1
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
2
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
3
|
Wang Y, Zhao Y, Xia L, Chen L, Liao Y, Chen B, Liu Y, Gong W, Tian Y, Hu B. yggS Encoding Pyridoxal 5'-Phosphate Binding Protein Is Required for Acidovorax citrulli Virulence. Front Microbiol 2022; 12:783862. [PMID: 35087487 PMCID: PMC8787154 DOI: 10.3389/fmicb.2021.783862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial fruit blotch, caused by seed-borne pathogen Acidovorax citrulli, poses a serious threat to the production of cucurbits globally. Although the disease can cause substantial economic losses, limited information is available about the molecular mechanisms of virulence. This study identified that, a random transposon insertion mutant impaired in the ability to elicit a hypersensitive response on tobacco. The disrupted gene in this mutant was determined to be Aave_0638, which is predicted to encode a YggS family pyridoxal phosphate-dependent enzyme. YggS is a highly conserved protein among multiple organisms, and is responsible for maintaining the homeostasis of pyridoxal 5′-phosphate and amino acids in cells. yggS deletion mutant of A. citrulli strain XjL12 displayed attenuated virulence, delayed hypersensitive response, less tolerance to H2O2 and pyridoxine, increased sensitivity to antibiotic β-chloro-D-alanine, and reduced swimming. In addition, RNA-Seq analysis demonstrated that yggS was involved in regulating the expression of certain pathogenicity-associated genes related to secretion, motility, quorum sensing and oxidative stress response. Importantly, YggS significantly affected type III secretion system and its effectors in vitro. Collectively, our results suggest that YggS is indispensable for A.citrulli virulence and expands the role of YggS in the biological processes.
Collapse
Affiliation(s)
- Yuanjie Wang
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing, China
| | - Liming Xia
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Lin Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yajie Liao
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yiyang Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Weirong Gong
- Plant Protection and Quarantine Station of Province, Nanjing, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Abstract
The pyridoxal 5'-phosphate-binding protein (PLPBP) is an evolutionarily conserved protein linked to pyridoxal 5'-phosphate-binding. Although mutations in PLPBP were shown to cause vitamin B6-dependent epilepsy, its cellular role and function remain elusive. We here report a detailed biochemical investigation of human PLPBP and its epilepsy-causing mutants by evaluating stability, cofactor binding, and oligomerization. In this context, chemical cross-linking combined with mass spectrometry unraveled an unexpected dimeric assembly of PLPBP. Furthermore, the interaction network of PLPBP was elucidated by chemical cross-linking paired with co-immunoprecipitation. A mass spectrometric analysis in a PLPBP knockout cell line resulted in distinct proteomic changes compared to wild type cells, including upregulation of several cytoskeleton- and cell division-associated proteins. Finally, transfection experiments with vitamin B6-dependent epilepsy-causing PLPBP variants indicate a potential role of PLPBP in cell division as well as proper muscle function. Taken together, our studies on the structure and cellular role of human PLPBP enable a better understanding of the physiological and pathological mechanism of this important protein.
Collapse
Affiliation(s)
- Anja Fux
- Department
of Chemistry, Chair of Organic Chemistry II, Center for Integrated
Protein Science (CIPSM), Technische Universität
München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Stephan A. Sieber
- Department
of Chemistry, Chair of Organic Chemistry II, Center for Integrated
Protein Science (CIPSM), Technische Universität
München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
5
|
Martínez-Carranza E, Ponce-Soto GY, Servín-González L, Alcaraz LD, Soberón-Chávez G. Evolution of bacteria seen through their essential genes: the case of Pseudomonas aeruginosa and Azotobacter vinelandii. MICROBIOLOGY-SGM 2019; 165:976-984. [PMID: 31274400 DOI: 10.1099/mic.0.000833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium and also an important opportunistic pathogen. It has a remarkable genomic structure since the genetic information encoding its pathogenicity-related traits belongs to its core-genome while both environmental and clinical isolates are part of the same population with a highly conserved genomic sequence. Unexpectedly, considering the high level of sequence identity and homologue gene number shared between different P. aeruginosa isolates, the presence of specific essential genes of the two type strains PAO1 and PA14 has been reported to be highly variable. Here we report the detailed bioinformatics analysis of the essential genes of P. aeruginosa PAO1 and PA14 that have been previously experimentally identified and show that the reported gene variability was owed to sequencing and annotation inconsistencies, but that in fact they are highly conserved. This bioinformatics analysis led us to the definition of 348 P. aeruginosa general essential genes. In addition we show that 342 of these 348 essential genes are conserved in Azotobacter vinelandii, a nitrogen-fixing, cyst-forming, soil bacterium. These results support the hypothesis of A. vinelandii having a polyphyletic origin with a Pseudomonads genomic backbone, and are a challenge to the accepted theory of bacterial evolution.
