGuigan C, Serpi M, Slusarczyk M, Ferrari V, Pertusati F, Meneghesso S, Derudas M, Farleigh L, Zanetta P, Bugert J. Anti-flavivirus Activity of Different Tritylated Pyrimidine and Purine Nucleoside Analogues. ChemistryOpen 2016; 5:227-35. [PMID: 27551659 PMCID: PMC4984408 DOI: 10.1002/open.201500216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
A series of tritylated and dimethoxytritylated analogues of selected pyrimidine and purine nucleosides were synthesized and evaluated for their in vitro inhibitory activity against two important members of the genus Flavivirus in the Flaviviridae family, the yellow fever (YFV) and dengue viruses (DENV). Among all compounds tested, the 5′‐O‐tritylated and the 5′‐O‐dimethoxytritylated 5‐fluorouridine derivatives exerted potency against YFV. Interestingly in the series of purine analogues, the 5′O, N‐bis‐tritylated fludarabine derivative revealed strong inhibitory activity against DENV at μm concentrations, however significantly weaker potency against YFV.
Collapse
Affiliation(s)
- Christopher McGuigan
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB United Kingdom
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB United Kingdom
| | - Magdalena Slusarczyk
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB United Kingdom
| | - Valentina Ferrari
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB United Kingdom
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB United Kingdom
| | - Silvia Meneghesso
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB United Kingdom
| | - Marco Derudas
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB United Kingdom
| | - Laura Farleigh
- Medical Microbiology and Infectious Diseases School of Medicine Cardiff University Heath Park Cardiff CF14 4XN United Kingdom
| | - Paola Zanetta
- Medical Microbiology and Infectious Diseases School of Medicine Cardiff University Heath Park Cardiff CF14 4XN United Kingdom
| | - Joachim Bugert
- Medical Microbiology and Infectious Diseases School of Medicine Cardiff University Heath Park Cardiff CF14 4XN United Kingdom
| |
Collapse
|
48
|
Chew MF, Tham HW, Rajik M, Sharifah S. Anti-dengue virus serotype 2 activity and mode of action of a novel peptide. J Appl Microbiol 2015; 119:1170-80. [DOI: 10.1111/jam.12921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 11/27/2022]
Affiliation(s)
- M.-F. Chew
- Virus-Host Interaction Group; Infectious Disease Laboratory (MR3); Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Selangor Malaysia
| | - H.-W. Tham
- Virus-Host Interaction Group; Infectious Disease Laboratory (MR3); Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Selangor Malaysia
| | - M. Rajik
- Synamatix Sdn. Bhd.; Chemistry Lab 4; Enterprise 2; Technology Park Malaysia; Kuala Lumpur Malaysia
| | - S.H. Sharifah
- Virus-Host Interaction Group; Infectious Disease Laboratory (MR3); Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Selangor Malaysia
| |
Collapse
|
49
|
The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases. Molecules 2015; 20:15392-433. [PMID: 26305243 PMCID: PMC6332049 DOI: 10.3390/molecules200815392] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, research into the development of new antimicrobial agents has been driven by the increase in resistance to traditional antibiotics and Emerging Infectious Diseases. Antimicrobial peptides (AMPs) are promising candidates as alternatives to current antibiotics in the treatment and prevention of microbial infections. AMPs are produced by all known living species, displaying direct antimicrobial killing activity and playing an important role in innate immunity. To date, more than 2000 AMPs have been discovered and many of these exhibit broad-spectrum antibacterial, antiviral and anti-parasitic activity. Neglected tropical diseases (NTDs) are caused by a variety of pathogens and are particularly wide-spread in low-income and developing regions of the world. Alternative, cost effective treatments are desperately needed to effectively battle these medically diverse diseases. AMPs have been shown to be effective against a variety of NTDs, including African trypanosomes, leishmaniosis and Chagas disease, trachoma and leprosy. In this review, the potential of selected AMPs to successfully treat a variety of NTD infections will be critically evaluated.
Collapse
|