Collapse
Affiliation(s)
- Enrique Martínez-Carranza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| | - Luis David Alcaraz
- Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| |
Collapse
|
6
|
Martínez-Carranza E, Barajas H, Alcaraz LD, Servín-González L, Ponce-Soto GY, Soberón-Chávez G. Variability of Bacterial Essential Genes Among Closely Related Bacteria: The Case of Escherichia coli. Front Microbiol 2018; 9:1059. [PMID: 29910775 PMCID: PMC5992433 DOI: 10.3389/fmicb.2018.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/04/2018] [Indexed: 11/23/2022] Open
Abstract
The definition of bacterial essential genes has been widely pursued using different approaches. Their study has impacted several fields of research such as synthetic biology, the construction of bacteria with minimal chromosomes, the search for new antibiotic targets, or the design of strains with biotechnological applications. Bacterial genomes are mosaics that only share a small subset of gene-sequences (core genome) even among members of the same species. It has been reported that the presence of essential genes is highly variable between closely related bacteria and even among members of the same species, due to the phenomenon known as “non-orthologous gene displacement” that refers to the coding for an essential function by genes with no sequence homology due to horizontal gene transfer (HGT). The existence of dormant forms among bacteria and the high incidence of HGT have been proposed to be driving forces of bacterial evolution, and they might have a role in the low level of conservation of essential genes among related bacteria by non-orthologous gene displacement, but this correlation has not been recognized. The aim of this mini-review is to give a brief overview of the approaches that have been taken to define and study essential genes, and the implications of non-orthologous gene displacement in bacterial evolution, focusing mainly in the case of Escherichia coli. To this end, we reviewed the available literature, and we searched for the presence of the essential genes defined by mutagenesis in the genomes of the 63 best-sequenced E. coli genomes that are available in NCBI database. We could not document specific cases of non-orthologous gene displacement among the E. coli strains analyzed, but we found that the quality of the genome-sequences in the database is not enough to make accurate predictions about the conservation of essential-genes among members of this bacterial species.
Collapse
Affiliation(s)
- Enrique Martínez-Carranza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis-David Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Chownk M, Sharma A, Singh K, Kaur J. mesT, a unique epoxide hydrolase, is essential for optimal growth of Mycobacterium tuberculosis in the presence of styrene oxide. Future Microbiol 2017; 12:527-546. [DOI: 10.2217/fmb-2016-0206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: mesT of Mycobacterium tuberculosis, a hypothetical/putative epoxide hydrolase, is predicted to convert toxic epoxides to the more water-soluble and less toxic diols. Detailed characterization of the protein was carried out. Results: mesT demonstrated esterase as well as epoxide hydrolase activity. It was membrane bound and was upregulated under hypoxic conditions. The enzyme was able to degrade styrene oxide. The presence of antisense against this gene resulted in the inhibition of in vitro bacterial growth/survival in the presence of styrene oxide. Conclusion & future perspective: We demonstrated that mesT possessed epoxide hydrolase activity and styrene oxide might be its physiological substrate. Inhibition of mesT reduced the growth of the bacteria in presence of styrene oxide and its expression under hypoxic condition suggested its role in intracellular survival of bacteria.
Collapse
Affiliation(s)
- Manisha Chownk
- Department of Biotechnology, Panjab University, 160014 Chandigarh, India
| | - Aashish Sharma
- Department of Biotechnology, Panjab University, 160014 Chandigarh, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, 160014 Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, 160014 Chandigarh, India
| |
Collapse
|
8
|
Ligand and Structure-Based Approaches for the Identification of Peptide Deformylase Inhibitors as Antibacterial Drugs. Int J Mol Sci 2016; 17:ijms17071141. [PMID: 27428963 PMCID: PMC4964514 DOI: 10.3390/ijms17071141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/29/2016] [Accepted: 07/09/2016] [Indexed: 01/02/2023] Open
Abstract
Peptide deformylase (PDF) is a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins, which makes it an important antibacterial drug target. Given the importance of PDF inhibitors like actinonin in antibacterial drug discovery, several reported potent PDF inhibitors were used to develop pharmacophore models using the Galahad module of Sybyl 7.1 software. Generated pharmacophore models were composed of two donor atom centers, four acceptor atom centers and two hydrophobic groups. Model-1 was screened against the Zinc database and several compounds were retrieved as hits. Compounds with Qfit values of more than 60 were employed to perform a molecular docking study with the receptor Escherichia coli PDF, then compounds with docking score values of more than 6 were used to predict the in silico pharmacokinetic and toxicity risk via OSIRIS property explorer. Two known PDF inhibitors were also used to perform a molecular docking study with E. coli PDF as reference molecules. The results of the molecular docking study were validated by reproducing the crystal structure of actinonin. Molecular docking and in silico pharmacokinetic and toxicity prediction studies suggested that ZINC08740166 has a relatively high docking score of 7.44 and a drug score of 0.78.
Collapse
|
9
|
Prunetti L, El Yacoubi B, Schiavon CR, Kirkpatrick E, Huang L, Bailly M, El Badawi-Sidhu M, Harrison K, Gregory JF, Fiehn O, Hanson AD, de Crécy-Lagard V. Evidence that COG0325 proteins are involved in PLP homeostasis. MICROBIOLOGY-SGM 2016; 162:694-706. [PMID: 26872910 DOI: 10.1099/mic.0.000255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for nearly 60 Escherichia coli enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life. Various pleiotropic phenotypes of the E. coli COG0325 (yggS) mutant have been reported, some of which were reproduced and extended in this study. Comparative genomic, genetic and metabolic analyses suggest that these phenotypes reflect an imbalance in PLP homeostasis. The E. coli yggS mutant accumulates the PLP precursor pyridoxine 5'-phosphate (PNP) and is sensitive to an excess of pyridoxine but not of pyridoxal. The pyridoxine toxicity phenotype is complemented by the expression of eukaryotic yggS orthologs. It is also suppressed by the presence of amino acids, specifically isoleucine, threonine and leucine, suggesting the PLP-dependent enzyme transaminase B (IlvE) is affected. These genetic results lay a foundation for future biochemical studies of the role of COG0325 proteins in PLP homeostasis.
Collapse
Affiliation(s)
- Laurence Prunetti
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Cara R Schiavon
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ericka Kirkpatrick
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lili Huang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Marc Bailly
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Mona El Badawi-Sidhu
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, USA
| | - Katherine Harrison
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jesse F Gregory
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, USA
| | - Andrew D Hanson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Vecchietti D, Ferrara S, Rusmini R, Macchi R, Milani M, Bertoni G. Crystal structure of YeaZ from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2016; 470:460-465. [PMID: 26768361 DOI: 10.1016/j.bbrc.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/03/2016] [Indexed: 10/22/2022]
Abstract
The Pseudomonas aeruginosa PA3685 locus encodes a conserved protein that shares 49% sequence identity with Escherichia coli YeaZ, which was recently reported as involved in the biosynthesis of threonylcarbamoyl adenosine (t(6)A), a universal modified tRNA nucleoside. Many YeaZ orthologues were reported as "essential for life" among various bacterial species, suggesting a critical role for both these proteins and for the t(6)A biosynthetic pathway. We provide here evidences that PA3685 protein (PaYeaZ) is essential. Additionally, we describe its purification, crystallization, and crystallographic structure. The crystal structure shows that PaYeaZ is composed of two domains one of which is the platform to form protein-protein interaction involved either in homodimeric assembly or in the formation of the multiprotein complex required for the synthesis of t(6)A. These features make the PaYeaZ protein a potential target candidate for the design of novel inhibitors able to hinder the complex formation and expected to abolish the crucial activity of t(6)A synthesis.
Collapse
Affiliation(s)
- Davide Vecchietti
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133, Milano, Italy
| | - Silvia Ferrara
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133, Milano, Italy
| | - Ruggero Rusmini
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133, Milano, Italy
| | - Raffaella Macchi
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133, Milano, Italy
| | - Mario Milani
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133, Milano, Italy; CNR-Istituto di Biofisica, Via Celoria 26, I-20133, Milano, Italy.
| | - Giovanni Bertoni
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133, Milano, Italy
| |
Collapse
|
11
|
Kukavica-Ibrulj I, Levesque RC. Essential genes in the infection model of Pseudomonas aeruginosa-PCR-based signature-tagged mutagenesis. Methods Mol Biol 2015; 1279:97-123. [PMID: 25636615 DOI: 10.1007/978-1-4939-2398-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PCR-based signature tagged mutagenesis is an "en masse" screening technique based upon unique oligonucleotide tags (molecular barcodes) for identification of genes that will diminish or enhance maintenance of an organism in a specific ecological niche or environment. PCR-based STM applied to Pseudomonas aeruginosa permitted the identification of genes essential for in vivo maintenance by transposon insertion and negative selection in a mixed population of bacterial mutants. The innovative adaptations and refinement of the technology presented here with P. aeruginosa STM mutants selected in the rat model of chronic lung infection have given critical information about genes essential for causing a chronic infection and a wealth of information about biological processes in vivo. The additional use of competitive index analysis for measurement of the level of virulence in vivo, microarray-based screening of selected prioritized STM mutants coupled to metabolomics analysis can now be attempted systematically on a genomic scale. PCR-based STM and combined whole-genome methods can also be applied to any organism having selectable phenotypes for screening.
Collapse
Affiliation(s)
- Irena Kukavica-Ibrulj
- Institut de biologie intégrative et des systèmes (IBIS), Faculté de Médecine, Université Laval, Pavillon Charles-Eugène Marchand, 1030 Avenue de la médecine, Québec, QC, Canada, G1K 7P4
| | | |
Collapse
|
12
|
Smith EW, Zhang X, Behzadi C, Andrews LD, Cohen F, Chen Y. Structures of Pseudomonas aeruginosa LpxA Reveal the Basis for Its Substrate Selectivity. Biochemistry 2015; 54:5937-48. [PMID: 26352800 DOI: 10.1021/acs.biochem.5b00720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Gram-negative bacteria, the first step of lipid A biosynthesis is catalyzed by UDP-N-acetylglucosamine acyltransferase (LpxA) through the transfer of a R-3-hydroxyacyl chain from the acyl carrier protein (ACP) to the 3-hydroxyl group of UDP-GlcNAc. Previous studies suggest that LpxA is a critical determinant of the acyl chain length found in lipid A, which varies among species of bacteria. In Escherichia coli and Leptospira interrogans, LpxA prefers to incorporate longer R-3-hydroxyacyl chains (C14 and C12, respectively), whereas in Pseudomonas aeruginosa, the enzyme is selective for R-3-hydroxydecanoyl, a 10-hydrocarbon long acyl chain. We now report three P. aeruginosa LpxA crystal structures: apo protein, substrate complex with UDP-GlcNAc, and product complex with UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc. A comparison between the apo form and complexes identifies key residues that position UDP-GlcNAc appropriately for catalysis and supports the role of catalytic His121 in activating the UDP-GlcNAc 3-hydroxyl group for nucleophilic attack during the reaction. The product-complex structure, for the first time, offers structural insights into how Met169 serves to constrain the length of the acyl chain and thus functions as the so-called hydrocarbon ruler. Furthermore, compared with ortholog LpxA structures, the purported oxyanion hole, formed by the backbone amide group of Gly139, displays a different conformation in P. aeruginosa LpxA, which suggests flexibility of this structural feature important for catalysis and the potential need for substrate-induced conformational change in catalysis. Taken together, the three structures provide valuable insights into P. aeruginosa LpxA catalysis and substrate specificity as well as templates for future inhibitor discovery.
Collapse
Affiliation(s)
- Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - XiuJun Zhang
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Cyrus Behzadi
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Logan D Andrews
- ACHAOGEN Inc. , 7000 Shoreline Court, South San Francisco, California 94080, United States
| | - Frederick Cohen
- ACHAOGEN Inc. , 7000 Shoreline Court, South San Francisco, California 94080, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
13
|
Juhas M. Pseudomonas aeruginosa essentials: an update on investigation of essential genes. MICROBIOLOGY-SGM 2015; 161:2053-60. [PMID: 26311069 DOI: 10.1099/mic.0.000161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|